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Abstract. The Lagrangian trajectories of fluid particles are
experimentally studied in an oscillating four-vortex velocity
field. The oscillations occur due to a loss of stability of a
steady flow and result in a regular reclosure of streamlines
between the vortices of the same sign. The Eulerian velocity
field is visualized by tracer displacements over a short time
period. The obtained data on tracer motions during a num-
ber of oscillation periods show that the Lagrangian trajecto-
ries form quasi-regular structures. The destruction of these
structures is determined by two characteristic time scales:
the tracers are redistributed sufficiently fast between the vor-
tices of the same sign and much more slowly transported into
the vortices of opposite sign. The observed behavior of the
Lagrangian trajectories is quantitatively reproduced in a new
numerical experiment with two-dimensional model of the ve-
locity field with a small number of spatial harmonics. A qual-
itative interpretation of phenomena observed on the basis of
the theory of adiabatic chaos in the Hamiltonian systems is
given.

The Lagrangian trajectories are numerically simulated un-
der varying flow parameters. It is shown that the spatial-
temporal characteristics of the Lagrangian structures depend
on the properties of temporal change in the streamlines topol-
ogy and on the adiabatic parameter corresponding to the flow.
The condition for the occurrence of traps (the regions where
the Lagrangian particles reside for a long time) is obtained.

1 Introduction

The study of the Lagrangian trajectory properties in an un-
steady incompressible flows is currently one of the problems
in hydrodynamics. This problem has numerous applications,
including passive tracers transport in the atmosphere and in
the ocean. The variety of observed periodic, quasi-periodic
and turbulent flows generates different Lagrangian coherent
structures that essentially affect transport properties and for
example, result in the anomalous transport regimes appear-
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ance (Monin and Yaglom, 1971; Ngan and Shepherd, 1999;
Linden et al., 2001; Majda and Kramer, 1999).

The description of a Lagrangian particle behavior is based
on the equation of fluid-particle motion in the velocity field,
which can be specified either in the Eulerian form or in the
Lagrangian one (Monin and Yaglom, 1971):

dr

— = Ve(r, 1) = w(r, ro, £, 1) ey
dt

If the Lagrangian field characteristics are specified, it is con-
venient to describe the tracer transport in terms of particle
displacements dispersion and the diffusion coefficient. These
characteristics are expressed through the correlation tensor of
the Lagrangian velocity, which is obtained by averaging over
an ensemble of trajectories (Monin and Yaglom, 1971).

The diffusion coefficient yields a fairly complete descrip-
tion of transport only for the normal diffusion regime, i.e., for
the scales on which spatial-temporal correlations of the La-
grangian velocities are not significant. An anomalous diffu-
sion occurs on the scales where these correlations are signif-
icant and for which the particle displacements fields usually
have a non-Gaussian statistics. A more complete description
of the transport process can be obtained by calculating the
probability density functions of the displacements for one or
two Lagrangian particles in certain points. Such calculations
are usually based on the Markovian models of particle ran-
dom walks that are described by the probabilities of transi-
tion between these points or, which is more realistic for com-
plicated flows, between subregions. A model of space-time
random walks, i.e., of jumps over random distances occur-
ring at random times, turns out to be more suitable to describe
the anomalous regimes associated with the existence of long
correlations in the Lagrangian velocity fields. This model
leads to an equation of the Montroll-Weiss type, which is
applicable for the description of coherent structures (Jones,
1995; Chukbar, 1995).

The problem becomes considerably more complicated if
the Eulerian velocity field is known and the Lagrangian field
characteristics must be determined. In this case a steady Eu-
lerian field corresponds to particle motions in steady orbits,
whereas a temporally periodic Eulerian field results in the
space-time randomization of particle trajectories. The case

Published by Copernicus GmbH on behalf of the European Geosciences Union and the American Geophysical Union.



622

of rapidly varying Eulerian velocity fields is studied in suffi-
cient details (Klyatskin, 2001). The study of other cases re-
quires a combination of analytic, numerical and experimental
techniques.

The dynamics of Lagrangian particles in two-dimensional
divergent-free flows proves to be most accessible for the
analysis. The system of equations for the particle motion
in the corresponding velocity field is a Hamiltonian system
that makes possible application of the known methods for
its analysis (Lichtenberg and Lieberman, 1983). One of
the directions in recent investigations is the study of flows
with a small unsteady periodic component based on Mel-
nikov’s works and the Kolmogorov-Arnold-Moser (KAM)
theory (Rom-Kedar et al., 1990; Cencini et al., 1999). An-
other direction is the experimental and numerical study of
two-dimensional turbulent flows (Cardoso et al., 1996; Elh-
maidi et al., 1993; Haller, 2001). As it is shown in a number
of works, the transport in such flows does not lead immedi-
ately to a uniform distribution of tracer but it is accompanied
by the formation of typical coherent structures.

The study of two-dimensional flows with the time-periodic
and steady components of comparable amplitudes is also of
a great interest. For such flows the relationship between the
Eulerian velocity and the Lagrangian one and a random or
regular behavior of Lagrangian trajectories is the main unre-
solved problem. A laboratory study of these items is partic-
ularly important because the theoretical analysis is usually
too complicated and requires a number of simplifying as-
sumptions. An experiment with transport in time-dependent
Rayleigh-Benard cells is described in Solomon and Gollub
(1988); Solomon et al. (1998). More complicated quasi-two-
dimensional time-periodic four-vortical flow is experimen-
tally studied in Danilov et al. (1999, 2000) where it is shown
that the randomization of the Lagrangian trajectories leads to
a rapid transport of tracer inside the regions with the same
direction of fluid rotation and a rather slow transport in the
region with the opposite direction of fluid rotation. The treat-
ment of such processes can be obtained on the basis of the
adiabatic chaos theory (Neishtadt et al., 1991; Veinshtein et
al., 1996; Itin et al., 2002)

This paper is devoted to further studying of the La-
grangian trajectories and anomalous transport in quasi-two-
dimensional time-periodic flow following Danilov et al.
(1999, 2000) and Kostrykin and Yakushkin (2003). The main
result of our study consists in reaching a quantitative agree-
ment between measurements and calculations of the admix-
ture transport characteristics. Such an agreement is attained
due to a new experimental setup and a model of velocity field
reconstruction with correct topological properties. This pro-
vides us with a basis for understanding what kind of the Eu-
lerian velocity model can be applied in order to explain the
observed transport phenomena. In the paper, we also sum up
and develop some results of the preceding studies. In partic-
ular, we describe and analyze the generation of Lagrangian
coherent structures and determine their life times.
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The paper is organized as follows. Some results related
to the appearance of structures and chaos in Hamiltonian hy-
drodynamic systems are considered in Sect. 2. In Sect. 3, the
laboratory experiment and the method of numerical model-
ing are described. Section 4 deals with the comparison of
experimental and numerical results. Section 5 discusses the
dependence of the Lagrangian coherent structure characteris-
tics on flow parameters. The obtained results are summarized
in the Conclusions.

2 Structures and chaos in Hamiltonian hydrodynamic
systems

In a two-dimensional divergent-free flow, the Eulerian ve-
locity field can be expressed in terms of the streamfunction

Y=y (r,1)

oy
V = -,
X ay
Y
Vy, = —. 2
Y 0x 2)

The streamfunction plays the role of the Hamiltonian and
specifies the streamlines topology. It depends parametrically
on time. At a given time, two invariants can be calculated at
each point:

=AY, K =Yty — V7, 3)

The sign of the vorticity w indicates the direction of vor-
tex rotation, and the sign of the quantity K corresponds to a
different behavior of neighboring trajectories (Okubo-Weiss
criterion; Elhmaidi et al., 1993). In other words, the regions
with K >0 and K <0 are the regions of elliptic and hyperbolic
motions, respectively. The fixed points, whose positions are
determined by the equation grad v (rg, t)=0, are also classi-
fied. Note that at a fixed point, the quantity K coincides with
the Gaussian curvature of streamfunction at this point. The
“instantaneous” separatrices passing through the hyperbolic
fixed points are described by the equation v (r, 1)=1v (ro, 1)
and separate the regions with different character of motion.

In the unsteady flow, the spatial positions of the instan-
taneous separatrices vary over time. As a consequence, a
“separatrix region” arises. From the Eulerian velocity field,
one can calculate the areas bounded by the instantaneous
separatrices I;(¢) and the quantity K (¢) for the hyperbolic
fixed points and elliptic ones. Using these calculations, one
can define the dimensionless quantities «=A/ /I (the rela-
tive variation of the area bounded by the separatrices) and
B=(K |)% /2, where (-) is the time-averaged quantity at
fixed point and Q=2 /T is the frequency of flow oscilla-
tion. The quantity § can be treated as the flow adiabaticity
coefficient near a fixed point.

It follows that the transport regimes can be classified ac-
cording to the methods of their description: transport by
rapidly varying velocity fields (e.g., wave ones) with f<1,
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resonance transport by fields with a small unsteady compo-
nent with <1 and =1, and adiabatic transport by quasi-
stationary fields with 8>>1.

For analysis of the Hamiltonian systems, it is convenient
to use the action-phase coordinates: (I (¥, t), ¢) (Licht-
enberg and Lieberman, 1983). The value of the action,
which is equal to the area bounded by a streamline at a
given ¢, remains almost unchanged for a Lagrangian particle,
provided that the streamfunction varies sufficiently slowly.
If the streamfunction is expressed through the action, as
Y=v (I, t), the quantity 81///81~|K|% may be treated in the
elliptic region as an angular velocity of particle motion along
its orbit. In the hyperbolic region, a similar quantity char-
acterizes the relative rate of streamlines divergence (Danilov
et al., 2000).

In the case of a steady flow, the particle motion
equations in the action-phase coordinates take the form
=1y, p=¢o+a(l)t. It follows that the tracer initial distri-
bution Fy(I, ¢) transforms with time into a spiral (or a set
of spirals). In the case of a random spread of the initial val-
ues on the action coordinate, the randomization of particle
positions in phase occurs.

For a steady flow disturbed by a time-periodic compo-
nent, as it follows from the KAM theory, the stable invariant
trajectories are conserved in the regions of elliptic motion,
and these trajectories break down near the orbits to be reso-
nant with respect to the period of disturbance. At the same
time, homoclinic structures appear near the hyperbolic fixed
points, which results in randomization of the particle tra-
jectories. The randomization region grows with an increase
in the amplitude of the unsteady velocity component (Rom-
Kedar et al., 1990; Lichtenberg and Lieberman, 1983).

3 Laboratory experiment and numerical simulation
method

The laboratory experiment is conducted on the setup de-
scribed in Danilov et al. (1999, 2000). The setup represents
a horizontal tank with dimensions of 24 x 12 cm? and a depth
of 0.7 cm filled with the electrolyte. A four-vortex quasi-two-
dimensional flow is generated magneto-hydrodynamically.
The amplitude of the velocity field in the vortices is deter-
mined by the magnitude of electric current passing through
the electrodes. At the critical value of exciting current
(J=215mA), the flow becomes unstable and self-oscillating.
The oscillations are manifested in the periodic reclosure of
the vortices along each of the rectangle diagonals. The mea-
surements are carried out for the electrical current value
J=450mA, with an amplitude of velocity of the order of a
few centimeters per second and oscillation period 7~50s.
The Eulerian velocity field at the surface of fluid, which
could be approximated as two-dimensional, is experimen-
tally measured using PIV method. An aluminum powder is
used as a passive tracer to study the flow field in the labora-
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tory experiment. Because of their small size and mass, the
powder clusters may be treated as fluid particles. We use a
system of digital analysis of video images to obtain the infor-
mation on the spatial distribution of tracer particles (Danilov
et al., 2000). The analysis of the measurements performed
reveals that the two-dimensional velocity field can be treated
as approximately divergent-free and consequently the parti-
cles motion is governed by some streamfunction. The cho-
sen number of tracks is sufficiently large to reconstruct the
streamfunctions at a uniform grid with 80x44 mesh points.

Figure 1 shows the topology of instantaneous streamfunc-
tions and the separatrices during a half-period of oscillation.
Initially, there are four vortices separated by the separatrix
passing through the central hyperbolic fixed point. Further,
this separatrix is divided into two branches, one of which
(external) continues to separate the flow into the regions with
opposite rotations. The second (internal) separatrix separates
the merged vortex from smaller vortices. Further the internal
separatrix disappears due to the confluence of elliptic fixed
points in the corner vortices. During the second half-period,
a similar evolution of the vortices occurs, but they are located
along the other diagonal.

We subsequently use an expansion of the experimental
streamfunction in terms of spatial Fourier harmonics with the
time-dependent coefficients:

x_ . Imy
)Sm(L—y)- “4)

X

. km
Yy, 0 =D au(®)sin(—;
One should note that, in Eq. (4), only harmonics satisfying
the boundary non-leakage condition are retained. Moreover,
because the small-scale harmonics are determined with a rel-
atively large error only the large-scale ones are used in the
calculations. We choose the following criteria to find a suit-
able spectral truncation. First, all harmonics are sorted by the
amplitudes, and, for a given number of largest harmonics N,
one can define the truncated streamfunction. Next, we study
the behavior of the Gaussian curvature K.(¢) at the central
point — (%L x,%L y), which is approximately happened to be
fixed in our case. In fact it is exactly fixed only for the central
symmetry, but in our case the flow has a weak asymmetry
due to the magnetic field distribution. We calculate the K.
for every spectral truncation starting from N=2 and look for
the minimal number of harmonics for which K.(¢) changes
its sign four times during the period of oscillation. In this
case, one should expect to obtain the streamfunction topol-
ogy which will be analogous to that one described above.
This criterion is satisfied when the combination of 7 harmon-
ics in space and 3 harmonics in time is chosen. Figure 2
shows the dependence of K.(¢) for central fixed point and
gives us a possibility to estimate the flow adiabaticity coeffi-
cient as f~4.4.

One can define an action at some point with a positive
value of the streamfunction as the total area enclosed by the
streamlines with a given value of . For the points with
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Fig. 1. Streamfunction corresponding to J=450mA at different
moments of time during the half period of the flow (thick lines de-
fine separatrices: from top (a) four vortices when internal and exter-
nal separatrices are nearly coincided, (b) four vortices when internal
and external separatrices are different, (c) three vortices with elliptic
central point.

a negative value of v, we define an action as the differ-
ence between the total area occupied by the flow and the
area enclosed within the corresponding streamlines. Figure 3
presents the positions of external and internal separatrices in
the action-time plane. In a general case, the entire region
of action can be divided into three subregions: subregion 1,
where equiaction contours do not intersect separatrices (not
realized in our case), subregion 2, where equiaction con-
tours intersect the internal separatrix, and subregion 3, where
equiaction contours intersect both separatrices.

The Runge-Kutta scheme of the fourth order is used for
the numerical calculation of the Lagrangian particles trajec-
tories. We integrate the trajectories of 10000 particles for
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Fig. 2. Time-dependence of the Gaussian curvature at the central
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Fig. 3. Time-dependence of the action on the external and internal
separatrices: solid line is internal separatrix, dashed line is external
separatrix.

a time period of 407. The ensemble-averaged characteris-
tics happen to be insensitive to the doubling of the number
of particles and changing of the time step (~1s) used in the
integration.

4 Results of the laboratory and numerical experiments

There are two ways to compare the results of the laboratory
and numerical experiments. One can compare the tracer dis-
tributions at different moments of time initializing the tracer
in one of the corner vortices. The other way is to compare the
time evolution of the total number of particles in prescribed
regions, for example, in four equal rectangles into which the
entire domain is divided at the central point.
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Fig. 4. Typical trajectories of the particles during two period of
oscillation in the numerical experiment with reconstructed stream-
function (the area of initial particle positions is marked by a dia-
mond).

First, we consider the evolution of tracer patch during one
oscillation period. Both data sets show that during the first
stage of existence of corner vortices the tracer patch rotates
in one of the vortices to form the spiral structure. At the sec-
ond stage, during which the corner vortices are merged, this
structure is elongated and partially transported to the oppo-
site corner. At the last stage, when the central hyperbolic
point is formed, the tracer distribution is divided into two
main parts. These parts then remain captured in the diago-
nal corner vortices until the end of the period of oscillation.
One should note that the small number of particles may es-
cape from the co-rotating system of vortices and jump to the
counter-rotating vortex. The typical trajectories of two par-
ticles during first two period of the flow oscillation are pre-
sented in Fig. 4. Initially particles are located very close to-
gether in the area marked by diamond. But after some time
one of them remains in the co-rotating system of vortices
while the other one jumps to the counter-rotating vortex. It is
interesting to observe that this jump happens near the central
hyperbolic point.

Now compare the particle distributions at the moments of
time f,=nT, where n is an integer number. Figure 5 shows
the evolution of the spatial distribution of tracer over three
oscillation periods. One can see that to a large extent, only
the vortices located along the same diagonal (with the same
direction of rotation) exchange particles. Over several peri-
ods, we observe the mixing between these vortices, whereas
relatively small number of particles penetrate into the vor-
tices with the opposite circulation. As a result, one can ob-
serve the formation of the elongated (phase-extended) struc-
tures that exist for several periods. Over time an increasing
number of particles leave the vortices to form a chaotic cloud
covering the near-separatrix layer and penetrating into the
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Fig. 5. Particles distribution in the laboratory experiment at the
different moments of time (from top and left): (a) =0, (b) t=T,
(c) t=2T, (d) t=3T.
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Fig. 6. Particles distribution in the numerical experiment with re-
constructed streamfunction at the different moments of time (from
top and left): (a) r=0, (b) t=T, (¢) t=2T, (d) t=3T.

vortex with opposite circulation. Figure 6 gives the results of
the analogous numerical simulation.

Figure 7 shows the relative numbers of particles in four
different rectangles that were obtained from both experi-
mental and numerical data. The area inside every rectangle
roughly coincides with the area inside the corresponding cor-
ner vortex. One can estimate adjustment times in phase (mix-
ing time between the vortices of the same sign) and in action
(mixing time between the vortices of the opposite sign) using
these results. For example, for the rectangle that encloses all
particles at the initial time #=0, it can be approximated by
the formula:

3 1

gt) = 3 [COS(H )eXp(——) +exp(——)} h ®)
where Ty and T, are the adjustment times in phase and
in action, respectively. Applying this approach to the nu-
merical data, we get the following estimates for the adjust-
ment times: 7,=10.1T and Ty=3.4T. Since Ty <1y it fol-
lows that during period of time <7 the particle exchange
between co-rotating vortices is strong and between counter-
rotating vortices is relatively weak.
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Fig. 7. Time-dependence of relative number of particles inside four
equal rectangles: (a) laboratory experiment, (b) numerical exper-
iment. Solid line is low left rectangle, dashed line is upper left
rectangle, short-dashed dotted line is upper right rectangle, black
circles is low right rectangle.

The measurement data on tracer transport are well in-
terpreted on the basis of concept of the adiabatic regime
(Danilov et al., 1999, 2000). In the adiabatic limit the ac-
tion is an invariant. A “rapid” mechanism associated with
the motion along the lines of constant action is responsible
for tracer redistribution between the vortices with the same
direction of rotation, because their merging and breaking are
not accompanied by a change in the total action. Actually,
the motion is close to the ideally adiabatic motion until one
of the particles intersects a separatrix. When the separatrix
is intersected, i.e., at the times ¢; where I =1, (t,), the action
changes by AI~1/8. More precisely, both the violation of
adiabaticity and a noticeable change in the action occur when
the particles travel through the region of hyperbolic motion
adjacent to the separatrix. A “slow” mechanism, which is
associated with a change in action, arises due to the intersec-
tion of the separatrix by a particle and leads to the transport
of particles into the vortices of opposite direction of rotation.
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5 Structural properties of Lagrangian trajectories and
tracer transport in two-parametrical flow

Another interesting possibility is to study the dependence of
a passive scalar transport on the flow parameters. For this
purpose we use a simplified streamfunction with a topolog-
ical structure similar to the streamfunction obtained from
the measurements (Danilov et al., 2000). This simple two-
parametric streamfunction is not appropriate for a quantita-
tive explanation of experimental data, but it is convenient for
a qualitative analysis:

Y (r, 1) = B [Yo(r) + Ay (r, 1)],

" Co s (271x> . <27ry)
0 = (22 S1n sm| —
L, Ly
A Cusin dax\ . (2nmy
si sin[ — ),
42 L. L,
Y = |:C11 sin (H) sin <n_y>
L, Ly
. (7nx\ . (3my .
C — — Q1) —
+Ci3 sin <Lx> s1n< L, >:| sin(2t)
3
—Cysin < :x) sin (Z—i) cos(Q1), ©6)

where Ly and L, are the dimensions of the cell,
Q=21 /T, Cyp=3.1cm?/s, Cp=1.1 cm?/s, C1;=4.1 cm?/s,
C31=2.8cm?/s, C;3=1.2cm?/s, T=50s. This flow field de-
pends on two parameters: A (the relative amplitude of the
non-stationary part of the flow) and B (the scale factor of
the flow amplitude). It is possible to show that the parame-
ter A characterizes relative variations of the area bounded by
separatrices (o) and with an increase in A the value « also
increases. The parameter B is similar to the adiabaticity pa-
rameter (B).

Spatial structures arising in the distribution of tracer are
described by the Poincaré sections for t,=ty+nT. As a ref-
erence phase we chose #p=0 when there are two isolated
vortices along one diagonal (right-hand rotation) and one
merged vortex along the other diagonal. This topology is
maintained for a larger part of a half-period of oscillation.
The model results for the tracer patch initially located in
the low right corner are shown in Figs. 8-10, where the
Poincaré sections are given for a different number of periods
(n=1,2,4,8).

As it can be seen from Fig. 8, if A=1 and B=1, the par-
ticle distribution forms helical structures similar to the case
with reconstructed stream function (4). After one period a
portion of tracer transfers into the other vortex with the same
direction of rotation, changing the action value only slightly.
Additionally, when a separatrix is intersected, an extended
“tail” is formed inside the central vortex. After one oscilla-
tion period the tracer is redistributed between the vortices,
holding a helical structure in each of the vortices. The struc-
tures belonging to the central vortex are formed from the
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0 2 4 & B 0 12 14 18 18 20 23 24

Fig. 8. Particles distribution in the numerical experiment with two-
parametrical streamfunction (A=1, B=1) at the different moments
of time (from top and left): (a) t=T, (b) t=2T, (c¢) t=4T, (d)
t=8T.

0 22 24

Fig. 9. The same as in Fig. 8, but for A=0.5, B=1.

“tails” appearing every period. Thus, a Lagrangian trajec-
tory can be represented as a set of quasi-regular segments of
an ideally adiabatic motion. Appearance of a few segments
is connected with the particles jump to another orbits, which
occurs when separatrix intersects the Lagrangian trajectories.
Particle walks happen between the regions of partially stable
motions adjacent to the elliptic points. These characteristic
tracer structures are formed during a few periods. After eight
periods of oscillation they begin to destroy and the particle
segments uniformly occupy the entire region of the flow.
Figures 9 and 10 demonstrate the structure formation in
the cases of A=0.5, B=1 and A=1, B=4, respectively. As
one can see, in these cases an increase in the adiabaticity pa-
rameter B leads to the slowing down of the transport into
the vortices with opposite directions of rotation and, con-
sequently, to the smoothing of tracer concentration. To es-
timate this effect quantitatively we calculate an adjustment
time in action using the Eq. (5). The dependence of 7, on
the parameter B is presented in Fig. 11. One should note
that in all experiments with this two-parametrical flow we
had Ty <T. This is due to the roughness of the 5-harmonics
model. In the more complex model with 21 harmonics 7'y is
much closer to the observed values (compare Figs. 7a and b).
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Fig. 10. The same as in Fig. 8, but for A=1, B=4.
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Fig. 11. Dependence of the adjustment time in action 7, on the
adiabaticity parameter B.

As it can be seen from Figs. 8-9, a decrease in A results in
the formation of strongly stagnant zones, which are decou-
pled or weakly coupled with the remaining flow. In the re-
gions completely untouched by the separatrix displacements
the stagnant zones appear. It corresponds to the case when in
the action-phase space the regions unreachable by the sepa-
ratrices exist.

6 Conclusions

New laboratory and numerical studies (specifying the per-
formed early in Danilov et al., 2000; Kostrykin and
Yakushkin, 2003) of the Lagrangian particle transport in
quasi-two-dimensional time periodic flow that can generate
chaotic trajectories are conducted. A fast transport of particle
into the vortices with a same direction of rotation and a much
slower transport into the vortices with the opposite direction
of rotation is observed. As it is shown in our previous studies,
a fairly slow change in the system velocity field means that
such experiments can be interpreted from the point of view
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of the adiabatic chaos theory. Previous attempts of numer-
ical simulations using the model approximation of field ve-
locity gave us only a qualitative explanation of the observed
picture. In present work we obtain the quantitative agree-
ment between the evolution pattern of tracer distribution and
the data of numerical simulation using the measured veloc-
ity fields. To achieve this agreement the velocity model must
conserve the main features of flow topology and its tempo-
ral variation. We suggested here a simple phenomenologi-
cal model of transport phenomena. This model contains two
characteristic times describing a transition of the Lagrangian
particles between co-rotating and counter-rotating vortices
respectively.

To analyze the adiabaticity factor on the particles transport
the simple two-parametrical presentation of velocity field is
used. The simulations performed demonstrate that charac-
teristic transport times increase when adiabaticity coefficient
grows. The obtained numerical results allow us to suggest
that the transport between vortices depends on local flow
properties near fixed points. The Lagrangian transport in-
cludes three major stages: transport along equiaction con-
tours, transport in action, and mixing of the tracer concen-
tration in the entire region. Lagrangian trajectories of liquid
particles combine features of regularity and randomness, in
particular, the coherent structures with certain lifetime are
generated. The results of the numerical simulation indicate
that with an increase of the flow adiabaticity coefficient the
Lagrangian trajectories stay near equiaction contours over in-
creasingly longer periods of time. Moreover, a change in the
separatrix region size can results to the formation of stagnant
zones or “traps’.

For fairly high values of the adiabaticity coefficient a more
complete description of the diffusion process in the action
space can be obtained by using a generalized model of parti-
cle random walks in the action-time space. For such gen-
eralized model additional elaborations are necessary. The
further investigation of this problem can also involve both
two-particles dispersion and coherent structures relation to
finite-time Lyapunov exponents.

It is necessary to note that the conclusions following from
the simulation performed in this work may prove to be
valid for studying the tracer transport by different quasi-two-
dimensional atmospheric flows including two-dimensional
turbulence.
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