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Abstract. We present a new family of hidden Markov mod- 2000, Fortin et al.(2004ab), Kehagiag2004 andKehagias

els and apply these to the segmentation of hydrological anet al.(20086.

environmental time series. The proposed hidden Markov Hidden Markov modeléHMM) have been applied to var-
models have a discrete state space and their structure is ifeus time series segmentation problems, especially in the en-
spired from theshifting meansnodels introduced by Cher- gineering and computer science literature; two good reviews
noff and Zacks and by Salas and Boes. An estimation methodre Bengio (1999 and Rabiner(1988. An application of
inspired from the EM algorithm is proposed, and we showHMM'’s to hydrological segmentation appears Kehagias

that it can accurately identify multiple change-points in a (2004.

time series. We also show that the solution obtained using SMM's have been used to model time series with change
this algorithm can serve as a starting point for a Monte-Carlopoints; we consider here two SMM variants, the first intro-
Markov chain Bayesian estimation method, thus reducing thejuced byChernoff and Zack1964 and the second b§alas
computing time needed for the Markov chain to converge tognd Boe1980 andYao (1988. The Salas/Yao model has

a stationary distribution. been used in several papers as the basis for segmentation of
hydrological time series. In particuldfortin et al.(20043

use a SMM to model a hydrological time series with change
points and applies Markov Chain Monte Carlo (MCMC)
methods to estimate the model parameters, as well as the
posterior distribution of the change points. Fortin’s solution
is highly informative, but also computationally intensive.

1 Introduction

The problem which motivates the current paper is the seg
mentation of hydrological and environmental time series.

Our main goal is to develop fast segmentation algorithm As will become clear in the sequel, a SMM is a HMM of
an important secondary goal is to preserve a connection t§P€cial type (see alséortin et al, 20043. However, there
the shifiting meansnodel (SMM) and point of view. is an important difference between SMM’s and more “tradi-

tional” HMM's. Namely, a “traditional” HMM is character-
ized by afinite stateunderlying Markovian process (Markov

segmentation methods appearshiipel and McLeod 1994 chain), while the underlying Markovian process of a SMM

pp. 655-733). As fononsequentiainethods, some early pa- has an (uncountablyipfinite state space. This creates con-
pers are_ee and Heghiniaf1977, Cobb(1978, andBuis- siderable computational complications for the application of

hand (1982 1984: more recent work includesloppe and typical l_-lMM algorithms (such_ as Baum-Welch estimation)
Kiely (1999; Kiely et al. (1998 and Paturel et al(1997); to the time series segmentat_lon problem. More generally,
Servat et al(1997) and (from the Bayesian point of view) Maximum Likelihood(ML) estimation of the SMM is not

Perreault et al(1999 2000ab,c) andRao and Tirtotjondro & {rivial problem (hence the use of MCMC l??rtin etal.
(1996 there are many more examples: here we only give a_(20043 for estimating the parameters of SMM'’s). However,

small sample of the literature. All of the above references!! th€ SMM could be emulated by an HMM, then ML esti-
deal with asinglechange point. Segmentation algorithms for mation of the HMM could be performed quite efficiently.

The segmentation problem has been attacked by variou
methods. For instance, an extensive discussiaeqgtiential

multiplechange points have been presenteéibpert(1997 In the current paper we present a fusion of “traditional”
HMM'’s and SMM’s. Namely, we present (four variants of)

Correspondence tov. Fortin HMM'’s which are designed to emulate SMM’s and yet have

(vincent.fortin@ec.gc.ca) a finite state underlying Markov chain. The advantage of
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340 Ath. Kehagias and V. Fortin: Time series segmentation

finite state is that typical HMM algorithms (which are com- It is worth emphasizing that a SMM actually a HMM.
putationally very efficient) can be used. The SMM emula- Evidently, the pair(m;,, z;) is a Markov process, hence
tion yields an additional advantage, namely a HMM with a ((m,, z;) , x;) is a hidden Markov model. Howeven, takes
smaller number of states (than, for example, the left-to-rightvalues inR and z, takes values iH0, 1}, hence the possi-
HMM'’s used inKehagiag2004). In addition, the ML esti-  ble states(i.e. values) of(m;,, z,) are uncountably infinite
mate can be used as a starting point for the MCMC algorithmThis fact creates considerable difficulties for estimation and
proposed byFortin et al.(20043. segmentation. “Standard” HMM's have a finite nhumber of
The paper is organized as follows. In Sextve present states; as a result one can perform ML parameter estimation
the two SMM'’s which we study in this paper and four vari- by the Baum-Welch (EM) algorithm. It is not immediately
ants of “SMM-inspired” HMM’s; in Sect3 we present a pa- obvious how to apply EM to the SMM. Recall that EM is
rameter estimation/segmentation algorithm for the HMM'’s based on an alternating sequence of Expectation and Maxi-
of the previous sections; in Sedtwe present some segmen- mization steps; in the HMM case, the maximization step in-
tation experiments; in Sedd.we consider the application of volves the use of dynamic programming (DP) to compute an
the HMM to initialize the MCMC estimation of the SMM; optimal state sequence; but, when the state space is infinite,
finally, in Sect.6, we summarize and discuss our results. DP is not feasible because one must evaluate the cost of an
infinite number of possiblén,_1, m,) pairs.

2 Shifting means and hidden Markov models
2.2 Hiden Markov models which emulate SMM’s
2.1 Shifting means models

_ ) We can handle the infinite dimensionality of SMM's by a
As we already mentioned, at least two variants of the SMMginite_gimensional approximation. The standard way to do

appear in the literature. We proceed to briefly describe eacl?hiS is by replacingR with a finite setS= {1, u2 1K)
of them. (we number the states so that<us<...<ug); then we can
SMM-1. This model was introduced tghernoff and Zack&1964). estimate the parameters of the discretized HMM and per-

It can be described by the following equations (ferl, 2, ...). form time series segmentation by standard HMM methods.
However, a “good”approximation requires that thgs are
Xp =mp + €, my=m;_1+ 218 packed sufficiently close and the endpoints g are such
where that (the original)n, stays in[u1, ug] with high probability

(practically equal to one). HenckE, the number of states,
1. &1, &2, ... are independent and identically distributed (iid) ran- must be sufficiently large.

dom variables with normal distributioh’” (0, ¢); We follow a different approach, which results in a more
2. z1, 22, ... are iid random variables taking the values 0, 1 with economical model (smallek). We actually test two varia-

probabilitiesn=Pr(z;=1), 1—n=Pr(z;=0); tions of this basic approach, and for each variation we need
3. 81,82, ... are iid random variables with normal distribution two slightly different HMM's, one to approximate SMM-1
N(0,0,). and another to approximate SMM-2. This results in four

variants of the basic model; the only difference between the
models is in the state transition probabilities. Hence the
of the time” if n is close to zero); whep,_1=1, then we have a grSt parItVIOf Eur.descnpﬁon .app“es to all mOdke.ls' WT Intro-
change: m;_1 is incremented by the normal random variaf)léo : uce a Markovian stochastic procegss, ... t"’? Ing values
obtainm,. The process; is a noisy observation ofi;. Themodel 1N S={1,2, ..., K}. To each state we associatgarame-

In other words, the means processis controlled by the process:
whenz, _1=0, m; is the same a&,_1 (this is what happens “most

parameter vectgrdenoted by, is ter ux (k=1, 2, ..., K). We also assume that tleenditional
probability of x;, givens,=k, is N (u, o¢). In other words,
6 = (n.0c.0p). theemissiorfunctionf (x) = [ fi (x)]X_; (wherefi (x) is the
_ ) density ofx, conditional ons; = k) is defined as follows (for
SMM-2. This model was studied _bsalas and Boe(;LQBQ, Ya_o k=12, ... K ):
(1988 and others. It can be described by the following equations T
Xy =my +¢&, mp=(1=z1)-m_1+z-1-(L+8). B 1 1 [x— 2 L
The processesy, €2, ..., 71,22, ... and 81, 8o, ... have the same fie ) = V2o, eXp 2 ( O¢ ) @

properties as in SMM-1. Hence SMM-2 behaves very similarly to
SMM-1, but when the meam; changes it takes its new value ac-

cording to a Gaussian law’ (i, o,,) independentlyf m, ;. The Hence(s;, x;) is an HMM. To obtain a full description of

model parameter vectds the model it remains to specify tis¢ate transition matriP.
We will present four different choices, each of them being
0= (1. 1.0, 0p). (to some degree) similar to the original SMM models. All
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models use & = [ij]szl (for j, k=1, 2, ..., K): (we assume that the states are numbered so as to ensure
v ui<p2<...<pg). This model is an interval-based approximation
A-n+n-giifj=k . of SMM-2. Note thatg j; only depends ok. The parameter vector
Pj = e ,(J,k=1,2,..,K) :
n-8jk if j #k of the model i9= (n,Ug,O'M,M,Ml, ;/.2,...,,1”()

()

the only difference being in the quantitigg,. We now 3 The segmentation algorithm

present our four choices fgf;y.

The “basic” algorithm presented below applies to all the

HMM'’s of the Sect.2. The algorithm takes asput an ini-

tial estimate of the number of stat&€® and a scaling pa-

e—(uk—u_,)z/zaj, rametern,; it gives awutputestimate?(the segmentationj,

)2/202>_1 G.k=1,2...K) (3 (the escape probability), afd, i1z, ... (the segment means).
i

HMM-1. In the first model, henceforth referred to as HMM-1, we
define the quantity ;; by:

8jk =¢j -
cj= <Z/§=1 e~ (mmn Four variants of the basic algorithm (one for each of the four
_ _ o o HMM’s) are obtained by choosing a particular formula for
This model is a very rough, “pointwise”approximation of SMM-1. the reestimation of the transition mat@(one of Eqs3-6).
In other words, we approximate the transition from sfete statek The set of states (i.e. valuesspf will be denoted bys, and
by the value of the normal dlstrl_butlon (with _rr_lear}) at thg ponnt astate sequenday s = (s1, 5 s). The number of states
i (and then we have to normalize the transition probabilities). The ™ P8 e Ot =
parameter vector of the modelds= (1. o¢. 0. 1. J12 o JiK ) will be denoted byk .and the number of segmte_nt; B,
these ar@ot necessarily the same. Arsuperscript indicates
HMM-2. In the second model, henceforth referred to as HMM-2, the estimateof the respective quantity at theth step of the
we define the quantity ;. as follows: algorithm; for instance is thetrue number of states, while
K® is the estimate oK at thei-th step.
Before giving a listing of the algorithm, let us describe it
in broad terms

motpg 2

O e e NP
J /ZJT(T/L —00

1 /*‘k+%+l*k

8jk = V2, )

_1
2noy

2
Rl k=23 K~ 1)
1. The “total” meanu and total standard deviatien are

(Z*Mj)z/z”ﬁd i AR
estimated only once, during initialization; see EQ. (

8jK = Jigtug_1 e z
2

4

(we assume that the states are numbered so as to ensure
ni<po<..<pg). This model is an “interval-based” approxi-
mation of SMM-1. Namely, we correspond to tfeth state

. . ) Oz = A - Oy, o, =vV1—212. 0.
of the model the interva &;“" W] (with the obvi- & g u u
ous modification for the 1-st and-th states) and then com-
pute the corresponding transition probabilities as integrals of
normal distributions. The parameter vector of the model is
0= (1, 0, Op, 1, U2, oo LK)

2. The standard deviations, ando, are fixed during
initialization, as fractions of the total, :

This is consistent with the constrainf=o2+c2. Note
that . is a parameterof the algorithm; because the al-
gorithm performs robustly for a broad rangejof/al-
ues, the exact values to be used are not critical. We

HMM-3. In the third model, henceforth referred to as HMM-3, we have found by extensive experimentation (some of the
define the quantity ;; by: relevant experiments will be presented in Sdjtthat
2,02 A € [0.35,0.55] works well for a broad range of time
g o=C; - e_(l/«k_ﬂ) /20'11 . . 1
8jk =¢€j J . series. All the experiments we report here us€.4.
(ZK *(Mk*ﬂ)2/2”2)_1 (j, k=1, 2,....K) (5)

Cc; = ~ae n

! k=1 3. Another parameter which must be choserki®), the
This model is a pointwise approximation of SMM-2. The parameter initial number of segments; again, the algorithm per-
vector of the model i8= (1, o¢, oy, 11, 11, 12, s LK) forms robustly for the rang& @ < [5,15). All the

; 0_

HMM-4. In the fourth model, henceforth referred to as HMM-4, experiments we report here usé® =10.

we define the quantity j; by:
a ¥jk DY Recall thatr determines the “estimates” of, ando,. Of

1 ,"2?‘1 —(z—p)?/202 coursex could be estimated from the data, rather than being pre-
§j1= V2o, j—oo € tdz determined. An alternative approach, which does notiwaeall,
o = “k:# e_(z_“)z/z"idz (=23 .. K_1 wom_JId be to directly reestimate (at every iteratiar) fr_om the
V2ro, M1 residuals of thesegmented; process and, from the residuals of
1 foo e—(Z—M)Z/ZOﬁdZ theestimatedn; process. We have tried both these approaches and
2roy % obtained results were not as good as the ones we present here, using
the fixedA parameter (these results are not presented in the current
(6) paper, because of lack of space).

8jKk =

www.nonlin-processes-geophys.net/13/339/2006/ Nonlin. Processes Geophys., B5232006
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4. After initialization, the main, iterative part of the algo-
rithm is performed. The-th iteration consists of three
parts.

(a) First estimateg®, u”, 113, ... are obtained from
the previous segmentatiafi—2.

(b) Then n®, 1, 1, ... are used to recompute the
gﬁ.’k)’s and from these the transition mati¢’.

(c) Finally, a new state sequeng® and segmentation
t) are computed using the the transition maRi
and the Viterbi algorithm.

Algorithm 1 Segmentation algorithm
Require: Observationgx;,t=1,2, ..., T},
Initial number of statek @,
Scaling parameter,
Maximum number of iterationgnax.
Ensure: Estimated segmentatidgt(®),
Estimated escape probabilify=n ),
Estimated segment meaﬁg:ul((’)
(k=1,2, ..., K wherek = K©),
Initialization
Initialize means and variances

:h 021/M )
123 T > X T_1 ,

Ath. Kehagias and V. Fortin: Time series segmentation

Main
for l=llmax dO
Estimate the escape probability and the segment means

. K01
@ = 13
n . 13)
D DN .
M/(cl) = Zt“ti_kl (k = 1, 2, ceey K(l_l)) (14)
t:s,('fl)=k
Estimateg}i,() usingu(li), M(Zi), ...,oy and the appropriate for-

mula (HMM-1 is updated using Eq3), HMM-2 is updated
using Eq. 4) and so on).

Estimate the transition matrR®) usingn @, g'")

ik’
(1 - n“)) IMON g;fk) it j =k

@ gl it j #k

PY) = (k=1 K0=D)

(15)
Estimate the state sequerss®, using Viterbi algorithm For-

ney(1973) with PO, o, .. D), 4.
Estimate the segmentation and number of segments:

h_ [0 6 O 0
t@ = {’0 e T g ZK<">}

o (16)
= ufrs 2" um

K® = card(t(i)) -1 17)

Compute the set of states and its cardinality

g =A-0x, op=vV1-220y (8) s = {k : there is some such thas? = k} (18)
Initialize the state set, state sequence, segmentation, number of K® — card(S(i)) (19)
segments
Renumber the states so that
sO={12..k0}, ©) s =12, k0) (20)
Adjust s, u,(f) and P%) according to the renumbering of
o _ - k-1 k- states.
s, =k iff 0 T<t< 0 T (20) ond for
0 — {téo), 10, .12 ,;@()0>} The successive reestimations of parameters and state fol-
ool s© (16) Ll{;; (11)  low the basic EM idea but our algorithm is only approxi-
= { 1 7S } ’ mateEM algorithm (from this point on we will call ipseudo-
EM). While the states is estimated optimally (by Viterbi) in
7O _ card(t(o)) 1 12y even stage of the algorithm gnd the same is trug, mQul,
...., Lg €stimates are not optimal. Exact determination of the

Nonlin. Processes Geophys., 13, 3392 2006

optimal . values requires the solution of a difficult system
of nonlinear equations. However, the formula) seems in-
tuitively plausible and apparently works well in practice (see
the experiments of Seat).

The order of the model is the number of its free param-
eters; upon convergence it will & + 3 (for HMM-1 and

www.nonlin-processes-geophys.net/13/339/2006/
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5.5 6

55 q

450 B
45 T

3.5 q

3.5

I I I I 25 | I 1 1 L
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Fig. 1. A realization of the time series used in Experiment no. 1, at Fig. 2. A realization of the time series used in Experiment no. 1, at
0.=0.10 (breaks at 3, 30, 67, 130, 194). 0,=0.10 (breaks at 167, 195, 244, 273).

0.12

HMM-2) or K +4 (for HMM-3 and HMM-4). Henceur al-

gorithm automatically determines the model ord€his is a
particularly nice feature of the algorithm; compare with other  °*
algorithms Hubert 1997, 2000 Kehagias 2004 which re-

quire the use of anodel order selection criteriosuch as 0.08
Akaike’s information criterion (AIC), the Bayesian informa-

tion criterion (BIC) or Scheffe’s criterion.

& 0.064

4 Experiments 004

We now evaluate the performance of the segmentation al
gorithm by applying it to the segmentation of several time °%
series.

0 0.05 0.1 0.15 0.2 0.25

4.1 Experiment no. 1: Artificial SMM time deries " noise

In this experiment we use artificial data, which are cre-

ated according to the SMM-2 model wif=0.99, GM:]_, Fig. 3. Plot of P, vs. 0., as obtained in Experiment no. 1, with
uo=4. We generate a time series of len@tk-300 and use  2=0.40.

0. € {0.00,0.05,0.10, ..., 0.25}. Two typical realizations of
the noisy time series appear in Fig(c.=0.10) and Fig.2
(0.=0.25).

We apply the segmentation algorithm corresponding to
HMM-1 with K ©=10 andr=0.40. We measure segmenta-
tion accuracy byBeeferman’s segmentation metfig, which 4 1 1 Regarding the choice of algorithm parameters
can be loosely interpreted as the probability of an observation
being “clearly "misclassified (for a precise definition see Ap- We have claimed in Sec3.that our algorithm performs well
pendix A). We repeat the segmentation 200 times for eactfor a wide range of andK © values. We base our claim on
value ofo,, compute theP; value and average over the 200 extensive experimentation; in this subsection we will present
repetitions. Hence we obtain a curve Bf as a function  some of our experiments regarding the dependendg oh
of .. We repeat the procedure for HMM-2, HMM-3 and } andx ©.

HMM-4. Hence we obtain a total of four curves, which are
plotted in Fig.3.

The low P, values obtained indicate that the algorithm
yields good segmentations; this is true even at the highest
noise level used;,=0.25.

www.nonlin-processes-geophys.net/13/339/2006/ Nonlin. Processes Geophys., B5232006
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0.7

T T
—&— sge=0.00 -8 sge=0.00
—— sge=0.05 —— sge=0.05
—©- sge=0.10 —©- sge=0.10

06F —4— sge=0.15 || 061 —&- sge=0.15 ||
: —— sge=0.20 —— sge=0.20
—<+— sge=0.25 —<+ sge=0.25

0.5

0.4

Pk
Pk

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lambda lambda

Fig. 4. Plot of P, vs. for various values of,. The model HMM-1 Fig. 6. Plot of P, vs. for various values of;. The model HMM-1
was used withk (0 =5, was used withk (9 =15,

0.7 T
—&— sge=0.00

, B Similar results were obtained for HMM-2, HMM-3 and
06 eyl HMM-4. Based on the above figures, we fihg-0.40 to be
& 5ge=0.25 a good choice, lying in the middle of the flat part of the

N curve.

One way to assess the impact of usirg0.40 irrespective

] of the time series is to compare the performance of the algo-
rithm using2=0.40 to the one obtained when using-1*,

8 the true value of.. For the particular time series used in this
section, we have, =1, o,=1"0,. Then

0.5~

0.4

Pk

0.3

0.2

0g\2 o
) 1o o= 2

B ,/1—1—082'

© 01 02 03 04 05 06 07 08 09 1 For the values, we use we can build the following table

lambda

v 2_ 2, 2
B AR

Fig. 5. Plot of P, vs. for various values of,. The model HMM-1 o, 0.000 0.050 0.100 0.150 0.200 0.250
was used withk (9=10. A* 0000 0.050 0.995 0.148 0.196 0.243

In Fig. 4 we present a plot of, as a function of, for vari-
ous values of.. Four curves are plotted, one for each type of In Fig. 7 the horizontal axis corresponds to noise lexyeand
HMM. Each point of the curves was obtained in the mannerthe vertical axis corresponds %, values. TwoP; curves
previously decribed (i.e. 200 experiments were performed atire plotted; one is obtained using-0.40, the second using
every given(i, o) pair and the resulting, was averaged). 1* (o¢) (i.e. we performing the segmentation assuming the
The valuek @ =5 was used. It can be seen ttRtattains  true value ofs known); the particular curves were obtained
its best (smallest) values in the intery@l35, 0.55]. from the HMM-1 model withk @ = 10). It can be seen,

Figures5 and 6 present the same results for the values perhaps surprisingly, that the “optimal* gives worse re-
K©=10 andKk ©=15, respectively, and support the same sults than=0.40. Similar results were obtained for models
conclusions as above. Note also that, for a gitevalue, ~HMM-2, HMM-3, HMM-4 and for K © equal to 5, 10 and
the P, values are very similar fok (©=5, 10, 15 (compare  15. This suggests that the algorithm performs better with a
Figs.4-6) ; this indicates that there is no critical dependencebiased parameter estimate forbut still provides accurate
of P, onK©, segmentations.

Nonlin. Processes Geophys., 13, 3392 2006 www.nonlin-processes-geophys.net/13/339/2006/
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0.4 11
= Iambda:lambdaom
—©~ lambda=0.40

035 1 1k

031 4
0.9

0.25 B
0.8 q

0.7 q

0.6 b

0.5 b

I I I I 0.4 L L L L I I I
00 0.05 0.1 0.15 0.2 0.25 0 50 100 150 200 250 300 350 400

sge

. Fig. 8. A realization of the time series used in Experiment no. 2, at
Fig. 7. Plot of Py vs.o, for 1=0.40 andi=2*. The model HMM-1  , _ o5 (breaks at 123, 230, 282).

was used withk © =10

4.2 Experiment no. 2: Artificial “handcrafted” time series

Next we investigate the performance of the segmentation al- *|
gorithm on data which aneot generated by the SMM mech-
anism. We use a “handcrafted” time series where we arbitrar:
ily selected the position and length of the segments (i.e. we *| ’
did not use any particular model). The length of the time se-
ries isT=400 and it contains three breaks (four segments) al
times 123, 230 and 282. In other wortls(0, 123, 230,282, °°
400). The mean values of the segments a8&,0090, 060,
0.95. We add to the time series Gaussian, zero mean whitt
noise at various levelso, < {0.00, 0.05,0.10, ..., 0.25}.
Two typical realizations of the noisy time series appear in
Fig. 8 (6,=0.05) and Fig9 (c.=0.25). e ‘ ‘ ‘ ‘ ‘ ‘ ‘
We apply the segmentation algorithm (using HMM-1, ..., ° 50 100 150 200 250 300 350 400
HMM-4) with 2=0.40 andk (©=10. We repeat the segmen-
ﬁlc?fnorzggctggizslr\ﬂeim Vﬁlll\J/IeMaEl, V\C/gr;]\?;rfgtgg\)fe\r/?f!ueeZOO Fig. 9. A realization of the time series used in Experiment no. 2, at
repetitions Hence we obtain four curvesRf as a function 0e=025 (breaks at 123, 230, 262).
of o, which are plotted in FiglO

We can see that the segmentation is very accurate aje see the good performanceje£0.40. We omit the pre-

low and mediunp, values and remains quite good even at sentation of additional results because they are very similar
0,=0.25. We have obtained similar results for many other to the ones presented here.

pairs(x, K@) € [0.35, 0.55] x {5, 10, 15} (not reported here

because of space limitations). 4.3 Experiment no. 3: Artificial random time series
Numerical experiments show that the dependencé®;of

on x and K© is similar to the one presented in Figs-7 Let us now check the performance of our algorithm on

in Sect.4.1.1 Namely, good segmentations can be obtaineda completely random time series. We take=0.65+¢,

for any pair (A, K(O)) € [0.35,0.55 x [5,15]. Hence, for for t=1,2,...,300. This time series contains no breaks

example, in Figll we present the dependenceRfon A, and is thus simply a white noise plus a constant com-

for the HMM-2 model withk (©=10; in Fig.12we compare  ponent. Ideally, the algorithm should identify that such

the performance of the algorithm using=0.40 to the one  a time series contains a single segment. We dasec

obtained when using*, the true value of. In both figures  {0.0, 0.05, 0.010, 0.15, 0.20, 0.25}.

ok 4
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Fig. 10. Plot of P, vs. o., as obtained in Experiment no. 2, with Fig. 12. Plot of P; vs. o, for A=0.40 and\» = A*. The model

2=0.40. HMM-1 was used withk (9 =10.
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Fig. 11.Plot of P vs. for various values of,. The model HMM- Fig. 13. Plot of P, vs. for various values of.. The model HMM-
2 was used wittk ©=10. 1 was used withk (D =10,

We apply our algorithm with various values number of segment is around two, which explains why the
2€{0.05,0.10, .., 0.95} and plot the results for model value of P, is relatively low, meaning that the algorithm
HMM-1 in Fig. 13. Similar results are obtained for HMM-2, performs reasonably well. It also means that a larger value of
HMM-3 and HMM-4. It can be seen here that the value of ; will make the algorithm more conservative, making it less
Py varies from one to zero as we increase the valug,of |ikely to identify breaks in a time series when there are none,
more and more of the signal variance is accounted by theyut at the cost of a higher probabilit§), of misclassifying
random noise component of the HMM, and consequentlyobservations when there are breaks in a time series.
the segment means become less variable, which in practice
means that the number of segments identified goes dow4.4 Experiment no. 4: Senegal river discharge
This is illustrated by Fig.14, which shows the average
number of segment identified as a functiomdbr different In the fourth experiment we use the time series of the Senegal
values ofo,. It can be seen that for=0.40, the average river annual discharge data, measured at the Bakel station for
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45

4 —El;sgezo.oo Table 1. Segmentations of the Senegal river discharge time series.
40+ 3 —b>— sge=0.05 | |
—6— sge=0.10
w5l *éfsge:gégi HMM-1 1902 1938 1949 1967 1988
—<— sge=0.
4 sgezo.zs HMM-2 1902 1938 1949 1967 1988
30f 1 HMM-3 1902 1938 1949 1967 1988
HMM-4 1902 1938 1949 1967 1988

&l Hubert 1902 1921 1936 1949 1967 1988

20

15

Average number of segments

10 0.3 T T

——  Mean Global Temperature
- - Piecewise Constant Approximation

0.2

lambda

Fig. 14. Average number of segments identified ¥sfor various
values ofo,. The model HMM-1 was used witk @ =10

1400 T T T

—— Annual Senegal River Discharge
-=- Piecewise Constant Approximation
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-04 I I I
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Fig. 16. Global environmental temperature: plot of the time series

s00l- \ l ! and a typical segmentation.

a branch-and-bound algorithm aKeéhagias(2004 using a
left-to-right HMM. All algorithms give the same breaks, at
g o o o o o years 1938 (or 1936), 1949 and 1967, but they do not give the
vear 1921 break obtained iHubert(1997 andKehagiag2004).

Fig. 15. Plot of the Senegal time series and a typical segmentatiorf-> EXperiment No. 5: Global environmental temperature
(obtained by HMM-1).
In this experiment we use the time series of annual mean
global temperature for the period 1700-1980. The tempera-
the years 1903-1988. This time series has been previouslyures for the period 1902—-1980 come from actual measure-
used inFortin et al.(20043, Hubert(1997 2000, Kehagias = ments while the remaining temperatures wemeonstructed
(20049 andKehagias et al2006); it consists of 86 points and according to a procedure describedNrann et al.(1999
its graph (together with a segmentation) appears inFg. and also at the Internet addressw.ngdc.noaa.gov/paleo/
We applied the four variants of the segmentation algorithmei/etintro.html The time series has length 281; a plot ap-
to the Senegal data, usikf® =10 and several different val- pears in Fig16.
ues ofa € [0.35, 0.55]. A typical segmentation (obtained by  The four variants of the segmentation algorithm give iden-
HMM-1 with 2=0.40) is plotted in Fig15. tical segmentations, as seen in TaBlecomparing these to
Since the “true” segmentation of the Senegal river data isthe segmentation obtained by a left-to-right HMMHKeha-
not known, we cannot compuf values. Instead, in Table  gias (2004 we see that the only difference is in the years
we list the segmentations obtained by the four variants of our1925-1934, namely the two breaks in these years are sub-
algorithm (withA=0.40). For comparison purposes we also stituted by a single break in 1929 by the left-to-right HMM
list the segmentation obtained by bdt#tubert(1997 using algorithm.
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. . 30 : :

'I_'able 2._ Segmentations of the global environmental temperature Gibbs sampler
time series. i Pseudo-EM algorithm| |

HMM-1 1699 1719 1811 1925 1934 1980 20l

HMM-2 1699 1719 1811 1925 1934 1980

HMM-3 1699 1719 1811 1925 1934 1980 15l

HMM-4 1699 1719 1811 1925 1934 1980

Kehagiag20049 1699 1719 1811 1929 1980 10l

5 L

Table 3. Average execution time for one run of the segmentation 0 . 3
algorithm. 0 0.1 0.2 0.3 0.4 0.5

HMM-1 HMM-2 HMM-3 HMM-4
0.44s 0.95s 0.39s 0.94s
0.38s 0.82s 0.37s 0.84s
0.18s 0.65s 0.17s 0.63s
8:22 8;2: 8:41122 8;: w=0/ /0% as model parameters, insteadodf ando?. De-

note byd @ =1©, »©, 1 © 52y the starting point of the

chain and by = (i, @, ji, 52) the exact (but typically un-

known) values of the parameters.

4.6 About execution times In Fortin et al.(20043, the parameters are initialized from

the expectation of the prior distribution provided by the user.

In Table3 we give average execution time for a single seg- The prior distribution is defined by eight hyperparameters,

mentation using a MATLAB implementation of the algo- two for each parameter of the model. If the user does not

rithm (for HMM-i, i=1, 2, 3,4) and fora=0.40. It can  supply values for these hyperparameters, the algorithm au-
be seen that the algorithm is fast, hence it is particularlytomatically uses uniform distributions for the parameters
easy to use as an exploration tool, running it with vari- anda) Flat priors are also used for the parameterand

ous parameter choices and inspecting the resulting segmenjc , but as the domain of definition of these parameters is not

tations in an interactive manner. For applications wherebounded, the prior expectation farando? must be reason-

computing time is critical, we recommend using the “point- ably close to the sample mean and variance. For this purpose,
wise”approximations of SMM's (HMM-1 and HMM-3), the prior foru is centered on the mean of five observations
since they are always slightly faster and lead to segmentachosen at random from the sample, and the priorofpiis

tions that are as good as those obtained using the “intervalcentered on the variance of these same five observations.

based’approximations of SMM’s (HMM-2 and HMM-4), at ~ The latent variables:, are initialized by sampling from

least as measured I#;. the predictive distributiorp(mt|m§°)1, i, 0©). The perfor-
mance of the Gibbs sampler is quite sensitive to the prior
expectation of the transition probabilityas well as to the

5 Application to MCMC estimation initial values obtained for the latent variablas.

Given the sensitivity of the Gibbs sampler’'s performance

MCMC estimation of the parameters and change-points ofo the initial value chosen fay, the first idea that comes to

SMM models can be very slow: parameter estimation formind to hasten its convergence to a stationary distribution

the SMM-2 model using the datasets presented in the preis to better choose the value 9f®. While the pseudo-EM

vious sections can take hours instead of seconds using thalgorithm has been shown to lead to accurate segmentations,

Bayesian Gibbs sampling algorithm proposedoytin etal.  this does not mean that the parameter estimates are reliable.

(20043. This computing time can potentially be reduced if We simulated /=100 samples of size T=100

reasonable values are provided to initialize the chain (bothwith the foIIowing population parameters:

for the parameters and latent variableg. In this section  7=0.1, »=0.75, i=0, & 2—1. We then estimated the

we show that the pseudo-EM algorithm presented in this paparameter; by K/T usmgk set to 0.4, an& @ set to 50.

per can help improve the performance of MCMC estimation We used the Gibbs sampler to obtain posterior distribu-

for the SMM-2 model. tions for these same simulated samples, using default val-

Fortin et al. (20043 use a slightly different parameter- ues for the hyperparameters. For each sample, we performed
ization for the model SMM-2: they usefzo§+a§ and R=2000 iterations, and kept only the last 1000. We hence

Fig. 17. Histogram of estimated values for the parametersing

Experiment no. the pseudo-EM algorithm and the Gibbs sampler.

Experiment no.
Experiment no.
Experiment no.
Experiment no.

O wWNPE
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obtained a sample of-R/2=100 000 values for each param- ity distributions derived from the two chains on the second
eter. half of the iterations. After performing an even number of
Figure17 compares the histograms of the parameter estiiterationsk, we would like the cumulative posterior distribu-
mates obtained using the two estimation methods for paramtion of 7 approximated from the lagt/2 iterations to be as
etern, smoothed using the kernel density estimation functionclose as possible to a Heaviside step function centered on
provided by the MATLAB statistics toolboxkédensity ). Similarly, we would like the cumulative posterior distribution
Recalling that the population value gfis 0.1, it is clear  Of m, — i/’ to be as close as possible to a Heaviside func-
that the pseudo-EM algorithm underestimateand that the tion centered on zero. The squared distance between a cumu-
Bayesian method is much more reliable. Consequently, ifative distributionF (x) and a Heaviside functioff (x — x),
will not be straightforward to initialize the parameter using ~ centered on the target valieand integrated over the domain
directly the output of the pseudo-EM algorithm. of definition of the variable of interest, is a useful measure
At least for this case, the pseudo-EM parameter estimat@f Poth the sharpness and accuracy of the predictive distri-
for the transition probability is biased, but we know that the Pution. It is known as the Continuous Ranked Probability
segmentation is accurate, at least in terms of the BeefermanScOre; 0C R PS (Matheson and Winkled 976
metric. This seems to be because changes of small amplitude _ o0 2
are not picked up by the algorithm, hence do not showupas ~ CRPS(F, %) = / (F(x) = H(x —X))%dx (21)
transitions, leading to an underestimatiomof _ ) 7°O~ _ ) B
Even if the pseudo-EM algorithm leads to biased param-WhereH (x — x)=0 if x<x and H (x—x)=1 if x>x. Note
eter estimates, it does a good job at segmenting the time sdhattheCRPS is SImply the apsolute errlor'betvyee.n the tar-
ries. Hence, we could use this information instead to initial- 96t value and the prediction if the predictive distributisn
ize the latent variables in the algorithm. There is one caveat!S deterministic, i.e. it (x)=H (x—x), wherex is the deter-
the Gibbs sampler algorithm works in a similar way to the ministic prediction. The&C R P S is a negative score, mea-nlng_
pseudo-EM algorithm for estimating at each iteration, it is that a smaller value means a bettgr_performancg. Es_tlm.atmg
reestimated from the ratio of the number of simulated transi-Ine value of theCRPS for an empirical cumulative distri-
tions to the sample size. This means that the Gibbs sampldpution function is possible, but costly. We preferred to fit a
will start with a biased; value. For our simulation experi- Parametric distribution to the samples. For the paramster
ment, the value of used to start the simulation will be gen- W€ chose to fit a beta distribution by maximum likelihood,
erally too low, which can bring the chain into a trapping state 2Nd then used adaptive Simpson quadrature to estimate the
from which it takes a lot of time to get out (possibly an in- CRPS numer!call.y. For the latent variables, we chose_ to fit
finite time!). To improve upon this strategy, a possibility is @ Normal distribution by the method of moments. V\gjé”;
to add a small amount of noise at random points in the seg Nermal distribution having a meanand a variance “, the
mentation so as to increase the number of transitions to th& KPS is given by:
a priori estimate ofy - T. In this way, the Gibbs sampler - - - - _
wiIFI) still start both from a reasonabI)e/ segmentation aFr)ld an CRPS(F.0) =0 (Z PR -D+2% @) —n 1/2)
acceptable value for©. (22)

Denote by”(”)_ the value ofy simulated by the Gibbs  \yherez— (—u) /o, @ is the cumulative density function of
sampler at theth iteration and for thgth sample. Denote e normal distribution and is its probability density func-
also bym'"/’ the value ofn, simulated by the Gibbs sampler tjon.
at therth iteration and for thgth sample. Denote by, )} To obtain a single value af R P S for a given number of
the exact values of the latent variables for jtie sample. To  jterationsR, we have pooled together all valuesidf/) for
evaluate whether or not we are improving the performance 0?=R/2 +1..R and j=1..J and all values Of,ngr’j) — i, D)
the Gibbs sampler by initializing it with a segmentation given for ;—1. 7 r=R/2+ 1.Randj = 1..J. Figuresl8and19
by the pseudo-EM algorithm, we can look at the differenceshow that thec R P S is lower both fory and for the latent
between; ") andj, and betweem'”’” andri, ). We ob-  variables when we use the pseudo-EM algorithm to initialize
viously need some goodness of fit measure to summarize thighe Gibbs sampler.
data. As could be suspected, the improvement decreases as the

MCMC techniques, and in particular Gibbs sampling, arenumber of iteration increases, down to about 5%:fand
used to derive posterior distributions for the parameters an@% for the latent variables wheR reaches 2000. Still, the
latent variables of interest. One must evaluate when thescore reached aftat=2000 iterations by the original Gibbs
Markov chain has converged to a stationary distribution, andsampler is reached after only 600 iterations foand after
iterate sufficiently after that to obtain a large enough sampleonly 160 iterations for the latent variables when these la-
to estimate reliably the posterior distribution. One way to tent variables are initialized using the pseudo-EM algorithm.
compare the performance of two MCMC techniques consistdVhile the time needed to perform the same number of it-
of evaluating the sharpness and the accuracy of the probabikrations was only down slightly when initializing the Gibbs
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0.18

—+— Original Gibbs sampler n—l

—+— Original Gibbs sampler
—O— Gibbs sampler initialized using the pseudo—-EM algorithi

! —O— Gibbs sampler initialized using the pseudo-EM algorith
0.13 i

0.16
0.14|
012

0.12
0.111

0.1r

CRPS
CRPS

0.1r
0.08

0.09%
0.06]- ¢

0.04} 0.081

0.02 . . 5
10 10 10 10 10 10
Number of iterations kept for inference (R/2) Number of iterations kept for inference (R/2)

Fig. 18. CR PSS for the predictive distribution of as a function of ~ Fig. 19. CR P S for the predictive distribution ofm;} as a function
the number of iterations. of the number of iterations.

sampler using the pseudo-EM algorithm, @& PS score 4. It is not guaranteed to find the optimal solution; this is
obtained after the same number of iterations is improved, also true of BB, LR-HMM and MCMC; the DP algo-
which means that the time needed to reach a given level of  rithm is guaranteed to find the globally optimal segmen-
accuracy is reduced. tationfor a given number of segments

i The MCMC procedure proposed Iprtin et al.(20043
6 Conclusions differs from the other segmentation algorithms in that it at-

We h ted an HMM-based fi . tati tempts to find a more realistic model of the hydrological pro-
€ have presented an HVIM-based ime Series segmentaliog, o (assuming the time series to be generated by a shifting
algorithm. We have applied (the four variants of) the algo-

means mechanism, it yields considerably more information
: . . . o LFegarding the segmentation and the time series parameters)
rate segmentations, even in the case of noisy data; in addltlocnmd is oriented more towards model parameter estimation
the algorithm is quite fast (a couple of se<_:onds for time S€rather than towards segmentation. While our main interest
rnes Qf a few hundred tgrms). A.n a'gtractwe feature 9f theis in the actual segmentation, an important motivation for
algorithm is the automatic determination of segmentation Ohe current algorithm was to use it as an initializer for this
der. i i ) MCMC procedure. The experiments of Seetndicate that
Several other computationally oriented segmentation algo—thiS is a viable approach.
rithms have appeared in the literature, for example Hubert's
branch-and-bound algorithm (henceforth called BBlu{
bert 1997 2000, Kehagias’ left-to-right HMM (henceforth
LR-HMM) (Kehagias 2004 and Kehagias’ DP algorithm
(Kehagias et al2006). In addition,Fortin et al.(20043 have
proposed a more sophisticated MCMC segmentation proce- . .
dure. A comparison leads to the following conclusions re-APPENdiX A The Beeferman metric 7
garding the current algorithm.

Regarding future work, the rigorous study of the conver-
gence properties of our algorithm merits further research,
which will be reported in a future publication.

Beeferman’s segmentation metik; (s, t) measures the er-

1. Itis at least as accurate and noise-robust as any of th&°" Of @ proposed segmentatis& (0, sy, ..., sx—1, T) with

above algorithms, somewhat faster than LR-HMM and "€SPECt t0 a “true” segmentatid: (0, 71, ..., 1.1, 7). Py
DP andmuchfaster than BB and MCMC. first appeared in thext segmentation literaturd3geferman

et al, 1999 but it can be applied to any segmentation prob-

this is also the case for MCMC, but not for BB, LR- Pk The interested reader can find more detaiBeeferman

HMM and DP. etal.(1999.
When issidentical tot? The following two conditions are
3. It uses a smaller number of states than LR-HMM. necessary and sufficient.
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