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Abstract. Many evidences of oscillations accompanying the
acceleration of critical systems have been reported. These
oscillations are usually related to discrete scale invariance
properties of the systems and exhibit a logarithmic period-
icity. In this paper we propose another explanation for these
oscillations in the case of shearing fracture. Using a contin-
uum damage model, we show that oscillations emerge from
the anisotropic properties of the cracks in the shearing frac-
ture zone. These oscillations no longer exhibit a logarith-
mic but rather a power-law periodicity. The power-periodic
oscillation is a more general formulation. Its reduces to a
log-periodic oscillation when the exponent of the power-law
equals one. We apply this model to fit the measured displace-
ments of unstable ice masses of hanging glaciers for which
data are available. Results show that power-periodic oscilla-
tions adequately fit the observations.

1 Introduction

Accelerating oscillations appear in a large variety of failure
processes. They accompany the power-law acceleration ob-
served prior to the failure and are usually described by log-
periodic oscillations (see the review of Zhou and Sornette,
2002). Log-periodic oscillations appear in systems exhibit-
ing discrete scale invariance properties (Sornette, 1998). In
fracture of rocks, numerical simulations “indicate that the
interplay between the heterogeneities of rock and the stress
field generates dynamically such a scale invariance” (Sahimi
and Arbabi, 1996) and log-periodic corrections to the power-
law acceleration. Accelerating oscillations must be consid-
ered to perform an accurate prediction of the time of failure
(Pralong et al., 2005).
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We show in this paper that accelerating oscillations with
another type of periodicity emerge in critical shearing pro-
cesses because of the anisotropy of the orientation distribu-
tion of the cracks. These oscillations have a frequency pro-
portional to a power of the time before failure and reduce to
log-periodic oscillations when the exponent of the time be-
fore failure tends to one. To derive this power dependence
we build a shearing fracture model. We do not consider each
individual crack but the density of the cracks which develop
in the shearing zone by using the theory of the continuum
damage mechanics. Since individual cracks are not consid-
ered, discrete scale invariance properties of the crack pattern
do not exist in the model and therefore do not play a role in
the existence of these power-periodic oscillations. We apply
this model to the displacement field prior to failure of un-
stable ice masses from hanging glaciers for which data are
available. We therefore consider a viscoelastic, not neces-
sarily Newtonian material, which describes the behavior of
glacier ice.

The paper is organized in three parts. The first part in-
troduces the assumptions of the shearing fracture model
(Sect. 3), the differential equations and a numerical solu-
tion for the accelerating oscillations of the surface velocity
(Sect. 4). The second part postulates further assumptions in
order to derive an analytical solution (Sect. 5). Then the an-
alytical solution is compared to measurements performed on
two hanging glaciers (Sect. 6). The last part discusses the
results (Sect. 7).

2 Notations and definitions

In what follows, vectors are denoted as bold, and second or-
der tensors are underlined. We use symbolic and Cartesian
tensor notation and employ the summation convention ac-
cording to which summation is understood over doubly re-
peated indices.
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682 A. Pralong: Oscillations in critical shearing

Let x=x̃(t, X) represent the position of the material point
of the body in the present (i.e., timet) configuration whilst
X is its position in the corresponding reference configura-
tion. Let v(t, x)=(∂x̃/∂t)(t, X(t, x)) be the spatial veloc-
ity vector,L(t, x)=(∂v/∂x̃)(t, x, X(t, x)) the velocity gra-
dient tensor,̇ε=1

2(L+LT ) the stretching or strain rate ten-
sor andW=

1
2(L−LT ) the spin tensor. The dyadic prod-

ucts of two vectorsa, b will be denoted bya⊗b. More-
over, the Lie [, ] and Jacobi〈, 〉 brackets of two second
rank tensorsA, B are defined by[A, B]=A B−B A and
〈A, B〉=A B+B A, respectively. The first and second invari-
ants of a second rank tensorA are defined asIA=Tr A and
IIA=

1
2

(
(Tr A)2

−Tr (A2)
)
, respectively.

3 Background and assumptions

The processes of the glacier ice are modeled in the Eulerian
description. The temperature in the glacier is assumed to be
constant and the ice is cold (temperature below the melting
point). The heat balance equation is therefore not considered.

The ice and the cracks are modeled as a unique medium,
according to the theory of the continuum damage mechan-
ics. We assume that the opening of the cracks which de-
velop in the damaged ice (ice plus cracks) is negligible, since
the mean deformation is shearing1. Because the virgin ice
(ice without cracks) is incompressible and the opening of the
cracks is ignored, the damaged ice is thus volume preserving,
so that the equation of mass conservation reads

vi,i = 0, (1)

in whichvi is the velocity of the damaged ice.
The acceleration terms in the balance of linear momentum

are neglected because of the slow creeping character of the
ice motion. This so-called Stokes assumption is commonly
adopted in glaciology. The linear momentum equations then
read

σij ,j = −ρ bi, (2)

in which σij , ρ, bi are the Cauchy stress tensor, the density
and the body force vector of the damaged ice, respectively.

A variableD (damage variable) is introduced to quantify
the amount of cracks in the ice, as well as the anisotropy of
the orientation distribution of the cracks. We restrict ourself
here to an orthotropic description of the anisotropy, so that
the damage variable is a symmetric second rank tensor. In
that case, and since the ice is cold, the balance equation for
D is described by (Pralong et al., 2006)

Ḋ +
[
D, W

]
= f . (3)

1We assume later on uniformity of the processes in the flow di-
rection (see Eq. 13), which leads to a pure shearing flow. Possible
tensile cracks at the glacier surface are not relevant here, since the
critical damage accumulates at the glacier base due to shearing.

The left-hand side is the Jaumann derivative (a spatially ob-
jective derivative) with the material derivative given by

Ḋ =
∂D

∂t
+ gradD · v. (4)

The spin tensorW is defined in Sect. 2.f is the source term
of damage (called the dynamic function of damage), which
describes the increase (cracking) and decrease (healing) of
damage with time.

3.1 Damage evolution

In the dynamic function of damage, healing is neglected,
since the ice temperature is substantially below melting.
Cracking is modeled with a Kachanow type law valid for
orthotropic damage (Kachanov, 1999; Rabotnov, 1969; Mu-
rakami and Ohno, 1980). So, in nearly plane flowf reads

f = B (σxz − σth)
r

(
1 −

Dxx + Dzz

2

)−k

[
(1 − γ )I + γ ν(1)

⊗ ν(1)
]
, (5)

whereB, r andk are evolution parameters,σth is the stress
threshold accounting for damage nucleation andI is the sec-
ond order unit tensor whilstσxz is assumed to describe the
influence of the stress state on the damage evolution, since
the ice motion is close to a pure shearing motion (see rela-
tion 13)2. The expression 1−Dxx+Dzz

2 expresses the positive
feedback of the damage on its evolution3. The orientation of
damage growth (last factor on the right hand side of Eq. 5) is
expressed as a linear combination of isotropic (γ=0) and or-
thotropic (γ=1) contributions. The orthotropic orientation is
modeled by the dyadic productν(1)

⊗ ν(1), whereν(1) is the
unit eigenvector associated with the maximum eigenvalue4

of the effective stress tensorσ̃ 5, which is defined as (Pralong
et al., 2006)

σ̃ =
1
2〈(I − D)−1, σ 〉. (6)

3.2 Stress of the damaged ice

Since the glacier motion is observed over a long period,
the elastic deformations are assumed to be negligible com-
pared to the viscous deformations. The viscous stress (non-
equilibrium stress) thus equals the global stressσ . The

2A more complex description of the influence of the stress state
accounting for invariants of the stress tensor (Pralong et al., 2006)
does not change the behavior of the damage evolution and the shape
of the accelerating oscillations.

3It will appear later on that the termDxx+Dzz is proportional
to the first invariant of the damage tensorD. For γ=1 (full
anisotropy),Dxx+Dzz equals the first invariant sinceDyy=0.

4This can be a positive or negative value; that is, the anisotropy
can develop in tension and compression regimes.

5The effective stress corresponds to the stress redistributed be-
cause of the presence of cracks.
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viscous stress can be derived from a dissipation potential
ϕ(ε̇, I−D), which depends on the strain rate tensorε̇ (de-
fined in Sect. 2) and the damage tensorD. According to the
assumption of incompressibility, the isotropic expansion of
the stress leads to (Pralong et al., 2006)

σ ′
=

∂ϕ(ε̇, I−D)

∂ε̇

= −δ12 ε̇ + 2(δ21 + δ22 I〈I−D, ε̇〉) (I − D)′

+4(δ31 + δ32 I
〈I−D, ε̇2

〉
) ˜̇ε ′

+ ...

(7)

where higher order terms have been neglected. The prime
denotes the deviatoric part of the tensor. The quantitiesδij

and the effective strain rate tensor˜̇ε are defined as

δ12 =
∂ϕ

∂IIε̇

, δ21 =
∂ϕ

∂I〈I−D, ε̇〉

, δ22 =
∂ϕ

∂II〈I−D, ε̇〉

,

δ31 =
∂ϕ

∂I
〈I−D, ε̇2

〉

, δ32 =
∂ϕ

∂II
〈I−D, ε̇2

〉

, (8)

˜̇ε =
1
2 〈I − D, ε̇〉. (9)

The termsδ12 and 2(δ21+δ22 I〈I−D, ε̇〉) have been neglected
in the work by Pralong et al. (2006), such that the effec-
tive strain rate˜̇ε becomes identical to the effective strain
rate emerging from the postulation of the stress equivalence
principle, which is commonly adopted in the theory of the
continuum damage mechanics (Lemaitre, 1996). The factor
4(δ31+δ32 I

〈I−D, ε̇2
〉
) is the viscosity of the damaged ice. It

will be denotedηε̇ and is assumed to equal

ηε̇ = A−
1
n
(
−IIε̇

) 1−n
2n , (10)

which corresponds to Glen’s viscosity (Glen, 1952).A is the
fluidity parameter andn the power-law exponent.

In this paper, we do not neglect the term
2(δ21+δ22 I〈I−D, ε̇〉) of the isotropic expansion (7), which
is a pure damage contribution to the stress. This factor
plays the role of a damage viscosity. It is assumed to be
constant and will be denotedηD. By considering the relation
σ ′

=σ+p I , the Cauchy stress tensor reads

σ = −p I + ηD (I − D)′ + ηε̇
˜̇ε ′, (11)

with p the pressure. For virgin ice (D=0) relation (11) re-
duces to the classical Glen flow law (Glen, 1952). The reason
to considerηD will appear later on.

3.3 Geometrical assumptions

Henceforth, neglecting boundary effects from the glacier
margins, we assume strictly plane strain flow (in the plane
x−z), i.e.

∂

∂y
= 0 and vy = 0, (12)

and uniformity of the processes in the flow direction as in a
parallel sided slab flow, i.e.

∂

∂x
= 0. (13)
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Fig. 1. Geometry of the glacier, as used for the numerical and ana-
lytical models.

The geometry of the glacier is shown in Fig. 1.
We finally suppose that damage anisotropy does not de-

velop in the y-direction. Therefore, the first eigenvectorν(1)

in Eq. (5) is imposed to have the property

ν(1)
· y = 0. (14)

We further assume6

Dxy = Dyz = 0. (15)

The boundary condition at the glacier base is no-slip since
the glacier is frozen to its bed. It reads

v|z=0 = 0, (16)

and the glacier surface is traction free

σ
∣∣
z=H

· n = 0, (17)

wheren is the vector normal to the surface andH is the
glacier thickness.

3.4 Localization of damage

On the basis of empirical observations and numerical model-
ing we assume that damage localizes close to the glacier bed,
i.e., nearz=0. This localization is due to the fact that damage
cannot evolve below the stress thresholdσth for damage ac-
cumulation; that is, it develops first at the glacier base when
the glacier reaches a critical thickness, i.e., when the basal
stress reaches the stress thresholdσth (Pralong and Funk,
2005). Moreover, the thickening of the glacier due to snow

6This is equivalent to postulateDxy(t=t0)=Dyz(t=t0)=0
wheret0 is the time corresponding to the beginning of the failure
process. This can be demonstrated with the help of Eqs. (3), (5),
(12), (13), (14) and (19).
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684 A. Pralong: Oscillations in critical shearing

Fig. 2. Surface displacement (cm) of an unstable ice chunk in 18
days, 10 months prior to the 1973 failure on the Weisshorn east
face in the Valais Alps (Switzerland). Picture by A. Flotron, 1972
(detail); see also R̈othlisberger (1981).

accumulation is much slower than the processes of damage
evolution. It implies that the active layer, where damage ac-
cumulates, has no time to significantly thicken during the
failure process. Figure 2 shows the measured surface ve-
locity distribution of an unstable ice mass corresponding to
the geometrical assumptions introduced above. The velocity
gradient along the z-direction is high at the base due to the
localization of damage. This behavior has been reproduced
numerically by Pralong and Funk (2006).

We postulate that the active layer, where damage develops,
has constant thickness1H , which is small compared to the
glacier thickness and can be neglected, i.e.

1H ≈ 0. (18)

This relation shows that the damage layer in the model is
extremely thin and located atz=0. The damage process can
thus be understood to act as a boundary condition for the
glacier, in the same way as the effect of sedimentary layers
which are concentrated at the base. Above this layer damage
accumulation is ignored.

4 Equations for damage evolution and glacier velocity

4.1 Derivation and equations

The integration of the mass balance equation (1) with as-
sumptions (12a) and (13) and condition (16) leads to

vz ≡ 0. (19)

By integrating the balance equations of linear momentum
(Eq. 2 for i=x, z) over the thickness of the glacier, one ob-
tains, with the help of assumptions (12a) and (13) and condi-
tion (17)

σxz = ρbx(H − z),

σzz = ρbz(H − z).
(20)

With assumptions (12) and (13) and Eq. (19) the strain rate
tensorε̇ reduces to

ε̇ =
1
2

∂vx

∂z

0 0 1
0 0 0
1 0 0

 , (21)

and using this result, the stress tensorσ (Eq. 11) with rela-
tion (15) takes the form

σxx = −p+
1
3ηD

(
−2Dxx+Dyy+Dzz

)
−

1
6ηε̇

∂vx

∂z
Dxz,

σyy = −p+
1
3ηD

(
Dxx−2Dyy+Dzz

)
+

1
3ηε̇

∂vx

∂z
Dxz,

σzz = −p+
1
3ηD

(
Dxx+Dyy−2Dzz

)
−

1
6ηε̇

∂vx

∂z
Dxz,

σxz = −ηDDxz+
1
2ηε̇

∂vx

∂z

(
1−

Dxx+Dzz

2

)
.

(22)

Moreover, with Eq. (20a) the equations forσzz andσxz fur-
nish relations for the pressurep and the velocityvx in the
x-direction as follows

p =
1
3ηD

(
Dxx + Dyy − 2Dzz

)
−ρbz(H −z)− 1

3CDxz,(23)

ηε̇

∂vx

∂z
= 2C, (24)

where

C =
ρbx(H − z) + ηDDxz

1 −
Dxx+Dzz

2

. (25)

With Eqs. (20b), (22), (23) and (24), the stress tensorσ can
be rewritten as

σxx = ρbz(H − z) + ηD(Dzz − Dxx),

σyy = ρbz(H − z) + ηD(Dzz − Dyy) + CDxz,

σzz = ρbz(H − z),

σxz = ρbx(H − z),

(26)

and with Eqs. (10) and (21) the differential equation (24) for
the velocity becomes

∂vx

∂z
= 2ACn. (27)
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Imposing the assumption (16) and the approximation (18),
the integration of the velocity along the glacier thickness
leads to

vx(z) = 2A(C|z=0)
n1H + 2

A

n + 1
(ρbx)

n(
H n+1

− (H − z)n+1
)

. (28)

The first term of Eq. (28) describes contribution to the veloc-
ity due to the damage active layer and the second term gives
the shearing contribution to the velocity profile in the glacier.
The first term depends on time, sinceC depends on damage
D, which is a function of time. The second term is time inde-
pendent. We have to propose in this equation a value for1H

(which is not infinitely small, otherwise the velocity of the
active layer would vanish). 2A1H can also be considered
as a global parameter describing the viscosity of the basal
layer7.

To compute the evolution of the velocityvx , we can sim-
plify the balance equation of damage (3). Since, with as-
sumptions (12) and (13) and Eq. (19), the spin tensor takes
the form

W =
1
2

∂vx

∂z

 0 0 1
0 0 0

−1 0 0

 , (29)

use of Eqs. (18), (25) and (27) allows the balance equations
of damage for the active layer to be written as

∂Dxx

∂t
= 2A

(
ρbxH+ηDDxz

1−
Dxx+Dzz

2

)n

Dxz + fxx(D, σ
∣∣
z=0),

∂Dyy

∂t
= fyy(D, σ

∣∣
z=0),

∂Dzz

∂t
= −2A

(
ρbxH+ηDDxz

1−
Dxx+Dzz

2

)n

Dxz + fzz(D, σ
∣∣
z=0),

∂Dxz

∂t
= A

(
ρbxH+ηDDxz

1−
Dzz+Dxx

2

)n

(Dzz−Dxx) + fxz(D, σ
∣∣
z=0),

(30)

wherefij are the components of the dynamic function of
damage (5). The stress tensorσ used to evaluatef is given
by relation (26).

With Eq. (26d ) and the relationσth=σxz(z=1H), one can
write
σth

σxz

=
H − 1H

H
. (31)

The termσxz−σth in the damage evolution law (5) can thus
be expressed as

σxz − σth = σxz

1H

H
. (32)

As for Eq. (28) a physical value for1H must be proposed,
otherwise no damage would develop in the active layer. Ac-
cording to Eq. (5) a global parameterB

(
1H
H

)r
describing the

rate of damage evolution for the damage layer can be pro-
posed for the dynamic function of damage (5).

7in a similar way as the parameterR in the constitutive relation
vx=Rσm

xz for basal sedimentary layers, wherem is the power-law
exponent andR is the fluidity parameter for the layer.

Table 1. Values of the parameters used in the model. Parameters of
the damage evolution are given by Pralong and Funk (2005). Note
that k=0 in Pralong and Funk (2005), but herek=r since the dy-
namic function of damage (5) depends on stress and not on effective
stress. Parameters of the ice flow law are given by Paterson (1994).

A =5×10−24 (Pa−n s−1) k =0.43

B =1.7×10−9 (Pa−r s−1) n =3

bx =9.81 sin(45◦) (m s−2) r =0.43

bz =9.81 cos(45◦) (m s−2) γ =1

Dc =0.9 1H =0.01H (m)

H =30 (m) ηD =0.1σxz(z=0) (Pa)

ρ =910 (kg m−3)

4.2 Example

In order to present the effect on the ice flow of the damage
induced anisotropy, we shall solve the pertinent equations
above to find the evolution of the glacier velocity and the
damage in the basal layer. The values of the model parame-
ters are summarized in Table 1. The glacier dimensions cor-
respond approximatively to the Weisshorn hanging glacier as
observed in 2005 (see Sect. 6).

Since we want to analyze the effect of the anisotropy, we
setγ=1. The value of the damage viscosityηD influences
the amplitude of the oscillations accompanying the global
trend (see Fig. 4c) and is so set to obtain amplitudes com-
parable to those observed on glaciers. The fracture is as-
sumed to happen when the velocity is finite (before the finite
time singularity of the velocity occurs, see Eq. 33) as is usu-
ally postulated in failure models. Fracture happens when the
componentDzz of the damage tensor reaches a critical dam-
age thresholdDc accounting for the transition from subcrit-
ical to critical crack growth (Lemaitre, 1996); that is, when
a macroscopic fracture propagates in the basal layer parallel
to the glacier base. Unfortunately, the value of the damage
thresholdDc has not been determined for shearing; in this
example it is arbitrarily set equal toDc=0.98.

Figure 3a presents the simulation of the acceleration of
the glacier. The acceleration (without oscillations) can be
described by a power-law equation (e.g. Voight, 1988)

vx(t, z = H) = vx0 + a� (tf − t)−m� , (33)

wherea� andm� are the parameters characterizing the ac-
celeration andvx0 is a constant velocity. The model velocity
at the glacier surfacevx(z=H) is fitted with function (33)
(Fig. 3a). The residuals of the fit show oscillations with a
frequency increasing with time (Fig. 3b). Figure 3c shows
the evolution of the damage tensor components. According

8This value influences the duration of the subcritical cracking
process and the number of oscillations but does neither modify their
frequency and amplitude nor the power-law acceleration.
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Fig. 3. Simulation of the failure of the hanging glacier with model
parameters given by Table 1.(a) Surface velocityvx(t, z=H) ver-
sus time before failure.(b) Residuals of the surface velocity fitted
with Eq. (33). (c) Evolution of the components ofD. D is defined
in Eq. (42). Note thatDyy=0 sinceγ=1.

to Eqs. (25) and (28), the termD=
1
2(Dxx+Dzz) governs the

global acceleration. Note thatD does not oscillate, whilst
Dxx andDzz do. The componentDxz induces the oscilla-
tions of the surface velocity. The reason for the oscillations
of Dxz will be discussed in Sects. 5 and 7.

The shape of the oscillations depends on the choice of the
parameter values (Table 1). These values (at least those for
the damage evolution) are subject to uncertainties (Pralong
and Funk, 2005). Moreover, many combinations of param-
eters lead to oscillations (see the analytical solution below,
Sect. 5.4 and Appendix A). Therefore, this example has not
the purpose to describe the natural event precisely, but to
show that oscillations may emerge in a model of anisotropic
damage evolution for shearing fractures.

5 Analysis of the oscillations

5.1 Assumptions

In order to find an analytical solution, we introduce three fur-
ther assumptions.

We first neglect the influence of the damage on the ori-
entation of the damage evolution; that is, the first eigenvec-
tor ν(1) in relation (5) is replaced by the first eigenvector of
the stress tensor for virgin ice. With Eqs. (14) and (26), the
tensor of the damage-evolution orientation with no damage
dependencyν(1)

⊗ν(1)
∣∣
D=0 reads

ν(1)
⊗ ν(1)

∣∣∣
D=0

=
1

2

1 0 1
0 0 0
1 0 1

 . (34)

Figure 4a shows the values of the components ofν(1)
⊗ν(1).

They are oscillating around the values of relation (34). Fig-
ure 4b shows the impact of this assumption on the oscilla-
tions of the surface velocity using the numerical example of
Sect. 4.2. The amplitude of the oscillations is affected by
the assumption. On the other hand, the frequency of the os-
cillations and the global acceleration of the glacier are not
modified9.

For the second assumption, we now introduce the ampli-
tude of the oscillations to be small compared to the global
velocity. With Eqs. (25) and (28), this assumption reads

ρbxH + ηDDxz ≈ ρbxH, (35)

and can be expressed with Eq. (26d ) and since|Dxz|<1 as

σxz(z = 0) � ηD. (36)

Figure 4c compares the oscillations at the glacier surface
with different values ofηD using the numerical example of
Sect. 4.2. The amplitude of the oscillations increases with in-
creasingηD. On the other hand, the frequency and the global
acceleration do not vary.

Third, we postulated the failure to occur at infinite veloc-
ity; that is, according to Eqs. (25) and (28), when the damage
D=

Dxx+Dzz

2 reaches the critical damageDc=1. The hypoth-
esis reads

Dc = 1 = D(t = tf). (37)

5.2 Dimensionless representation

The dimensionless description of the equations is based on
the three following normative quantities

σxz(z = 0), H and vx(D = 0, z = H), (38)

which are the basal shear stress, the glacier thickness and
the surface velocity of the glacier before damage appears,
respectively. The dimensionless quantities (overlined in

9The global acceleration is not modified since

(ν(1)
⊗ν(1))xx+(ν(1)

⊗ν(1))zz= (ν(1)
⊗ν(1))xx

∣∣∣
D=0

+ (ν(1)
⊗ν(1))zz

∣∣∣
D=0
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Eq. 39) used in the following developments are (with the help
of Eqs. 5, 26 and 28)

D = D, A =
n+1

2 , 1H =
1H
H

,

B = B
H σ r

xz(z=0)

vx (D=0,z=H)
, ηD =

ηD

σxz(z=0)
, ρbxH = σ xz(z = 0) = 1.

(39)

In the rest of Sect. 5 all equations are described in the dimen-
sionless representation and the overlines are omitted.

5.3 Derivation

With Eqs. (5), (32), (34), (35) and (39), the balance equation
of damage (30), expressed in dimensionless form, becomes

∂Dxx

∂t
= 2A

(
1−

Dxx+Dzz

2

)−n

Dxz + (1−
γ
2 )Bα

(
1−

Dxx+Dzz

2

)−k

,

∂Dyy

∂t
= (1−γ )Bα

(
1−

Dxx+Dzz

2

)−k

,

∂Dzz

∂t
= − 2A

(
1−

Dxx+Dzz

2

)−n

Dxz + (1−
γ
2 )Bα

(
1−

Dxx+Dzz

2

)−k

,

∂Dxz

∂t
= A

(
1−

Dxx+Dzz

2

)−n

(Dzz−Dxx) +
γ
2 Bα

(
1−

Dxx+Dzz

2

)−k

,

(40)

where

α =

(
1H

H

)r

. (41)

Considering the parameter transformation

D =
Dxx + Dzz

2
and D−

=
Dzz − Dxx

2
, (42)

the balance of damage (40) becomes

∂D
∂t

= (1 −
γ
2 )Bα(1 − D)−k,

∂Dyy

∂t
= (1 − γ )Bα(1 − D)−k,

∂D−

∂t
= − 2A(1 − D)−nDxz,

∂Dxz

∂t
= 2A(1 − D)−nD−

+
γ
2 Bα(1 − D)−k.

(43)

When integrating Eq. (43a), one obtains

1 − D =

(
(1 −

γ

2
)(k + 1)Bα

) 1
k+1

(tf − t)
1

k+1 , (44)

in which tf is the time of failure. Combining Eqs. (43c)
and (43d ) and considering Eq. (44) we obtain an ordinary
differential equation forDxz

1
4

1
A2

(
(1 −

γ
2 )(k + 1)Bα

) 2n
k+1 (tf − t)

2n
k+1 ∂2Dxz

∂t2

−
1
4

1
A2

n
k+1

(
(1−

γ
2 )(k+1)Bα

) 2n
k+1 (tf−t)

2n
k+1−1 ∂Dxz

∂t
+Dxz

=
γ
8

B

A2 α
(
(1 −

γ
2 )(k + 1)Bα

) 2n−k
k+1 (tf − t)

2n−2k−1
k+1

(
k−n
k+1

)
.

(45)

This linear second order ODE describes the oscillations of
Dxz.

With Eqs. (35) and (39), expression(1+ηDDxz)
n can be

approximated as

(1 + ηDDxz)
n

≈ 1 + nηDDxz. (46)

With Eqs. (25), (38), (39), (42a), (44) and (46) the Eq. (28)
of the surface velocity of the glacier becomes

vx(t, z = 1) = vx0 + a� (tf − t)−m� (1 + nηDDxz) . (47)
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Fig. 4. Simulation of the failure of the hanging glacier with model
parameters given by Table 1.(a) Evolution of the components of the
damage orientation tensorR=ν(1)

⊗ ν(1). Note thatRyy=0 since
γ=1. (b) Residuals of the surface velocities fitted with Eq. (33).
The surface velocities are calculated withR=R(D)=ν(1)

⊗ν(1) and

R=const= ν(1)
⊗ν(1)

∣∣∣
D=0

. (c) Residuals of the surface velocities

fitted with Eq. (33). The surface velocities are calculated with dif-
ferent values ofηD (normed here withσxz(z=0)).

where

vx0 = 1, (48)

a� = 2A1H
(
(1 −

γ

2
)(k + 1)Bα

)−m�

, (49)

and

m� =
n

k + 1
. (50)

Relation (47) and differential equation (45) constitute the
model describing the global acceleration of the glacier sur-
face accompanied with oscillations.

5.4 The homogeneous solution

The homogeneous solution of Eq. (45) reads form� 6= 1

Dxz = C1 sin

(
(tf − t)1−m�

λ
+ ϕ

)
, (51)
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Fig. 5. Simulation of the failure of the hanging glacier with model
parameters given by Table 1. The three curves show the homoge-
neous, a particular and the general solution of Eq. (45) (see rela-
tion A1).

and form�=1

Dxz = C11 sin

(
ln(tf − t)

λ1
+ ϕ1

)
, (52)

whereC1, ϕ, C11 andϕ1 are the integration constants,

λ =
1

2A
(m� − 1)

(
(1 −

γ

2
)(k + 1)Bα

)m�

, (53)

and

λ1 =
1

2A

(
(1 −

γ

2
)(k + 1)Bα

)
. (54)

By inserting Eqs. (51) and (52) in the surface velocity (47),
one obtains form� 6=1

v=vx0+a� (tf−t)−m�

[
1+C2 sin

(
(tf−t)1−m�

λ
+ϕ

)]
,(55)

and form�=1

v=vx0+a� (tf−t)−1
[
1+C21 sin

(
ln(tf−t)

λ1
+ϕ1

)]
, (56)

where

C2 = C1nηD and C21 = C11nηD. (57)

Equation (55) presents a power-law acceleration with sinu-
soidal oscillations and amplitude variation. The oscillations
have a power-law periodicity with exponent 1−m�. The
power periodicity reduces to a log-periodicity form�=1
(Eq. 56). The structure of Eq. (56) is however different
from the model by Sornette and Sammis (1995), since the
exponent of the global power-law acceleration (in the term
a� (tf−t)−1) is here fixed to−1. In the model by Sornette
and Sammis it is let free (see relation 59). Note that the os-
cillations are possible for isotropic damage evolution (γ=0),
but only appear if the initial conditions forD are non zero
and anisotropic (i.e., forC1 6=0 orC116=0).

The general solution to the differential equation (45) is
presented in Appendix A. Figure 5 shows the homogeneous
and the general solution for the example of Sect. 4.2. In the

following section, we refrain for simplicity from fitting the
measurement data with the general solution of the differen-
tial equation. We assume that the homogeneous solution cap-
tures the main feature of the power-periodic oscillations.

6 Fits of measurements

The motion of several unstable ice masses was monitored
by the Laboratory of Hydraulics, Hydrology and Glaciology
(VAW) of the Swiss Federal Institute of Technology Zürich
(ETHZ) within the scope of hazard assessment or research
programmes. Of the various data sets collected, two will be
considered here. The others do not contain enough measure-
ments or are affected by a scattering that is too broad to be
useful.

The first data set was collected at the Weisshorn east face
in the Valais Alps (Switzerland). In Winter 2004–2005, an
unstable ice chunk of half a million cubic meters was ob-
served and gave cause for alarm10. In order to estimate its
failure time, measurements of the unstable ice mass were
performed. A theodolite laser-distometer (TPS) installed at
a fixed position in front of the glacier and four reflectors
mounted on stakes drilled in the unstable ice mass were
used to survey the movement of the glacier. Reference re-
flectors, installed on a rock face close to the unstable ice
mass, allowed to correct the influence of the meteorological
conditions on the measurements. These corrections reduce
the measurement errors to approximatively one centimeter
(see Appendix B for more details). The glacier matches the
hypotheses implemented above11. The surface velocity of
Eq. (55) is integrated to fit the data, which are recorded as a
displacement time series. Form� 6=1 the equation of motion
is12

s(t) = s0 + vx0t +
a�

m� − 1

[
(tf − t)1−m�

−C2λ cos

(
(tf − t)1−m�

λ
+ ϕ

)]
. (58)

The equation describing log-periodic oscillation with a free
exponent for the power-law acceleration (Sornette and Sam-
mis, 1995) is also considered for comparison. It reads

s(t) = s∗

0 + vx0t +
a∗
�

m∗
� − 1

(t∗f − t)1−m∗
�[

1 − C∗

2λ∗ cos

(
log(t∗f − t)

λ∗
+ ϕ∗

)]
, (59)

with t∗f , m∗
� 6=1, a∗

�, s∗

0, C∗

2, λ∗, ϕ∗ as parameters. Note that
vx0 is assumed to equal the parametervx0 of Eq. (58).

10This unstable ice mass grew up due to in-situ snowfalls at the
same location as the 1973 broken-off glacier (see Fig. 2).

11These hypotheses imply that the process of fracture is a so-
called slab fracture (Pralong and Funk, 2006).

12The parameters in the next two equations are dimensional.
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Table 2. Values of the estimated parameters for the three data sets analyzed in this paper. The parameters are estimated using a nonlinear
least squares fit. The root-mean-square error (rmse) of the fit as well as theχ2 statistics and its associatedp-value are also reported. pp
stands for power-periodic and lp for log-periodic oscillation functions (58 and 59, respectively).

Parameter Units Weisshorn (pp) Weisshorn (lp) Weisshorn (pp) Weisshorn (lp) Mönch (pp) M̈onch (lp)

Fig. 6a Fig. 6b Fig. 6c Fig. 6d Fig. 7a Fig. 7b

tf d 26.57 26.90 34.84 41.52 101.85 109.73

m� − 0.953 1.036 0.907 1.530 0.549 0.193

a� m d−m� 0.789 0.980 1.937 18.808 8.171 42.398

s0 m 19.54 −24.29 28.39 −5.18 −2.30 −1.21

vx0 m d−1 0.17 0.17 0.12 0.12 0.098 0.098

C2 – 0.228 0.001 0.088 0.005 0.175 0.021

λ d 0.022 2.49 0.028 0.657 0.011 0.647

ϕ – 5.82 3.38 5.38 0.26 6.06 6.20

rmse m 0.0083 0.0083 0.0087 0.0068 0.0134 0.0121

χ2 – 1.1 1.1 1.2 0.8 7.7 7.1

p – 0.89 0.89 0.88 0.93 0.10 0.13

Figure 6 shows the motion of two reflectors13 and their
fits performed with Eqs. (58) and (59). Although the time of
failure has been registered, we leave it an unknown parameter
here. Fitted values of the parameters of Eqs. (58) and (59) are
listed in Table 2. All fits match the measurements well (see
also root mean square error andχ2-test of the fit in Table 2).

The second data set describes the motion of a stake with
reflector installed on an unstable ice mass at the front of the
Mönch hanging glacier, Switzerland (Pralong et al., 2005)14.
The measurements were performed with the same equipment
as for the Weisshorn hanging glacier. The time of failure of
the unstable mass is not known as a subfailure occurred prior
to the main failure, and resulted in the loss of the measure-
ment equipment on the glacier. This glacier does not match
hypothesis expressed in Eq. (13) since the geometry of the
unstable ice mass is not shallow15. Despite this violation, we
fit the data with the power-periodic function, and compare it
to the fit performed with the log-periodic function (Fig. 7).
Parameters values are listed in Table 2. Both fits match the
measurements well (see also root mean square error andχ2-
test in Table 2).

For the derivation of the analytical solution, we assumed
that the time of failure occurs at infinite velocity (relation 37).
According to this assumption, the power-periodic oscilla-
tions predict the time of failure more accurately. However

13We refrain to present the fits of the four points, since all show
similar behaviors.

14The motion of three points was actually recorded during this
measurement campaign. All three give similar results. For more
details about the data set and the reconstruction of the displacement
of the reflectors from the measurements, see the reference.

15The fracture at the front of the glacier occurs according to a
so-called wedge fracture (Pralong and Funk, 2006).

this assumption is not physical, since a transition from sub-
critical to critical fracture exists (e.g., Lemaitre, 1996). The
subcritical fracture is described by the proposed model (re-
lation 55). In comparison to the duration of the subcritical
fracture (order of magnitude of a month), the critical frac-
ture can be considered as instantaneous. Therefore the tran-
sition from subcritical to critical fracture defines the time of
failure. Since the criterion for this transition is not known
(Sect. 4.2), the time lag observed between the observed and
the predicted time of failure (especially in the case of the
log-periodic model) can be related to the inaccuracy of as-
sumption (37).

7 Discussion

The distinction between log- and power-periodic oscillations
is difficult to identify for natural processes: First, the ampli-
tude of the oscillations is small compared to the accuracy of
the measurements. Second, the lacking data in the time se-
ries makes the fitting hazardous, particularly for fitting oscil-
lations. Third, the result of the fit for accelerating oscillations
depends on the value of the constant velocityvx0. The iden-
tification of this parameter is subject to uncertainties, since it
is strongly correlated with the other parameters of Eqs. (58)
or (59). Fourth, measurements conducted close to the fail-
ure time are difficult to perform (at least on hanging glaciers:
loss of equipment in fresh crevasses, sub-failures). More-
over, measurements can realistically only be started when
clear signs of destabilization are observed. It follows that
the magnitude of the time window, when measurements are
performed, is often too small to allow accurate identification
of the parameters (Pralong et al., 2006) and the two oscilla-
tion models to be clearly differentiated. The measurements
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Fig. 6. Fit of the data set of the Weisshorn glacier. Each panel contains the data with its fit (the data and the fit are plotted without their
constant velocity componentv0t), the zoom on the oscillation with its fit, and the residuals.(a) Surface displacement of the first point
fitted with the power-periodic oscillation function (58).(b) Surface displacement of the first point fitted with the log-periodic oscillation
function (59). The unstable ice mass where this point was located broke off 26.5 days after the beginning of the measurements (vertical solid
lines). The estimated failure time (estimated with the fit) is reported with vertical dashed lines (see also Table 2).(c) Surface displacement
of the second point fitted with the power-periodic oscillation function (58).(d) Surface displacement of the second point fitted with the
log-periodic oscillation function (59). The unstable ice mass where this point was located broke off 33.5 days after the beginning of the
measurements (vertical solid lines). The estimated failure time is reported with vertical dashed lines (see also Table 2). The lacks in the time
series correspond to periods of cloudy weather.

performed at the Weisshorn suggest however that the power-
periodic and the log-periodic oscillations become similar for
this failure event, sincem� andm∗

� are close to one. This
is not the case for the measurements at the Mönch where
m� 6=1 andm∗

� 6=1, possibly because this glacier violates the
geometrical assumption (13).

The power-periodic oscillations result from the combina-
tion of damage anisotropy and ice rotation due to shearing
deformation. The global acceleration of the glacier due to
damage accumulation induces an increase of the vorticity
rate in the basal damage layer subject to shearing. The dam-

age is advected by the ice motion and rotates according to the
rotation of the ice. The values of the components of the dam-
age tensor, describing (in a fix reference) the anisotropy of
the rotating damage, oscillate with a frequency proportional
to the vorticity rate of the ice which shows a power-law accel-
eration. These components influence the ice flow and induce
the power-periodic oscillations.

More precisely, in the equations of the model, the value
D=

Dxx+Dzz

2 drives the global power-law acceleration (re-
lations 28 with 25). D does not depend on the ice rota-
tion, i.e., it does not oscillate with time (Fig. 3c) sinceD
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Fig. 7. Fit of the data set of the M̈onch glacier. Each panel contains the data with the fit (the data and the fit are plotted without their
constant velocity componentv0t), the zoom on the oscillation with its fit, and the residuals.(a) Surface displacement fitted with the power-
periodic oscillation function (58).(b) Surface displacement fitted with the log-periodic oscillation function (59). The lacks in the time series
correspond to periods of cloudy weather.

is proportional to the first invariant ofD. The oscillations
accompanying the global power-law acceleration result from
the oscillations of the componentDxz (Fig. 3c) of the dam-
age tensorD sinceDxz influences the ice flow according to
Eq. (47). The oscillations ofDxz result from its dynamic in-
teraction with the damage componentsD− described in the
two first order ODE (43c) and (43d )16. The interacting terms,
leading to the oscillation ofD− andDxz, emerge in these
ODE because of the use of the Jaumann derivative to describe
the rotation of the anisotropic damageD (relation 3). There-
fore the oscillations ofDxz andD− reflect the rotation of the
damage advected by the ice. The oscillations accelerate since
the term(1 − D)−n in Eqs. (43) grows as a power-law func-
tion. This growth corresponds to the increase of the vorticity
rate of the spin tensorW , which describes the ice rotation.
ThereforeDxz andD− show power-periodic oscillations.

Accelerating oscillations emerge in systems having a pos-
itive feedback (which leads to finite time singularities, e.g.,
creep rupture), coupled to a stable second order dynamics
(which leads to oscillations, e.g., strain depending healing,
harmonic oscillator) (e.g., Ide and Sornette, 2002). In this
model the positive feedback is given by the accumulation of
damageD. The stable second order dynamics is described
by the second order ODE forDxz (relation 45), which results
from the two coupled first order ODE (relations 43c and 43d )
for D− andDxz.

16The variablesD, Dyy , D− andDxz in Eq. (43) can be inter-
preted as follows:D is the mean isotropic damage which is inde-
pendent of ice rotation.Dyy is the damage in the y-direction and
does not interact with the other variables.D− andDxz are pure
anisotropic damage components (without the influence of the mean
isotropic damageD) in two different anisotropic directions.

8 Conclusions

Power-periodic oscillations have been derived from the the-
ory of the continuum damage mechanics. The components
of the damage tensor have been first shown to oscillate with
a power-periodic frequency. These oscillations are caused by
the anisotropy of the damage coupled to the rotation of the
ice at the glacier base. The rotation of the ice is caused by
the shearing deformation due to ice flow. The oscillation of
the components of the damage tensor have been then shown
to be transmitted to the glacier surface velocity. This trans-
fer results in power-periodic oscillations accompanying the
global power-law acceleration of the glacier.

The power-periodic oscillation model adequately fits the
oscillations which are observed to accompany the global
power-law acceleration of glaciers. Therefore the proposed
model provides an alternative approach to the classical log-
periodic model (where the oscillations emerge because of
discrete scale invariance properties) to explain accelerating
oscillations for critical shearing. Since differences with log-
periodic oscillations have been shown to emerge close to the
failure time, comparison between both types of oscillations
should be performed on time series covering more than one
order of magnitude (which is not the case here).

The power-periodic oscillations generalize the log-
periodic ones, since the power-periodicity converges to the
log-periodicity when the exponent of the power-periodicity
equals one. In this study, the exponent has been identified to
be close to one only for the Weisshorn glacier, which matches
all model assumptions. Further validations should be per-
formed on that type of glaciers to establish whether this sim-
ilarity can be retrieved.
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The power-periodic oscillation model can be applied to
other localized shearing fractures occurring in viscous me-
dia.

Appendix A

General solution of the analytical problem

The general solution to Eq. (45) reads form� 6=1

Dxz = C1 sin
(

(tf−t)1−m�

λ
+ ϕ

)
+ C3

∫ t

0 sin
(

(tf−θ)1−m�

λ

)
(tf − θ)m�−k�−1dθ

cos
(

(tf−t)1−m�

λ

)
− C3

∫ t

0 cos
(

(tf−θ)1−m�

λ

)
(tf − θ)m�−k�−1dθ

sin
(

(tf−t)1−m�

λ

)
,

(A1)

and form�=1

Dxz = C11 sin

(
ln(tf − t)

λ1
+ ϕ1

)
− C31(tf − t)

1
k+1 , (A2)

whereC1, ϕ, C11 andϕ1 are the integration constants and

λ =
1

2A
(m� − 1)

(
(1 −

γ

2
)(k + 1)Bα

)−m�

, (A3)

λ1 =
1

2A

(
(1 −

γ

2
)(k + 1)Bα

)
, (A4)

m� =
n

k + 1
, (A5)

k� =
k

k + 1
, (A6)

C3 =
γ

4

B

A
α(k� − m�)

[
(1 −

γ

2
)(k + 1)Bα

]m�−k�

, (A7)

C31 =
γ

8

B

A2
α(k + 1)(2Aλ1)

2−k�

[
(k + 1)2

+ λ2
1

]−1
. (A8)

Appendix B

Reconstruction of the displacement of reflectors
measured on the Weisshorn hanging glacier

The hanging glacier at the Weisshorn is located at about
4200 m a.s.l. For convenience, the laser-distometer used to
measure the displacement of the reflectors on the glacier was
installed at a distance of about 6 km from the glacier, ap-
proximatively in the direction of the glacier flow. At such a
distance, the accuracy of the measurements (corrected with
reference reflectors located on rocks close to the glacier) is
less than 1 cm in the direction of the measurement (which

corresponds to the accuracy of the measurement of the dis-
tance) and about 50 cm in the perpendicular direction (corre-
sponding to the accuracy of the measurement of the azimuth
or elevation angle times the distance). As a result, the po-
sition, i.e. the displacement of the reflectors calculated with
the distance and the angles is not accurate. This result can
however be used to estimate the angle between the direc-
tion of measurement and the flow direction, since it furnish a
three dimensional representation of the motion of the reflec-
tors. The displacement of the reflectors in the flow direction
(which corresponds to the data set presented here) is then cal-
culated with the measurement of the distance corrected with
the angle between the direction of measurement and the flow
direction.
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