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Abstract. The flow of continuously stratified fluids past
obstacles was studied analytically, numerically, and experi-
mentally. The obstacles discussed here include a flat strip,
aligned with the flow, inclined or transverse to the flow and
a horizontal cylinder. In the flow pattern, transient and at-
tached (lee) internal waves, downstream wakes with sub-
merged interfaces and vortices, soaring singular interfaces,
soaring vortices and vortex systems are distinguished. New
components of laminar flow past a horizontally towed strip
are presented. Fine transverse streaky structures on the strip
in the downstream wake were visualized. Soaring isolated
interfaces, which are internal boundary layers forming inside
the downstream attached wave field past bluff bodies were
observed. With increasing of the body velocity a vortex pair
was formed directly at the leading edge of this interface.

1 Introduction

Interest in the study of fine structure effects on mixing in a
stratified flow is stimulated by a number of environmental
and technological problems. Even when the density changes
are small, density gradients can be large and lead to some
new phenomena, which are not present in a homogeneous or
continuously stratified environment. Links between internal
waves and so-called “fine structure”, which manifests itself
by high gradient thin interfaces separating thicker and more
homogeneous layers are under investigation.

It is well-known that stratification strongly affects flow
separation and downstream wake structure. Such flow con-
figurations are encountered in the atmosphere in the lee of
hills or mountains and behind long ridges in the oceans. Dy-
namics of a real fluid and transport of contaminants in an en-
vironment with topography are governed by interaction of a
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flow with a self-induced fine structure of an initially smooth
stratification. To better understand the flow past obstacles
and to compare observations with analytical and numerical
solutions, the typical approach has been to investigate first
of all the flow at similar ranges of parameters past obsta-
cles of simple or perfect shapes, such as strips, right circu-
lar cylinders and spheres. In this spirit, the structure of a
flow around an obstacle including upstream disturbances, an
internal wave field and a downstream wake have been stud-
ied both theoretically and experimentally. It is well known
that vortices and vortex arrays play an important role in the
transport of substances, heat and momentum. Much less is
known about the effect of high gradient interfaces and rea-
sons of their formations. Common theoretical and experi-
mental methods are generally directed to study dynamics of
regular macroscopic elements of a flow. It is difficult to in-
vestigate small-scale irregularities both in a laboratory and
in the environmental conditions due to the spatial or tem-
poral smoothing and interactions of sensors or visualization
elements (seed particles, drifting balloons in the atmosphere
and drifters in the ocean) with the flow. This study reports
on some analytical and laboratory experiments which em-
ploy high-resolution optical techniques to provide a pattern
of density gradient and velocity fields in a stratified flow
around obstacles. It is important that the experimental tech-
niques are directed to observe disturbances of the real fluid
being tested and not additional substances (dye, solid parti-
cles) that change the physical properties of the medium.

2 Analytical and numerical model

An unbounded, incompressible, isothermal, viscous and uni-
formly stratified fluid is considered. An exponential distri-
bution of the undisturbed density,ρ0 (z)=ρ00 exp

(
−z
/
3
)
,

is characterised by a constant length scale of stratifica-
tion 3=|d ln ρ/dy|

−1, where ρ00=ρ0(0) is the reference
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density, or by a buoyancy period,Tb, or buoyancy frequency,
N=2π/Tb=

√
g/3, andg is the acceleration due to the grav-

ity. To identify a set of available length scales characterising
typical structural elements of a stratified flow, a system of
governing equations is analysed.

The system of stratified flow governing equations in
Boussinesq approximation has the form (Turner, 1973)

∂S

∂t
+ u∇S = κs1S

∇ u = 0
∂u
∂t

+ (u∇)u = −
∇P
ρ0

+ ν1u + gβS

ρ = ρ0 (1 + βS)

(1)

whereP , S and u=
(
ux, uy, uz

)
are pressure, salinity and

velocity, respectively,β is the salt volume expansion coeffi-
cient in the equation of state. The kinematic viscosity coeffi-
cientν and salt diffusion coefficientκs are taken as constant
throughout the fluid.

A 2-D obstacle which is either an infinite horizontal strip
of width L or a cylinder of diameterD, is towed with a con-
stant velocityU . In the laboratory frame of coordinates (x, y,
z), the z-axis is directed upwards, and the x-axis is along the
mean flow velocity. Boundary conditions on the body sur-
face are no-slip for velocity, no fluxes for density and salinity
and attenuation of all disturbances at infinity in the initially
motionless fluid, i.e.u|6 =0; j |6 = −κs∇S|6 =0 (6 is a
boundary surface).

The set of Eqs. (1) is called a singular disturbed type set if
stratification is weak and viscosity is small. A complete set
of solutions contains members describing large length scales
components of the motion that are internal waves (Lighthill,
1978) and vortices as well as small scale ones, such as bound-
ary layers on a solid surfaces (Schlichting, 1968; Etling,
1996). These solutions are characterised by a set of basic
length scales following directly from the scaling analysis of
the system (1).

The problem is characterised by the following dimensional
parameters: the densityρ0 (z) and its gradientdρ0

/
dz, kine-

matic viscosityν and salt diffusivityκs , the velocityU , size
of the bodyD and gravity accelerationg. For methodologi-
cal consistency, it makes sense to use the length scale of the
flow feature or the size of the object as a unique parameter
which characterises all components of the motion.

The list of intrinsic length scales of the problem includes
the buoyancy scale3=

∣∣d (ln ρ0)
/
dz
∣∣−1, the widtha of the

strip or the diameterD of the cylinder, the length of an
attached (lee) internal waveλ=UTb=2πU/N , the length
scale for the velocityδu=ν/U and densityδρ=κs/U of the
stationary boundary layers. These scales form strong in-
equalities (3�D�δu�δs ; 3�λ�δu) for laboratory and
environmental conditions. Additional length scales char-
acterise diffusion-induced components of a flow structure

that areδν=

√
ν
/
N for velocity andδs=

√
κs

/
N for den-

sity (Baydulov et al., 2005). From these basic length scales,

a denumerable set of derivative scales characterising sec-

ondary elements of motionLc=
a+b+...

√
La

1×Lb
2×..., for ex-

ample discrete vortices and vortex arrays can be constructed.
The most often used derivative scale is a viscous wave
scaleLν=

3
√

3λδu=
3
√

gν/N , describing the geometry of vor-
tices embedded into a 2-D density wake (Chashechkin and
Voeikov, 1994). The richness of the set of length scales re-
flects the variety of flow structure elements and points to pos-
sible resonance effects when two scales of different nature
become equal.

In this geometrical description of flow pattern, ba-
sic dimensionless parameters, namely the Reynolds
number Re=UD

/
ν=D

/
δu, internal Froude number

Fr=U
/
ND=λ

/
2πD, Peclet numberPe=UD

/
κs=D

/
δρ

and the ratio of scalesC=3
/
D are the ratios of the appro-

priate basic length scales of the problem. Equality of length
scales of different nature corresponds to critical conditions
of the flow. For example, widely used approximation of a
“large Froude number” corresponds toλ�D.

The simplest case is that of uniformly moving horizon-
tal strip with stream-wise lengthL=a along the solid plane
surfacez=0. In this case the linearized set of governing
Eqs. (1) is transformed into the standard internal wave equa-
tion for stream function9 defining components of velocity
ux=∂9/∂z, uz=−∂9/∂x, ∂2

∂t2

(
∂2

∂x2
+

∂2

∂z2

)
+N2 ∂2

∂x2
−ν

∂

∂t

(
∂2

∂x2
+

∂2

∂z2

)2
9=0 (2)

with no-slip boundary conditions

∂9
∂z

∣∣∣
z=0

= U ϑ
(
x +

a
2 − Ut

)
ϑ
(

a
2 + Ut − x

)
,

∂9
∂x

∣∣
z=0 = 0.

(3)

whereϑ is Heaviside function, and attenuation of all distur-
bances at infinity. The boundary conditions must be prop-
erly changed when an inclined or vertical strip, or a cylinder,
moves in a stratified fluid instead of a horizontal strip. The
flow becomes more complex and has not been solved analyt-
ically up till now.

The solution of Eq. (2) is represented as the Fourier inte-
gral expansion:

9 (x, z, t) =

∞∫
−∞

e−iωt

∞∫
−∞[

Aw (ω, k) eikw(ω,k)z
+ Bi (ω, k) eiki (ω,k)z

]
eikx dk dω (4)

where rootskw andki are solutions of the dispersion equa-
tion, corresponding Eq. (2)

ω2
(
k2

+ k2
z

)
− N2k2

+ iω
(
k2

+ k2
z

)2
= 0 (5)
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(a) 

(b) 

Figure 1. Pattern of attached internal waves for horizontal (a) and vertical (b) components of 

velocity. Bright points on upper horizontal line indicate edges of the strip, moving from the right 

to the left.  = 6.28 s,  =5.5 cm, U = 1 cm/s, bT a λ= 6 cm, Fr  = 0.18,  = 550. Re

 

Fig. 1. Pattern of attached internal waves for horizontal(a) and ver-
tical (b) components of velocity. Bright points on upper horizontal
line indicate edges of the strip, moving from the right to the left.
Tb=6.28 s,a=5.5 cm, U=1 cm/s,λ=6 cm,Fr=0.18,Re=550.

Its solutions include both, roots which are regular in viscosity
and correspond to waves

kw (ω, k) = −k2
+

iω

2ν

1 −

√
1 +

4iνk2N2

ω3


and roots singular in viscosity which correspond to boundary
layers.

ki (ω, k) = −k2
+

iω

2ν

1 +

√
1 +

4iνk2N2

ω3


Substitution of Eq. (4) into the boundary conditions (3) leads
to a system of algebraic equations for the spectral component
of the wave amplitude

Aw(ω, k)=−Ai(ω, k)=
iU

π k
(
kq−ki

) sin
ka

2
δ (ω−kU) (6)

Substitution of the solution (6) into (4) and integration give
the resultant expression for the stream function

9(x, z, t) =
iU

π

∞∫
−∞

1

k
sin

ka

2
eik(x−Ut)

eikw(kU,k)z
− eiki (kU,k)z

kw(kU, k) − ki(kU, k)
dk (7)

 
Figure 2. Module of field velocity within the boundary layer on the strip (  = 14 s, 

а = 2 cm, U = 1 cm/s, 

bT

λ  = 14 cm,  = 1.12,  = 200). Fr Re
 

Fig. 2. Module of field velocity within the boundary layer on the
strip (Tb=14 s, a=2 cm, U=1 cm/s,λ=14 cm,Fr=1.12,Re=200).

From Eq. (7), it follows that the field of lee waves is tran-
sient ahead and stationary behind the source in the reference
frame. Detailed analytical and numerical analysis of Eq. (7)
was presented by Chashechkin and Bardakov (2004).

A visualization of the exact solution (7) for the vertical
component of velocity and vorticity by the modified method
of isopleths in Fig. 1 makes it possible to reveal not only
the complete structure of transient leading and stationary at-
tached internal waves, but also details of the fine structure
of the boundary layer. Wave perturbations near the plate are
more pronounced for the horizontal velocity than for the ver-
tical one. Moreover, the number of perturbation peaks in a
single wave field turns out to be different for different wave
components (one peak band for the horizontal component
and two bands for the vertical one).

The transient upstream waves are non-stationary. The
phase surface slope to the horizon characterises local fre-
quency values.

The detailed structure of the module of field veloc-
ity within the boundary layer is shown as a magnified
continuous-tone image in Fig. 2. Both leading and trailing
edges of the plate incorporate singular perturbations with
the vertical velocity oriented at first toward the fluid and,
then, toward the plate. The edge singularities of the hori-
zontal velocity are much less pronounced. The thickness of
the Prandtl boundary layer (with a typical scale ofδu=ν

/
U)

monotonously increases with distance from the leading edge
the same way as in laminar flow of a homogeneous liquid
(Schlichting, 1968). The boundary layer is detached from the
trailing edge into the liquid. The contrast of singular compo-
nents of the boundary layer varies with changes in the flow
parameters. The complicated structure of boundary layers at
a horizontally moving plate indicates that it is impossible to
model the formation of attached internal waves near a real
obstacle in terms of a set of singular mass or force sources.

The complex structure of a calculated flow pattern in-
dicates that sensitive instruments must be used in exper-
iments for observation of flow field, which can visualize
simultaneously regular large-scale and singular small-scale
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 (a)  (b) 

 

Figure 3. Pattern of flow around the horizontal strip moving from left to right (  = 2.5 cm, 
T

a
b = 14.0 s, C=5000); (a) U = 0.1 cm/s, Re=25, Fr=0.09, λ=1.4 cm, uδ =0.1 cm, , “slit-

thread”; (b) U = 0.9 cm/s, Re=225, Fr=0.8, 

0α =

λ=12.6 cm, uδ =0.011 cm, , “slit-knife”. 3=α

Fig. 3. Pattern of flow around the horizontal strip moving from
left to right (a=2.5 cm, Tb=14.0 s, C=5000); (a) U=0.1 cm/s,
Re=25, Fr=0.09,λ=1.4 cm, δu=0.1 cm, α=0◦, “slit-thread”; (b)
U=0.9 cm/s, Re=225, Fr=0.8,λ=12.6 cm, δu=0.011 cm, α=3◦,
“slit-knife”.

components of flow. Only sensitive Schlieren instrument and
marker lines satisfy this condition.

2.1 Experimental set-up and techniques

The experiments were conducted in a rectangu-
lar transparent tank (220×40×60 cm3) with opti-
cal windows, filled with linearly stratified brine
(ν=0.01 cm2

/
s,κs=1.43·10−5 cm2

/
s). A side view of

a flow is observed by a Russian Schlieren instrument IAB-
458 with a field of view of 23 cm in diameter. Various types
of light-cutting diaphragms were used, namely a flat knife,
producing conventional Schlieren pattern; Maksoutov’s
thread, as well as a horizontal grating producing natural
“rainbow” colour Schlieren image (Chashechkin, 1999)
was used. The Schlieren instrument has a spatial resolution
better than 0.1 mm. Colour images are reproduced here in a
grey scale.

A horizontal cylinder or a plate placed vertically, horizon-
tally or under some angle to the horizontal,α, is towed by a
carriage. The experimental conditions presented in Table 1
correspond to laminar, transient and turbulent flow regimes
following the classification by Boyer et al. (1989).

2.2 Results

2.3 Horizontal and inclined strips

Black-and-white Schlieren images of the flow around the
horizontal strip, towed from the right to the left, in the weak
density gradient fluid are shown in Fig. 3. The sloping
straight rays ahead of the obstacle (to its left) visualize up-
stream transient internal waves. Crests and troughs of the
waves are matched with the appropriate circular phase sur-
faces of attached (lee) internal waves past the strip. The wave
pattern corresponds to that calculated from expression (7).
The twin grey lines past the strip (Fig. 3a) show the troughs
of the internal waves while dark lines mark the crests. Thin
high gradient interfaces in the downstream wake originate
from the rear edge of the strip.

Distorted vertical lines ahead the obstacle in Fig. 3 are
density markers visualising vertical profiles of the velocity.

 (a)  (b) 

Figure 4. Pattern of flow around strip moving from right to left produced by “slit-thread” 
method,  = 7.5 s,  = 2.5 cm, C=560; (a) U  = 2.3 cm/s, Re=575, Fr=1, λ=17.3, bT a uδ =0.004, 

; (b) U  = 1.4 cm/s, Re=350, Fr=0.67, 0α = λ=10.5, uδ =0.1 cm, . 12.5α =
Fig. 4. Pattern of flow around strip moving from right to left
produced by “slit-thread” method,Tb=7.5 s, a=2.5 cm, C=560;
(a) U=2.3 cm/s, Re=575, Fr=1,λ=17.3, δu=0.004, α=0◦; (b)
U=1.4 cm/s, Re=350, Fr=0.67,λ=10.5,δu=0.1 cm,α=12.5◦.

The height of the central blocked liquid area is larger than
the strip thickness. The vertical thread in the right part of the
image in Fig. 3b is the reference line to measure the markers
displacements. Contours of the markers in the upper part of
the Fig. 3a indicate an upstream influence of both the obsta-
cle and the vertical blades holding the obstacle.

With the towing velocity increased, the intensity of the up-
stream disturbances decreased, the length of internal waves
increased and a new structural component of the flow was
observed. Conventional Schlieren method reveals four thin
short sloping interfaces in the downwind side below the slop-
ing strip terminating with the free sharp edges (Fig. 3b).
Their leading edges closely attach to the horizontal boundary
layer on the strip. The thickness of the interfaces is less than
0.1 cm, and the distance between them is about 0.5 cm. The
slope of the interfaces gradually increases with the distance
from the plate. The lift force distorts the thin density wake
and displaces crests and troughs (Chashechkin and Mitkin,
2001). The density wake position is restored due to buoy-
ancy forces and, with distance, it gradually comes back to
the body path.

With the buoyancy frequency increased, the flow pattern
becomes more complicated and a total number of transverse
streaks past the strip increases (Fig. 4). Near the obsta-
cle, their leading edges are directed horizontally, while their
sharp outer edges are oriented almost vertically. The streaky
wake remains rather narrow due to the buoyancy forces sup-
pressing the vertical displacement of fluid particles. With
time and with distance from the strip, the slopes (with respect
to the horizontal) of the individual streaks and the height of
the whole structure decrease. Due to the shear flow inside
the velocity wake, the streaks elongate in the horizontal di-
rection. They are gradually smoothed by molecular diffusion
and disappear.

The lift force changes the flow pattern around the sloping
strip. If the first trough and first crests in Fig. 4b are located
at the strip’s leading edge in the upper semi-space and its rear
in the lower semi-space, respectively, the following troughs
in the both semi-spaces contact each other through the thin
density wake. The central interface of the wake becomes
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Table 1. Conditions of experiments.

obstacle diameter/width, cm Tb, s U, cm/s Re Fr C

cylinder 1.5; 2.5; 5.0; 7.6 5.3–30 0.01–6 1.5–2100 0.004–8.5 100–15 000
plate 2.5 5.3–30 0.01–6 2.5–1500 0.003–11 300–9000

(a) (b) (c)

 

Figure 5. Pattern of flow around a vertical strip (  = 2.5 cm) moving from right to left; (a, b) – 
 = 12.5 s, U  = 0.1 cm/s, C=1600, Re=25, Fr=0.08, 

cH
bT λ=1.25, uδ =0.1, “slit-thread” and “slit-

knife” methods; (c) – = 17.4 s, U  = 0.3 cm/s, C=3000, Re=75, Fr=0.33, =5.22, bT λ uδ =0.033, 
“slit-knife” method. 

Fig. 5. Pattern of flow around a vertical strip (Hc=2.5 cm) moving from right to left;(a, b) – Tb=12.5 s,U=0.1 cm/s, C=1600, Re=25,
Fr=0.08,λ=1.25,δu=0.1, “slit-thread” and “slit-knife” methods;(c) – Tb=17.4 s,U=0.3 cm/s, C=3000, Re=75, Fr=0.33,λ=5.22,δu=0.033,
“slit-knife” method.

wavy-shaped with a spatial period equal to the length of the
attached internal wavesλ=U · Tb. In the upper semi-space,
the streaks in the upwind side of the obstacle are arranged
with relatively large intervals. They separate only from the
rear edge of the strip.

As a contrast, in the downwind strip side, the streaky struc-
ture separates along the entire surface, starting at the leading
edge of the strip. Their sharp trailing ends form large angles
with the obstacle trajectory. The overall length of the do-
main occupied by the streaky structures and the thickness of
individual interfaces are the same, but the total numbers of
sloping interfaces are different in the upper and lower hemi-
spaces, respectively.

The thickness of the boundary layer is small in the upwind
side of the obstacle and large in the downstream side where
the interfaces have merged into a uniform disturbance. Due
to the baroclinicity, this domain is characterized by a high
level of vorticity in the form of superposed interfaces. Dif-
ferences in the thickness and colour of curved strips, illus-
trating crests and troughs of internal waves in Figs. 4a, b, are
caused by differences in wave amplitudes, mutual locations
and thickness of the illuminating slits and cutting threads.

2.4 Vertical strips and cylinders

To illustrate the effect of the strip position on flow structure,
two first images shown in Fig. 5 present the same flow pat-
tern, visualized by the two different Schlieren methods. The
basic flow elements, namely internal waves and the down-
stream wake with fine internal structure, are reproduced one-
to-one in independent experiments. An increase of the crest
and troughs lengths in Fig. 5a, comparably to Fig. 5b, is due
to a higher sensitivity of slit-thread Schlieren method under
the given conditions of the instrument tuning. The curved

dark and light strips visualising attached internal wave past
the body are imperfect circular arcs, where their distortion is
caused by the Doppler effect inside the velocity wake shear
flow.

The vertical markers indicate a profile of the velocity hor-
izontal component. An upstream central jet representing
blocked fluid is more pronounced than the downstream wake.
The height of the velocity wake exceeds the density wake
thickness bounded by two sloping interfaces. The density
wake wedge contacts the vertical strip through the single cen-
tral interface whose length is about 2 cm. Due to buoyancy
forces, the high gradient boundary layers separating from
upper and lower edges of the strip converge to the central
horizontal plane. At a given flow regime, thin elongated in-
terfaces occupy the whole velocity wake. The curves of at-
tached internal waves crests and troughs penetrate through
the interfaces with little distortions. The sharp edges of the
strip generate their own set of upstream disturbances.

With the velocity increased, the vorticity is accumulated
in the rear part of the strip in Fig. 5c. Because shedding
from the rear vortices pair is suppressed by attached internal
waves, the wake past the obstacle is thin but then expands.
Further the wake expands following the phase structure of
the internal waves. The fine scale structure inside the wake is
always observed as long as the attached internal waves exist.
The flow pattern becomes more complex past a large bluff
body, replacing some volume of fluid.

The main difference is the direct formation of interfaces,
which really represent vortex sheets in the stratified fluid in-
terior. Traditionally it is supposed that vorticity is diffused
inside the fluid from highly sheared flows on solid bound-
aries. Direct formation of singular interfaces inside the at-
tached wave, which have no features on their leading and
trailing edges, demonstrate that elements with high vorticity
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 (a)                                            (b)                                            (c) 

Figure 6. Conventional (a) and Maksoutov's (b, c) Schlieren images of the flow past a cylinder 
with soaring interfaces; a, b – D = 7.6 cm, Tb = 20.5 s, C=1400, U = 0.04 cm/s, Re = 30, Fr = 
0.017, λ=0.82, uδ =0.25; c – D = 1.5 cm, Tb = 6 s, C=600, U = 0.52 cm/s, Re = 78, Fr = 0.33, 

=3.12, λ uδ =0.02. 

Fig. 6. Conventional(a) and Maksoutov’s(b, c) Schlieren im-
ages of the flow past a cylinder with soaring interfaces; (a), (b)
– D=7.6 cm, Tb=20.5 s, C=1400, U=0.04 cm/s, Re=30, Fr=0.017,
λ=0.82, δu=0.25; (c) – D=1.5 cm, Tb=6 s, C=600, U=0.52 cm/s,
Re=78, Fr=0.33,λ=3.12,δu=0.02.

can be formed inside the flow field. Examples of this flow
type are presented in Fig. 6.

The geometry of the downstream density wake, to the right
of the cylinder in Fig. 6, is defined by two almost horizontal
interfaces and two sloping interfaces, which contact in the
line of a boundary layers operation on the cylinder surface.
These interfaces separate three different water masses inside
the density wake.

The most interesting elements in the pattern of flow in
Fig. 6 are two systems of soaring discontinuities that do not
touch the body surface. Their leading and trailing edges do
not contact with any singular surface in the flow. They are
placed inside the smooth attached internal wave field and
formed due to interaction of waves and the shear flow past
the body. The interfaces are unchanged when the method
of visualization is changed (Figs. 6a, b). Molecular diffu-
sion smoothes the gradients over the interface, which causes
the trailing edge of the structure to be less defined than the
leading edge. The thickness of the individual components
of the soaring interfaces does not exceed 1.5 mm, which is
markedly less than the length of the attached internal wave
(λ=1.1 cm).

With an intensification of the initial density gradient the
wave motion as well as the contrast and length of the soar-
ing interfaces increases (Fig. 6c). Internal waves also dis-
turb the interfaces in to wavy surfaces. In this range of pa-
rameters, the density wake consists of a sequence of “vor-
tex bubbles” which are bounded by multilayered envelopes
(Boyer et al., 1989). The distance between “bubbles” corre-
lates with the attached internal wavelength (λ=UTb). The
shape of wave crests is distorted by the shear flows inside the
velocity wake. Because of this crests and troughs above and
below the body central plane in Fig. 6c look like the ones
reconnected through the density wake. That is in contrast
with all previous photos where the wave field was also an-
tisymmetric. In the outer area the downstream wave field is
antisymmetric.

The interaction of attached internal waves with soaring in-
terfaces leads to formation of leading edge vortices and vor-
tex systems (Chashechkin and Mitkin, 2005). The temporal
evolution of this flow is presented in Fig. 7. The complex

 (a)                                                       (b) 

Figure 7. Evolution of the flow pattern around horizontal cylinder: subsequent formation of 
soaring interfaces and vortex pairs on leading edges of these interfaces above and below cylinder 
(  s, 13bT = 5D =  cm, C=850, U =0.35 cm/s; Fr 0.14= , Re 165= , =4.55, λ uδ =0.03): a) – 
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Fig. 7. Evolution of the flow pattern around horizontal cylin-
der: subsequent formation of soaring interfaces and vortex pairs
on leading edges of these interfaces above and below cylinder
(Tb=13 s, D=5 cm, C=850,U=0.35 cm/s; Fr=0.14, Re=165,
λ=4.55,δu=0.03):(a) – soaring interfaces,τ=t/Tb=3.9, (b) – sin-
gular vortex pairs on the leading edges of the soaring interfaces,
τ=5.8.

downstream wake originates from the rear vortex, which is
directly adjacent to the body. Under internal wave action the
height of the wake as a whole rapidly decreases but a pair
of immersed vortices, which are stationary with respect to
the obstacle, increases the wake size. Downstream of the
vortices, the vertical wake size decreases again and attains a
minimum. The position of vortex pairs immersed in the wake
is strongly synchronized with the phase structure of attached
waves. Lines of crests (solid dark lines) and of depressions
(double grey lines) advance precisely to the centre of the vor-
tices immersed in the wake.

The pattern of attached internal waves preserves its reg-
ularity until the density-gradient field loses its uniformity.
Attached internal waves incident on interfaces are partly re-
flected and partly transformed into internal boundary flows
that, in turn, amplify arising stratification inhomogeneities.

Gradually, the stratification gradients become more and
more pronounced and begin to be recorded by the shadow
instrument. Novel structure components appear in the flow
pattern, namely, solitary isolated interfaces (Fig. 7a). The
pointed leading edge of the soaring interface is located in the
area of maximum amplitudes of attached internal waves.

The analysis of changes in the location and shape of the
crests and depressions of attached internal waves allows us
to reveal the mechanism of the vortex-system formation at
the leading edge of the interface. This mechanism is closely
related to the arising spatial homogeneity of the soaring in-
terface structure.

A moving large body changes the initial gradient profile
and creates strong down stream shear flow. Propagating
attached internal waves non-uniformly change their slope,
shapes of crests and troughs and wavelengths due to the
Doppler effect and a local relative frequency value changes.
Internal waves crossing the soaring interface produce addi-
tional boundary currents on its sides. The value and direction
of these currents depends on the wave phase. As one can see
in Fig. 7b the first grey line outgoing from the bubble vortex
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below the density wake meets on the interface with dark line
illustrating the crest of attached internal waves. It means that
in some domains on different sides of the interfaces crests
and troughs of the attached downstream waves are placed.
Their meet each other at the same point on the soaring inter-
faces (in Fig. 7 the crest centre corresponds to the solid dark
line). Thus, in the head segment above and below the soar-
ing the interface, wave fields are present for which the wavy
flows have oppositely directed vertical components. These
components are transformed into spreading horizontal flows
on the soaring interfaces. This complicated flow structure
is stabilized by high-density gradients at the interface. All
arising inhomogeneities of the density distribution are of a
purely deformation nature and appear as a result of smooth
liquid-particle transfer from different horizons.

So near the leading edge, the soaring interface is consid-
ered as an analog of a shock wave, because in its vicinity
the continuity condition for the velocity normal component
is violated. In high-velocity hydrodynamics, shock waves
separating spatial domains with different values of the veloc-
ity normal component have been thoroughly studied. With
increasing velocity, the size of leading edge vortex pair is en-
larged and a new vortex system is formed in the vicinity of
the first depression of the density wake.

3 Discussion

These observations demonstrate the existence of transient
streaky structures past the uniformly moving strip and sin-
gular interfaces in stratified flows past the cylinder. Forma-
tion of streaky structures is caused by action of singularities
of leading and trailing edges due to finite size of the ob-
stacle. The edges singularities exist in the linear model of
the flow. Strong interaction of all regular and singular com-
ponents of the flow leads to multiplying of streaks oriented
along streamlines.

Formation of soaring vortices in the wave wake past the
horizontal cylinder is caused by interaction of internal waves
and interfaces arising in the initially smooth density and ve-
locity fields. Appearance of interfaces strongly affects trans-
port of contaminants on several reasons. Firstly the flow in
opposite directions on the different sides of the interfaces
brings contaminants in to the high gradient region, where
then a new thin flow develops which transports the contami-
nants. Spatially correlated slow transport by incoming flows
can produce rather strong narrow currents providing a redis-
tribution of mass or concentration and results in fast transport
over large distances. The accumulations of contaminants on
interfaces, which form the outer envelope of the density wake
and soaring interfaces was observed in laboratory tanks too.

4 Conclusion

Theoretical and experimental studies of flows around obsta-
cles in a continuously stratified fluid were performed. The
flow was found to contain both, regular components in the
form of internal waves and vortices, and singular components
in the form of boundary layers and internal “boundary” cur-
rents. The internal boundary currents manifested themselves
as interfaces in the stratified fluid. The phase pattern of the
observed attached internal waves agreed with those calcu-
lated from the theory derived from the governing equations
without any additional parameters. That means that calcula-
tion of downstream internal waves and positions of soaring
interfaces needs detailed knowledge of density gradient and
velocity profiles with details of their fine structure.

Transient streaky structures were for the first time ob-
served in the downstream laminar wake of a horizontally
moving strip. These structures can be predecessors of well-
known vortex loops and hairpin vortices observed in more
high-speed boundary layers (Kozlov at al., 1998).

Evolution of soaring interfaces, which are low velocity
analogues of shock waves, and the formation of singular vor-
tex pairs on their leading edges were investigated.

The set of all regular and singular components of flow
form a unified system. All components of the system form
and disappear synchronously in spite of their difference of
the characteristic scales. These strong interactions between
singular and regular components may explain the fast evolu-
tion of environmental systems in certain critical conditions.
New sensitive methods and instruments must be developed
for observations and measurements of these phenomena in
the laboratory and in the environment.
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