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Abstract. Oceanic and atmospheric prediction is based onetry of the attractor. As a consequence, in cyclic observation-
cyclic analysis-forecast systems that assimilate new obseranalysis-forecast systems, the forecast error has an important
vations as they become available. In such observationalllcomponent on the unstable subspace, while other “unstruc-
forced systems, errors amplify depending on their compo-tured” components are due to errors that have been intro-
nents along the unstable directions; these can be estimatatliced recently. When correcting a model state by assimilat-
by Breeding on the Data Assimilation System (BDAS). As- ing observations, if a suitable estimate of the unstable direc-
similation in the Unstable Subspace (AUS) uses the availtions is available, this information can, and should, be used
able observations to estimate the amplitude of the unstabléo constrain the analysis increment. A direct way to do this
structures (computed by BDAS), present in the forecast eris to introduce the information on the unstable directions in
ror field, in order to eliminate them and to control the error the estimate of the forecast error covariance matrix, that con-
growth. For this purpose, it is crucial that the observationalstitutes the prior information in the analysis.

network can detect the unstable structures that are active in The present work focuses on the unstable components of
the system. These concepts are demonstrated here by twihe forecast error, estimated by a modified form of breed-
experiments with a large state dimension, primitive equationing (Sect.2.1) that accounts for “observational forcing” in-
ocean model and an observational network having a fixedroduced at the analysis step. It is shown that the growth
and an adaptive component. The latter consists of observasf errors can be controlled by using this information: 1) to
tions taken each time at different locations, chosen to targethoose the locations of adaptively taken observations and 2)
the estimated instabilities, whose positions and features dein the assimilation (Sec.2) of all the available (standard
pend on the dynamical characteristics of the flow. The adapand adaptive) data. These principles are demonstrated here
tive placement and the dynamically consistent assimilationin the context of a primitive equation ocean system with a
of observations (both relying upon the estimate of the un-large state dimension.

stable directions of the data-forced system), allow to obtaina Data assimilation in the ocean accounts for the dynamics
remarkable reduction of errors with respect to a non-adaptivén variational schemesTélagrand and Courtie987 Ben-
setting. The space distribution of the positions chosen for thehett 1992 2002 Wunsch 1996 and in sequential schemes
observations allows to characterize the evolution of instabil-that, starting from statistical principles, allow for dynami-
ities, from deep layers in western boundary current regionscal evolution of error statisticsahil, 1989 1997 Evensen

to near-surface layers in the eastward jet area. 1994 2003 2004 Burgers et al.1998 Brasseur et al1999
Pham 2001). Recent joint efforts have been devoted to
obtain four-dimensional analysis of the ocean flow, by ap-
plying sophisticated assimilation techniquE€CO Consor-
tium, 1999. On the other hand, many operational forecasting

The growth of errors in nonlinear dynamical systems such a§enters still use assimilation schemes that are based on sta-
the ocean and the atmosphere is governed by the trajectorﬂip”ary prior statistics, for simplicity of implementation and

instability that characterizes chaos. Errors of various origin,COMPUter time constraints, even if much work is put into re-
if they are not too large, eventually grow or decrease foIIow-f'n'ng the agreement with statistics based on models and real

ing the unstable directions, that characterize the local geomdat@ D€ Mey and Benkiran2002, and work is generally
under way to implement dynamically evolving covariances.

Correspondence td=. Uboldi Recently,Zang and Malanotte-Rizzol2003 have shown
(uboldi@magritte.it) how dynamically evolving covariances, as estimated by an

1 Introduction




68 F. Uboldi and A. Trevisan : Detecting unstable structures and controlling error growth

Ensemble Kalman Filter (EnKF), are able to account forlocalized inside a verification region. The estimate of the
chaotic regime transitions, thus outperforming stationarycovariance matrix is ensemble-based and the minimization
schemes such as Reduced Rank Extended Kalman Filtés realized with respect to a set of possible observation de-
and Optimal Interpolation (Ol). In their work, the two lat- ployments (i.e. a set of observation operators), by comput-
ter schemes behave similarly, only marginally improving theing how the ensemble members are “transformed” through
saturated freely evolving errors in a low-predictability sys- the analysis step, before the model integration to verification
tem configuration, while only in a configuration that is highly time. ETKF has also been employed in the NA-TreC and in
predictable the stationary schemes are able to reduce the ehe Winter Storm Reconnaissance Program (WSRRy-
rors in a satisfactory way. yogh et al, 200Q 2002: preliminary results showed some
The concept of adaptive observations is particularly inter-improvements, but degradation cases still exist.
esting for the ocean, where an important part of the obser- With regard to the ocean, there exist recent studies on the
vations (vertical profiles and Lagrangian buoys) have alwaysmpact of different possible future satellite “constellations”
been taken by mobile systems (oceanographic ships), in coron oceanic assimilation systemgldurre, 2004 Mourre et
trast with the fixed network of radiosondes existing for the al., 2006'). K6hl and Stammef2004) studied optimal loca-
atmosphere, which is mainly based on land. Itis then approtions, using an inverse (adjoint) method in which the obser-
priate to study how the locations of oceanographic observayational increments are the control variables.
tions can be chosen depending on the dynamical situation. | the present work, targeting is not focused on improving
For the atmosphere, much of the work on “adaptive” o the forecast at a particular location and time. Rather, the as-
“targeted” observations has been based on the concept thafmilation of supplementary observations is aimed at keeping
targeting aims at reducing the forecast error inside a “verifi-the trajectory of the cyclic observation-assimilation-forecast
cation” area, at a certain “verification” time. Area and time system close to the real system trajectory. A major improve-
are selected on the basis, on the one hand, of the meteorghent in the control of errors derives from the combination of
logical phenomena, and, on the other hand, of their predictegargeting strategies and dynamically consistent assimilation;
impact on human activities — in particular those of interestihe penefit of adaptively located observations is greatly en-
for financing institutions and countries. hanced if their positions and their assimilation are designed
Different targeting strategies have been proposed angh order to target the instabilities; the estimate of unstable
tested by means of experimental campaigns. Methods baseg|rections is based on BDAS (Breeding on the Data Assimi-
on Singular Vector Decomposition (SVDP&imer et al.  |ation System), and AUS (Assimilation in the Unstable Sub-
199§ Bergot et al. 1999 of the tangent linear model esti- gpace) is such that the analysis update has locally the same
mate “sensitive” regions, where inaccuracies present in thatrycture as that of the unstable vector whose maximum is in
analysis are foreseen to amplify the most, resulting in aine |ocation chosen for the adaptive observation.

degradation of the forecast at the verification area and time. The basis of the BDAS-AUS method used here have been

SVD calculations are perform_ed with different norms (in ;. 0 411ced byTrevisan and Ubold{2004 hereafter TUOA4),
essence, scalar products), mainly the total energy norm an\%ho applied it to a small chaotic (and noisy) systerarénz

Fhe “Hessianj’ (of_the variational cost fun_ction) norm, which_ and Emanuel1998. Since then, applications to more com-
is an approximation, based on the (stationary) prior covarl—p|ex models have been consideretb6ldi et al, 2005 here-

ances, to the inverse analysis error covariance. after UTCO05). Complete results obtained with the quasi-

The complete and time-evolving inverse a_1r_1a|y_5|s error co- eostrophic atmospheric modelRbtunno and Ba¢1996,
variance has been proposed as the ideal initial time norm fo Iso in presence of observational errors, are presented in a

SVD by Ehrendorfer and Tribbi&l997. SVD calculations recent work (Carrassi et al., 200ereafter CTUOB). Expe-

with a norm based on a dynamically evolving covariance joce showed that each application requires specific imple-

from an EnKF have been performed Byehner and Zadra 1,0 yation choices , but that the method is sufficiently flexible
(2008. Recent results from the 2003 North Atlantic THOR- 5,4 1ohyst to be successfully applied to different contexts:

PEX Regiqna! field Campaign (NA-TReC) show that, still, models of various complexity and in the presence of obser-
there are S|gn|f|c_ant cases of degradat|_0n of the forgcast_, Pr&ational and model error. In the present work the focus is
sumably depending, apart from “operational” limitations like o, 5 complex, primitive equation ocean model with a large
imprecise deployments and observational errors, on how the,, ner of unstable directions. Experiments are done in a

supplementary data have been assimilated (stationary priqie fect model, perfect observations setting: this is of course

statistics?). Fourrie et al.(2009 analyzed in detail the re- 5 imitation, because realistic models and real observations
sults of the NA-TReC with the French operational model

ARPEGE and discussed the impact of the different types of Mourre, B., De Mey, P., Nnard, Y., Lyard, F., and Le Provost

supplementary observations. , C.: Relative performances of future altimeter systems and tide
In the Ensemble Transform Kalman Filter (ETKF) ap- gayges in controlling a model of the North Sea high frequency

proach BiShOP et a_I,. 200])_the_a_daptive observations are parotropic dynamics, Ocean Dynamics, in review, 2006.
deployed with the aim of minimizing a measure of the fore-  2carrassi, A., Trevisan, A., and Uboldi, F.: Adaptive observa-

cast error covariance matrix, estimated at a verification foretions and assimilation in the unstable subspace by breeding on the
cast time (successive to observation time) and geographicallgata-assimilation system, Tellus, submitted, 2006.
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are affected by errors; on the other hand, that of perfect setThe (tangent linear) perturbative equation relative to &Y. (
tings is a necessary and meaningful step, because it allows ts:
clarify some theoretical aspects, and to highlight the mecha-

oo a
nism of error growth, rather than the various sources of error.‘S Xis = MOX @

Details of the technique used to estimate the (local strucwhereM is the Jacobian aM. A small perturbation of the
tures associated with the) unstable directions depend on thétate evolves and, if kept small, progressively acquires the
characteristics of the system. First of all, the number of un-structure of a linear combination of the unstable directions.
stable vectors and their growth rates characterize each freelyhe breeding method computes these directions by integrat-
evolving system. Moreover, independent unstable structure#lg the nonlinear model on a control state and on one (or
may appear well separated in the geographical space, or, imore) perturbed states, and periodically renormalizing the
contrast, they may be concentrated and overlapping in th@mplitude of the perturbations to a “small” value. In at-
same region (where a front is located, for example). If a fixedmospheric applications, the normalization amplitude and fre-
observational network is present, then its features may havguency and the length of the complete breeding period may
an influence on the estimate of instabilities: a network of be adjusted in order to filter out fast-growing convective in-
fixed vertical profiles based on land for atmospheric obser-stabilities that quickly saturate to small energy values, and
vations provide an “observational forcing” (TUO4, see also to select, in this way, baroclinic scale instabiliti@®th and
Sect. 2 below) that is different from that provided on an Kalnay, 1997 Kalnay, 2003.
ocean system by satellite sea surface height (SSH) observa- When observations are available, an analysis step is per-
tions, available under satellite tracks that cover a wide horformed:
izontal domain, but without direct information on the verti- .o _ ' _KH (Xf ) +Ky© 3)
cal structure of the ocean. The use of adaptive observationst+1 — “*+1 k1 k1
and their type (profiles, floating buoys, adaptable remote syswhereH is the (possibly nonlinear) observation operator and
tems) contribute to change the characteristics of the instabilk is the gain matrix, linearly relating the analysis increment
ities that appear (survive) in the forced system. Finally, thesex* —x/ to the innovatiory’— H (x/). This expression, typ-
are also influenced by the characteristics of the assimilationcal of schemes such as Optimal Interpolation and Kalman
scheme, through which the observational forcing enters thesjlters (analysis step), may also account for 3D-Var schemes
system. in which the observation operatbiris linearized on the fore-

In this work it is shown that it is possible to estimate cast state. The same expression may also represent a lin-
the (local) unstable structures that are present in a primitiveearized (or incremental) 4D-Var scheme assimilating obser-
equation ocean system, so that, if the observational networkyations distributed in a time interval, by extending the con-
in its fixed and adaptive components, is able to detect themgept of observation operator to include a model integration:
then the assimilation of observations is successful in control-on this point, see the book Bennett(2002, or, for a dis-
ling the error growth. crete formulationUUboldi and Kamach{2000.

The assimilation method, already presented in the authors’ BY substituting Eq. ) in Eq. @), the evolution equation
previous works, is described in Se2t. The ocean system between two successive analysis states (the same can be done
and a standard assimilation scheme are presented in3Sect. for two successive forecast states) is obtained:

Section4 describes the choices made in the implementa~,a _ ay _ a 0

tion of BDAS, and summarizes some results obtained usingX"Jrl = M) = KH MO ]+ K @
the fixed observational network, already included in UTCO5. This is the equation of the systefarcedby the cyclic assim-
Section5 deals with implementation choices and analysis ilation of observations.

of results obtained by combining the standard network with If ¢ is the analysis error, its first-order evolution from
adaptive observations, assimilated by AUS. Conclusions ar@nalysis stefi to analysis step+1 is:

summarized in Secé.
i = — KH)Mp{ + (I — KH) pfy + Keg, (5)

whereH is the Jacobian oH andl is the identity matrix.
o In this equationy™™ is the model error and’ is the ob-
2 Assimilation in the unstable subspace of the data ggryational error, which includes the (representativity) error
forced system. relative to the observation operator. If they are small enough
(in particular their systematic parts), all these errors eventu-
2.1 Estimating the unstable directions by Breeding on theally grow or decrease depending on the amplitudes of their
Data Assimilation System (BDAS) components on the unstable directions.
Assimilating the same observations by the same scheme
A forecast state is obtained by integrating the model from ain the perturbed and in the control trajectories, the perturba-
previous analysis state: tion equation for the system subject to observational forcing,
Eq. @), is:

X[i1 =M (x}) (1) Xy = (I — KH)Mox ®)
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By effect of the matrix| —KH ), and depending on its prop- whereR is the observational error covariance matrix. In this
erties, the analysis has, generally speaking, a stabilizing efway, the analysis increment is confined to Mwelimensional
fect. In some circumstances, it may happen that the unsubspace spanned by the columngoffor this reason the
stable components are amplified by effect of the assimilapresent scheme is referred to as Assimilation in the Unstable
tion, but assimilation schemes in general, and particularlySubspace (AUS). A useful expression, equivalent to Hg), (
the present formulation, are designed to reduce the rapidlys:

amplifying components of the error. As a consequence, the 1

number of independent unstable directions relative to &q. ( x* = x/ +E [1“1 + (HE)T R™1 (HE)] (HE)T R1
and their associated growth rates are smaller than those rel-

ative to Eg. B). In practice, in an intermittent assimilation : [yo - H (Xf)] (11)

system, during the forecast step the perturbations growth is

dominated by the free system instabilities, and, at the analln the general expression of the Kalman analysis, that can be
ysis step, some unstable components are reduced by the g&empared with Eq.10), the “complete’P/ appears, instead:
similation of observations. Therefore some of the unstable . . . 1 .

components present in the forecast error are absent, or at least = x/ + P/ HT [HF’f HT + R] [y” - H (Xf)] (12)
reduced, in the analysis error. After the analysis step, how-

ever, some unstable components, either because they havéere the gain matrix, as defined in EG),(is the Kalman

not been completely eliminated, or, in the worst cases, begain. In this expression, iM is the number of observa-
cause they have been introduced by the analysis, are stilions, the analysis increment appears confined toMhe
present and will grow during the next forecast step. dimensional subspace spanned by the “representBesi-(

In order to account for the observational forcing in the es-nett 1992 2002 Uboldi and Kamachi2000, that is to say
timate of the instabilities that grow along the assimilation cy- the columns of thel (M) matrix P/HT. Ina stationary anal-
cle, we adopted a modified form of breeding, that is referredysis scheme, a fixed “background” error covariance matrix,
to as Breeding on the Data Assimilation System (BDAS), B, is used instead d®/: in such schemes thel columns
based on Eq.§) rather than Eqg.2). As in classic breeding, of the matrixBH T span the subspace where the analysis in-
the control parameters are the normalization amplitude anagrement is confined. In the present schem@/i N, theM
frequency, and the length of the breeding period. Details orobservations are used, in EQ.0f, in a least-square sense,

the choice of these parameters are given in Sdasad5. to compute an analysis increment that is constrained into the
o selectedN-dimensional subspace.
2.2 Assimilation in the Unstable Subspace (AUS) The neglected componentsRf in Eq. (8) are covariances

between (and with) directions belonging to the linear com-
The forecast error can be seen as the sum of two componentBiement of the subspace spanned by the columigs tfthe
n =Ey +& @) gain matrix is the “complete” Kalman gain, as in EG2),
then the Kalman filter equations provide the technique for
updating the “complete” forecast error covariance to that of
the analysis (and, then, of the successive forecast). If, how-

cast error component on the complementary subspatie ever, the gain matrix is computed in a subspace, by using an
P P y pa approximation similar to Eq9 for the forecast error covari-

number of rows IrE, is the state dimension and the vecfor ance, as it is also done in EnKFs and in other “suboptimal”

represents the forecast error component in the unstable bas'f'ﬁ'ters (differences being in how the subspace is estimated)
This implies: '

then the analysis has the effect of reducing the error compo-
P/ —Ere’ + E<yET> + <§-),T> T + <§§T> (8)  nentsin that subspace. This means that, on the one hand, the
amplitude of the error is reduced, but, on the other hand, that
whereP/ = <r'f (nf)T> is the forecast error covariance and the relative am_pli_tude of its components on the qomplemen-
tary subspace is increased. In other words, the directions (the
FE(V}'T> is the forecast error covariance in the unstableensemble) just used for estimatiRg andK are less valu-
subspace. Because unstable directions grow, they dominagble after the analysis step: the error reduction is obtained by
the forecast error. If terms containirggare neglected in  “spending” part of the information previously available on

where Ey is the forecast error component on the sub-
space spanned by estimated unstable directions, stored as
columns in a matriE of dimension [,N), and¢ is the fore-

Eqg. ©): the error covariance. This is the reason why a “refresh” pro-
: cedure is introduced here: details are given, with reference to
P/ ~pl —Erel ) : : icns | o
—VFEE the implementation choices, in Sedt. This is also the rea-

then, for a given observation operatéythe minimum error ~ Son why, in EnKFs, it is appropriate to implement some sort

variance ana|ysis Corresponding to the approxima@ﬁs( of re-sampling or ensemble re-initializatioW('litaker and
Hamill, 2002. Evensen2003 reviewed some of the tech-

-1
x* =x/ + ET (HE)T [(HE) r (HE)T + R] niques that have been implemented to this purpose in EnKFs.
' Corazza et al2002 showed that refreshing bred vectors im-
: [yo - H (Xf )] (10)  proved substantially their efficacy.
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The experiments presented in this work are made in a perstate. By considering Eq16), it can be seen that the am-
fect model and perfect observation setting, that allows toplitude of the correction (in the direction of the single un-
highlight the mechanism discussed above for explaining thestable directiore) fits the single observation, exactly if this
need of a refreshing procedure. In case a small model error iss perfect. In this work, only experiments with perfect ob-
introduced at each time step during the model integration, itservations are presented; for results obtained with noisy ob-
is subject to the perturbation dynamics. Then it also progresservations in the context of a quasi-geostrophic model of the
sively acquires the structure of the unstable vectors as thatmosphere, and an estimatey3f see CTU06.
time integration proceeds. The resulting effect on the fore- In the rightmost denominator appearing in E@5)( the
cast error is a larger uncertainty on its components along thebservational error variance becomes less important when
unstable directions. These amplitudes can be measured hyany observations are available and each of them detects

the observations if they are appropriately located (S28l.  a relevant component of the vecter so that(He) | He is

The “yet unstructured” components of the model error in-|arge. Therefore the perfect observation case can be con-
crease the neglected part of the forecast eérofhe impor-  sidered representative of a situation where there are many
tance of the refresh procedure seems then enhanced by thgjisy observations available at the appropriate locations. In
presence of model error. These concepts appear worthy Qfeneral, referring to Eql1(), the observation locations and
investigation in future work. variables (as represented by the components)adre most
valuable when a measure (for example the trace) of the ma-
trix (HE)T R-1(HE) is large with respect to that d&f 2.

For each estimated unstable direction one or more observaliS criterion can be used as a guideline for choosing obser-
tions can be used to eliminate or reduce the error componenfation locations (and variables) when it is possible to take
along that direction. In order to show how this is carried 2daptive” or “targeted” observations. Other criteria were

out, we consider the case of a single unstable direatjion discussed berliner et al.(1999. In practice, in the exper-
M>N=1. The analysis is, from Eq10): iments presented here, we put a single perfect observation

in the maximum of each estimated unstable “structure” (see
Sect.5 for details).

As described in Sectl, when only a fixed network of ob-
servations is available, it can be used to detect the unsta-
where the KI,N) matrix T is reduced to the scalg. ltcan  ple structures if these happen to be located, at observation
be seen that the direction of analysis increment is that of thQime, in geographica| regions where standard observations
single unstable direction, the vecgmwhile the amplitude of  are available. If the unstable structures are not detected by
the correction is estimated by means of Meobservations,  the standard observation network, they still may migrate in
weighted with their uncertainties. an observed region, before errors become too large, and be

In the case of perfect observations it becomes: detected at a later observation time. In any case, our abil-

Tew-ilo ity to control the system depends on the number of unstable

He)! =71 y° — H (x/)] , . :
e (14) structures present and on their growth rate, in relation to the
(He)T =-'He frequency and distribution of observations by which we can

where the matrixX may contain the co-variabilities of the detect and eliminate them.
observed variables (their physical dimensions can be differ-
ent from each other). Equatiofi4) minimizes thex ~ dis-
tance between the innovation and the “observed” componen
H (x“—xf), of the analysis increment, strongly constrained
in thee direction.

If the observed variables are physically homogeneous an
uncorrelated, with the same error variance then Eq. 13)
becomes, after small rearrangements:

2.3 Unstable directions and observations

D(He)T R-1[y° — H (x/)]

x4 =x/ + -
y=2+ (He)' R—1He

(13)

x*=x/ +

13 The ocean system and the standard assimilation
" method

Jhe primitive equation ocean model MICOMIéck, 1978
is set up here in a simplified adiabatic configuration: a
flat bottom basin, with a 180140 horizontal grid and 4
isopycnal layers, with constant surface wind forcing. Vari-
; (He)T [yo _H (Xf )] yZ(He)T He gbles are the Iz_:\yer thicknesses (or, alterna'giv_ely, the layer
X t+e T > > T 15 interface elevations) and the zonal and meridional compo-
(He)" He oc+y°(He)" He nents of velocity, defined on an Arakawa C scattered grid.
When a single observation is used with a single unstable diThe number of independent components in the state vec-
rection,M=N=1, y’ andHe are scalars and: tor is 301120. The layer densities are 180 kgni?,
°_H(x/) y2(Hey? 1026520 kgn13, 1028187 kgn 3 and 1030130 kg nt 3.
5 5 5 (16) The average depths of the internal interfaces between layers
He o+ y<(He) are 440m, 1048 m and 2026 m, while the bottom depth is
In Egs. (5 and (16), the last ratio on the right-hand side fixed at 5000 m. The horizontal resolution is approximately
accounts for observational errors, and reduces to 1 when ok20 km, with latitudes ranging from 27.12N to 52.12 N, and a
servations are considered perfect with respect to the forecasvngitude interval of 42 degrees.

Xcl —

xt = x/ + e’




72 F. Uboldi and A. Trevisan : Detecting unstable structures and controlling error growth

The typical dynamic situation is that of a double gyre, cy- error in the northwestern part of the domain. These results
clonic in the northern half of the domain, anticyclonic in the support the need for more realistic, flow-dependent, dynam-
southern half, with an eastward jet detaching from the westdically consistent vertical covariances in the assimilation of
ern boundary and a wide recirculation region in the easterrsurface height observationBrasseur et al(1999 used the
part of the domain. The eastward jet is characterized by sharpame model MICOM, in a configuration that appears simi-
meanders and energetic eddies; moreover, large velocity grdar to that used in the present study, but with a much smaller
dients appear in regions that are close to the western boundasin. They showed that the dynamically evolving SEEK
ary. The leading Lyapunov exponent of the (freely evolving) (Singular Evolutive Extended Kalman) filter, even with few
system has been approximately estimated (from a 6-year inensemble members, quickly approached small values of fore-
tegration) and corresponds to a doubling time of about 19cast errors, as estimated by the 10-day SSH innovation.
days.

Experiments are made with perfect model conditions o )

(identical twins): a 6-year model trajectory represents the? Assimilation of standard observations

truth, f hich fect ob ti taken. Th .
u rom which periect observations are taken eIn UTCO05, the BDAS-AUS assimilation has been applied

fixed observational network consists of “satellite” sea sur-". . )
face height, observed every 10 days on the whole domai ith the standard observational network described above.
' here, it is shown that at least some of the unstable com-

from the true trajectory. A standard assimilation scheme is . .
also available, th€ooper and Haine&L996 scheme, here- ponents presgnt in the forecast error are detected and gllm-
after CH, based on conservation of linear potential vorticity, inated, by taking advantage of the fixed SSH observations

and characterized by a homogeneous vertical shift of isopy_only, assimilated in the estimated unstable subspace. Refer-

chals, with no change in the bottom pressure. This schemiiing the reader to UTCO5 for details, we b_riefly rfecall here
that consists in a vertical displacement of the internal laye ow BDAS and AUS are implemented in this configuration.

interfaces and geostrophic adjustment of velocity, has the ad- A CH analysis scheme st-artmg from a cll_matologlcal ni-
vantage of being particularly simple to implement with MI- tial forecast state reaches in a year '.t.s typ|cal_ error values,
COM. The most important limitations of the scheme are thatbetween 0.3 anq 0.4 of n.at_u'ral Vf”mab'“ty' At this point (day
it is stationary (i.e. assumes constant forecast error covari360)’ perturpatlons_ are initially mtr_oc?uc_ed and pred_ for_2
ance) and that it accounts only for one vertical “mode”. Othermonths’ during which the_on_ly aS_S|m|Iat|on running is still
stationary schemes, in which more vertical modes are considgH' At each SSH assimilation time (every 10 days), af-

ered in the estimation of the background error covariabee ( te;hthe an?IyS|ststEp',[. a set of .6 tln<(jjepeg@gn?tl(t?tal—?neggy—
Mey and Benkiran2002 for example) may have a superior or ogona)' perturbations are introduced, nitial perturba-
ons are built randomly as differences between model states.

performance; however the CH mode, at least, accounts foEi fore f tint i Il perturbati Id and
a vertical displacement of the pycnocline without degrading clore forecast integration, afl periurbations, old and new,
re rescaled to 0.1 of natural variability (total energy norm).

its signal, as it may happen when using statistics based o L .
s S ! y happen w using ISt t the end of the initial 2 month period (day 420), 36 per-

climatology. X . L
As it was shown in UTCO05, the standard CH assimilation t“fb,eo! trajectories are bgmg integrated. At day 420; the neyv
assimilation system begins to act. Each of the 6 “current

scheme is able to reduce an initially large error (difference 4 .

between two randomly chosen states) to values oscillatin red pertur_bgtlons, the oldest seF, Is searched for '°°"’?' max-

between 0.3 and 0.4 of the natural variability. The error ma and minima structures, starting from the largest (in ab-
ﬁglute value).

reaches the same range of values in one year even when sta Th d'to isolate local . tands f the fact that
ing from a small value (initially rescaled to 0.1 of natural € need lo Isolate local maxima stands from the fact tha

variability) as the standard CH scheme is unable to maintairP“EOI vectors are (approximately) combinations of Lyapunov
the initially small error. vectors {Trevisan and Pancoftl 998 so that the forecast er-

Error structures which are well corrected by the CH ror may have opposite correlations with different local struc-

scheme are characterized by an error in the depth of the pycrid€S @ppearing in the same bred vector. .
ocline, which can be reduced by modifying the thicknesses of At analysis time the following four steps are taken (details
the first and bottom layers only, so that they compensate each UTCO5).

other without changing the bottom pressure. In UTCOS, it 1 Regjonalization, obtained by point-by-point multiplica-
was shown that errors having vertical structure different from tion of the bred vector with an elliptically shaped Gaus-

the CH mode appear frequently. Errors present in the fore- sian, whose position, shape, orientation and width are
cast are mostly located either in the region of the eastward  cposen (by least-square minimization) in order to iso-

jet (see e.g. Fig), which detaches from the western bound- late, without deformation, the regional structure of the
ary between latitudes 39 N and 42 N, or within the two west- bred vector surrounding a local maximum or minimum

ern boundary currents associated with the northern cyclonic  fom other structures or signals present in the same bred
and southern anticyclonic gyres (Figs. 6 and 7 of UTCO05). vector.

The CH corrections are mostly located in the eastward jet

region, while other errors are insufficiently corrected, to the 2. Selection, obtained by comparing each structure (ob-
point that the analysis error is even larger than the forecast tained by regionalization) with the innovation (sea sur-
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face elevation field) and retaining only those that have+10 d). At each of these intermediate times, 3 adaptive obser-
a regional correlation larger than 0.8 in absolute value.vations are taken. Each observation is designed to simulate
Of course, this step had to be modified for the targeteda vertical profile of temperature and salinity, from which the
vertical profiles, as explained in Sebt. vertical density profile can be inferred. When a real verti-
o cal profile is taken, however, it is difficult to obtain a precise
3. Assimilation. The selected structures are used one by,eaq e of the sea surface height (with respect to a reference
one in a sequence. The reason for this choice is t0 rulgye iy narticularly in comparison with what can be obtained
out the possibility that, when the same local structurey ‘s o llite measurements. For this reason, in our simulated
appears in two different bred modes, anomalously large, qfjjes we choose not to use the information on the sea sur-
corrections may be |ntioduced in the (non-significant) ¢, .o elevation, but only that on the elevation of the 3 internal
d|rect|ori of the local dlﬁerence between the. two vec- layer interfaces, i.e. that between layers 1-2, layers 2—3, and
tors: this may be particularly dangerous with regard |,ers 34 These three values are used in the “selection”
to the unobserved components. The analysis, obtaineds, gescribed below, while only one of the three scalar val-
v_wth azsmgl_e structure by means of_ Eq_$I after set- _ ues is actually assimilated.
ting o°=0, is used as background field in the analysis In fact, targeting is obtained by choosing, among the cur-

with the next selected structure. After the last structurerentset of 6 forced bred vectors, 3 local maxima or minima.in

has been usgd,_ t_he mnovauon has been significantly "the interface elevation fields: their positions are identified by
duced, but still it is different from zero, thus a standard

g S the 2 horizontal discrete coordinates and by the vertical one.
CH _analy5|s_ is performed. The _a55|m|lat|on of targetedWe anticipate here that the vertical position of the maximum
ver_tlcal profiles, pe_rforme_d a_t times w_hen SSH Obser'of the structure is important. The 3 structures are chosen with
vations are not available, is discussed in S&ct. the condition that they are horizontally well separated.

4. Refresh. The reasons for introducing a refresh proce- The regionalization procedure is the same as described in
dure are explained in Se@.2. However, we point out  Sect4.
that the current bred vectors, from which the regional- The selection procedure described for SSH observation in
ized unstable structures have been extracted and useBect.4 has been implemented for the “vertical profile” ob-
in the assimilation, still carry useful information, so we servations with the obvious modification that the “observed”
do not discard the current set, in contrast with what hascomponent of the structuréie, and the innovationd, con-
been done with less complex systems (TU04, CTUO06).Sist of the three layer interface elevations. Observations are
The following procedure has been implemented as aretained for assimilation only ifle andd have a correlation
trade-off between keeping and discarding the bred Vec.highel’ than 0.6, while a smaller value determines rejection.
tors altogether. After the assimilation, one (at turns) The assimilation of the 3 observations, one scalar observation
of the current, just used, bred vectors is point-by-point for each profile (the elevation of the targeted layer interface),
added to all the other 5 vectors of the same set. One news done in a sequence: the analysis field obtained after the
random perturbation is inserted in its place, so that aassimilation of one profile is used as background field for the
new set of 6 vectors is obtained. These vectors are totalnext one. This choice is made, rather than assimilating the 3

energy-orthogonalized only at this point, before starting observations together, for the same reasons explained in the
to undergo a new 60-day breeding cycle. description of the “assimilation” procedure step in Sdct.

) _ Each observation is assimilated by means of E6), {with
Results (from a longer run with respect to UTCO5) are in- ;2_. jt s clear that the observation is only used to estimate
cluded, together with targeted observations results, inFig. the amplitude of the correction, while its 3-D structure, in all
and are commented in Sebt2.1 the state variables, is that of (the regionalized structure of)
the bred vector, stored in the vectar This estimate is ob-
tained, in the present case, by a single perfect observation. In
a realistic case, where observations are affected by errors, it

The bred vectors obtained by BDAS, subject to renormaliza-might be necessary to assimilate, by means of Eg), (nore

tion and refresh at SSH assimilation times (as described irPbservations: either more components from the same profile,
Sect.4), being differences between the perturbed states an@' possibly more profiles (eventually taken by the same ship),
the control state, can be computed at any time, in particu|aplOCatEd in the region where the unstable structure is active.
at times that are intermediate between two successive SSH As an example, Figsa shows the analysis increment com-
assimilation times. At these intermediate times they are useg@uted from three bred vectors shown in Fsg.

to locate and assimilate adaptive observations.

5 Assimilation of targeted observations

5.2 Results
5.1 Implementation
5.2.1 CGlobal error
In the experiment shown here, the unstable structures are
estimated at +2.5d, +5.0d, and +7.5d with respect to theA scalar measure of the error on the whole state, that is to say
last SSH assimilation (while the next SSH assimilation is aton all layers and variables, including velocity components,
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Fig. 1. Square root of total energy error (normalized with natural variability) as a function of {{@dorecast error{b) analysis error.
“SSH CH": standard CH assimilation of SSH only; “SSH AUS+CH": assimilation of SSH observations only by AUS and CH, as described
in Sect.5; “SSH+ADAPTOBS”: AUS+CH assimilation of SSH and supplementary adaptive observations, as described5riSect.

is obtained by a total energy norm (normalized with natural Another important comment is that the difference between
variability computed from a 6-year model trajectory). The the forecast error curve (Figa) and the analysis error curve
global error is defined here as the square root of its total en{Fig. 1b) is smaller for the BDAS-AUS dynamically consis-
ergy, which is a quadratic function of the errors on the statetent assimilation of SSH with respect to what happens with
variables (interface elevation and velocity components). Thehe stationary CH assimilation, and it is confined to even
forecast error is shown in Fida, and the analysis error in  smaller values for the adaptive observation experiment. This
Fig. 1b, for three experiments over a 5-year period, from dayis an indication of a slower error growth, during the forecast
360 (after a year in which only the standard CH assimilationstep, achieved by a successful control of the instabilities.

of SSH is active) to day 2160. In the first experiment, the

standard CH analysis of SSH is performed every 10 days. 16.2.2 Space distribution of adaptive observations

can be seen that a high variability of the error is present; in ] ) ]
particular there is a period, around day 1080, in which errorsThe number of adaptive observations located at each grid
are as high as 0.6 of natural variability. In the second experpo'm and at the different layer interfaces indicates how the
iment, only the SSH observations are used with the BDAS-Instabilities are structured horizontally and at the different
AUS assimilation described in Seet.and in UTC05. As depths.

discussed in UTCO5, this scheme is successful in controlling Figure2a shows the horizontal distribution of 359 obser-
the worst error peaks and other oscillations. The third eXperyations of the elevation of the interface between layers 1 and
iment is the one with the adaptive observations located and: these observations are mostly located in the eastward jet
assimilated as described in Se&tl As can be seen, after an €gion. The corresponding unstable structures are connected
initial period of about one year, in which the errors are only with fronts and gradients that characterize the eastward jet,
a little smaller than in the experiment without adaptive ob- its meanders and eddies.

servations, errors start to systematically decrease and during Most of the observations, 736, are located at the deepest
the last 28 months both the forecast error and analysis errofterface, between layers 3 and 4, and their horizontal posi-
reach values as low as 0.1 of the natural variability. tions are shown in Figkb. These observations are mostly lo-

It is worth noticing that errors start to decrease in a pe-cated near the western boundary. The corresponding, “deep”,
riod when the SSH standard assimilation alone fails to keeg!nstable structures are connected with the strong velocity
the error within low bounds. In this period (from day 840 to 9radients that appear in this area where western boundary
day 1320) the flow is characterized by the presence of parcurrents intensify in the proximity of the vertical “continen-
ticularly strong and persistent meanders in the eastward jeti@l shelf”, before detaching and giving origin to the eastward
unstable structures present in the bred vectors are many, ard@t: Only 34 targeted observations are located at the inter-
concentrated in the meander regions. A dynamically con-face between layers 2 and 3: their distribution, not shown, is
sistent assimilation is particularly important in this situation. Similar to that of the deepest observations, 2ly.

Control of instabilities is partially obtained by exploiting the ~ There is a very close correspondence between the horizon-

surface height information, but it is fully achieved by making tal and vertical distribution of the adaptive observations and
use of the adaptive observations. the average forecast error fields, as can be seen by compar-

ing Fig. 2 and Fig.3. This correspondence further corrob-
orates the conclusion that the forced bred modes, by means
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Fig. 2. Number of adaptive observations per gridpofiaf;interface between layers 1 and(B) interface between layers 3 and 4. Contouring
values are setto: 0.1, 1.1, 2.1, 3.1.
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Fig. 3. Forecast error at SSH assimilation time, averaged in time from day 1440 to day 2160 (the 2-year period in which the errors are
stabilized at about 0.1 of natural variabilitya) elevation of interface between layers 1 andl®); elevation of interface between layers 3
and 4. Both fields have been slightly smoothed out.

of which the adaptive observations were located, capture thd. This is partly true also in the experiment with the BDAS-

relevant part of the forecast error. AUS dynamical assimilation of SSH, while this difference
between surface and bottom layer velocities does not appear
5.2.3 Errors on variables and layers at all in the adaptive observations experiment, in particular

after the errors start to decrease. Differences between fore-
For each variable, on each layer, the Root-Mean-Squar@aSt and analysis errors at the surface are reduced by means

(RMS) errors have been computed, and their time evolutior®! @daptive observations that (Ses12.2) are mostly located

examined. They are not shown here, however all of them ren the deeper layers. We conclude, from a “forecaster” point

flect the characters of the global error curves shown inEig. of view, that the.predict.iqn of currents in Iayers'that are closg
the adaptive observation experiment has a drastic and stabf@ the surface is sensitive to errors present in the analysis
reduction of errors, starting from about day 1320, and smallefi€ld in deeper layers. From an “oceanographer” point of
differences between forecast and analysis errors. With reVieW: this is an indication of how the dynamical activity in
gard to errors in the velocity fields at the different layers, for the upper ocean is sensitive to perturbations of the mass and
the standard CH assimilation of SSH the difference betweerY€l0City fields in deeper layers.

the forecast error and the analysis error is much more pro-

nounced for layers 1 and 2 than for the deeper layers 3 and
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Fig. 4. True state at day 1935. SSH field (colour shading) and layer 1 velocity (arrows).

5.2.4 Bred vectors, analysis increment and forecast errorcase, these other structures have been controlled by means
adaptive observations at day 1935 of other observations, taken at a later time; in fact the global
error curve in Figl continues to decrease in the period im-
In order to show how the analysis procedure works, it is in-mediately after day 1935.
teresting to examine one case in detail. To getanidea of how 1t js particularly important to remark that the vertical struc-
the flow is at a particular instant (day 1935), Figshows e of the analysis increment is correct. Figlbeshows the
the "true” state sea surface height field, with, superimposedgng|ysis increment relative to the same observations, together
the velocity vectors. Three adaptive observations have beeyith the forecast error, but for the sea surface elevation. The
taken and all have been assimilated in this case. horizontal position of the (deeply located) targeted observa-
Figure5 shows, in its panels (a), (c) and (e) the bred vec-tions js marked in this figure too, to illustrate how these struc-
tors and, in its panels (b), (d) and (f), the corresponding 10-yres also change in the vertical direction: for example, the
cal structures that have been extracted, following the procesycture located at about 5 E, 38 N is evidently tilted. How-
dure described in Secs.1 The field shown in each plotis  gyer, the correlation between the analysis increment and the

the interface elevation where the maximum is located in thergrecast error is high even at depths that are different from
vertical: in all the three cases the targeted interface is thafynere the observations are located.

between layer 3 and 4, so these are "deep’ structures. The o ;5 o al(2003 showed a similar comparison be-
target positions for the observations are the maxima, markegW

with black dots. All three assimilated values are elevations een the background error and the free (i.e. not forced by
. : ) the assimilation of observations) bred modes, that were used
of the interface between layers 3 and 4, corresponding to th

vertical position of the structures’ maxima, ?Corazza et al2002 to build a flow-dependent background

. . L error covariance matrix.
Figure 6a shows contour lines of the analysis increment

in this field, superimposed to the forecast error for the same o o
field, shown as colour shading. As can be seen, the struc5'2'5 Analysis mcr_ement and forecast error: assimilation
tures used to compute the analysis increment are very well of surface height at day 1940
correlated with structures that are present in the forecast er-
ror field. This is true in particular for the two observations lo- Itis also instructive to illustrate in detail how the BDAS-AUS
cated at approximately 5 E, 38 N and 4 E, 43 N. The structuredynamically consistent assimilation works with the standard
located at 2E, 47N has a very small amplitude (measuredSH observations. The case of day 1940 is considered here.
by the observation) in the forecast error field, and the analy- Figure7a shows, as contour lines, the analysis increment
sis increment is correspondingly small. In the forecast errorcomputed by using the structures present in the bred vec-
fields there exist other structures that could not be detected dbrs, and extracted by regionalization, in comparison with the
this time by using three observations only. However, in thisforecast error on the same field.



F. Uboldi and A. Trevisan : Detecting unstable structures and controlling error growth 77

(@) (b)

day 1935; bred vector N. 1; layers 3—4 interface elevation day 1935; regionalized bred vector N.1; L 3—4 interface elevation

el

NS
D

5E 10E 15E 20E 25€ 30E 35 40E

(d)

interface elevation day 1935; regionalized bred vector N.5; L 3—4 interface elevation

51N

48N

39N

36N

30N

SE 10E 15E 20E 25€ 30E 35E 40E

(e)

()
day 1935; bred vector N. 2; layers 3—4 interface elevation day 1935; regionalized bred vector N.2; L 3—4 interface elevation
<

51N

39N

36N

Fig. 5. Day 1935: bred vectors relative to tf@) first, (c) second ande) third targeted observation. Panétg, (d) and(f) show the same
fields, after regionalization. In all fields the black dot marks the maximum of the structure, i.e. the target position for the observation. The
field shown is the targeted interface elevation, that between layers 3 and 4 in the three cases.

Note here the theoretical importance of being able to pre+this could be obtained, for dynamic, evolving, nonlinear sys-
dict structures that will be observed, and that the correlationtems, with analysis schemes based on stationary estimates of
between the “dynamical” analysis increment and the forecaserror covariances.
error is also high in deeper layers, as shown in Fig. This Notice, again, the complex vertical structures of the sig-
means that the same tridimensional structure is present in thga|s present: the structure located at about 11 E, 38 N appears
forecast error and in the forced bred vector. There is no wayotated when the surface fields are compared with deeper
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Fig. 6. Day 1935. Forecast error (colour shading) and analysis increment (contour (eespvation of the interface between layers 3 and

4; (b) sea surface elevation. The white dots mark the horizontal positions of the three adaptive observations, targeted at the interface betweer
layers 3 and 4.

fields; a dipole in the deeper field at about 2 E, 43 N appearyations, the assimilation is successful. However, for AUS as
as an isolated maximum at the surface. well as for other ensemble-based assimilation schemes such

_ _ ~as EnKF and SEEK, a dangerous situation may arise, espe-
In correspondence with this last structure, the correlationgially when only a fixed observational network is used. If
is even better in the deeper fields than at the observed surfagg unstable structure is only marginally detected by obser-

field. Since here the correlation between analysis incremenyations that are located far from its maximum (say in mass
and forecast error is high even far (vertically) from the obser-
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Fig. 7. Day 1940. Forecast error (colour shading) and AUS analysis increment (contour (@esa surface elevatiotb) elevation of the
interface between layers 3 and 4.

or energy), then the amplitude of the forecast error compo6 Conclusions

nent on this mode may be inaccurately estimated, (for exam-

ple if other, independent structures exist in the same regiongy means of BDAS it is possible to obtain an accurate es-
or by effect of observational error) and the unstable compo+timate of the local structures present in the unstable vec-
nent, instead of being reduced, may even be amplified by theors, and that characterize the growing components of errors
assimilation. This clarifies the reasons why the “selection”in cyclic observation-analysis-forecast systems of the ocean
procedure (besides “regionalization” that acts in the horizon-and of the atmosphere. By means of AUS it is possible —
tal directions) discussed in Sedthas been implemented for and it is worthwhile — to use observations to eliminate the
standard observations. unstable structures present in the forecast error at analysis
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time. In the present and in previous works (TU04, UTCO5 structures that grow in deep layers, particularly in western
and CTUO06), BDAS and AUS have been successfully ap-boundary current regions, before they emerge in layers closer
plied to atmospheric and oceanic systems that are differento the surface and manifest themselves in instabilities asso-
for complexity and degree of approximation, in presence ofciated to the eastward jet, its meanders and its eddies. The
different standard observational networks and adaptive obdeep layers of the ocean may appear to be less active than
servations. those near the surface, but, due to fluctuations of the former,
With particular regard to the present work, results havethe dynamics of the latter can be destabilized.
been obtained in a perfect model and perfect observations o
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