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Abstract. We present a new family of hidden Markov mod-
els and apply these to the segmentation of hydrological and
environmental time series. The proposed hidden Markov
models have a discrete state space and their structure is in-
spired from theshifting meansmodels introduced by Cher-
noff and Zacks and by Salas and Boes. An estimation method
inspired from the EM algorithm is proposed, and we show
that it can accurately identify multiple change-points in a
time series. We also show that the solution obtained using
this algorithm can serve as a starting point for a Monte-Carlo
Markov chain Bayesian estimation method, thus reducing the
computing time needed for the Markov chain to converge to
a stationary distribution.

1 Introduction

The problem which motivates the current paper is the seg-
mentation of hydrological and environmental time series.
Our main goal is to develop afast segmentation algorithm;
an important secondary goal is to preserve a connection to
theshifiting meansmodel (SMM) and point of view.

The segmentation problem has been attacked by various
methods. For instance, an extensive discussion ofsequential
segmentation methods appears in (Hipel and McLeod, 1994,
pp. 655–733). As fornonsequentialmethods, some early pa-
pers areLee and Heghinian(1977), Cobb(1978), andBuis-
hand(1982, 1984); more recent work includesHoppe and
Kiely (1999); Kiely et al. (1998) andPaturel et al.(1997);
Servat et al.(1997) and (from the Bayesian point of view)
Perreault et al.(1999, 2000a,b,c) andRao and Tirtotjondro
(1996); there are many more examples; here we only give a
small sample of the literature. All of the above references
deal with asinglechange point. Segmentation algorithms for
multiplechange points have been presented byHubert(1997,
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2000), Fortin et al.(2004a,b), Kehagias(2004) andKehagias
et al.(2006).

Hidden Markov models(HMM) have been applied to var-
ious time series segmentation problems, especially in the en-
gineering and computer science literature; two good reviews
are Bengio (1998) and Rabiner(1988). An application of
HMM’s to hydrological segmentation appears inKehagias
(2004).

SMM’s have been used to model time series with change
points; we consider here two SMM variants, the first intro-
duced byChernoff and Zacks(1964) and the second bySalas
and Boes(1980) andYao (1988). The Salas/Yao model has
been used in several papers as the basis for segmentation of
hydrological time series. In particular,Fortin et al.(2004a)
use a SMM to model a hydrological time series with change
points and applies Markov Chain Monte Carlo (MCMC)
methods to estimate the model parameters, as well as the
posterior distribution of the change points. Fortin’s solution
is highly informative, but also computationally intensive.

As will become clear in the sequel, a SMM is a HMM of
special type (see alsoFortin et al., 2004a). However, there
is an important difference between SMM’s and more “tradi-
tional” HMM’s. Namely, a “traditional” HMM is character-
ized by afinite stateunderlying Markovian process (Markov
chain), while the underlying Markovian process of a SMM
has an (uncountably)infinite state space. This creates con-
siderable computational complications for the application of
typical HMM algorithms (such as Baum-Welch estimation)
to the time series segmentation problem. More generally,
Maximum Likelihood(ML) estimation of the SMM is not
a trivial problem (hence the use of MCMC inFortin et al.
(2004a) for estimating the parameters of SMM’s). However,
if the SMM could be emulated by an HMM, then ML esti-
mation of the HMM could be performed quite efficiently.

In the current paper we present a fusion of “traditional”
HMM’s and SMM’s. Namely, we present (four variants of)
HMM’s which are designed to emulate SMM’s and yet have
a finite state underlying Markov chain. The advantage of
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finite state is that typical HMM algorithms (which are com-
putationally very efficient) can be used. The SMM emula-
tion yields an additional advantage, namely a HMM with a
smaller number of states (than, for example, the left-to-right
HMM’s used inKehagias(2004)). In addition, the ML esti-
mate can be used as a starting point for the MCMC algorithm
proposed byFortin et al.(2004a).

The paper is organized as follows. In Sect.2 we present
the two SMM’s which we study in this paper and four vari-
ants of “SMM-inspired” HMM’s; in Sect.3 we present a pa-
rameter estimation/segmentation algorithm for the HMM’s
of the previous sections; in Sect.4 we present some segmen-
tation experiments; in Sect.5 we consider the application of
the HMM to initialize the MCMC estimation of the SMM;
finally, in Sect.6, we summarize and discuss our results.

2 Shifting means and hidden Markov models

2.1 Shifting means models

As we already mentioned, at least two variants of the SMM
appear in the literature. We proceed to briefly describe each
of them.

SMM-1. This model was introduced byChernoff and Zacks(1964).
It can be described by the following equations (fort=1, 2, ...).

xt = mt + εt , mt = mt−1 + zt−1 · δt

where

1. ε1, ε2, ... are independent and identically distributed (iid) ran-
dom variables with normal distributionN (0, σε);

2. z1, z2, ... are iid random variables taking the values 0, 1 with
probabilitiesη= Pr(zt=1), 1−η= Pr(zt=0);

3. δ1, δ2, ... are iid random variables with normal distribution
N

(
0, σµ

)
.

In other words, the means processmt is controlled by the processzt :
whenzt−1=0, mt is the same asmt−1 (this is what happens “most
of the time” if η is close to zero); whenzt−1=1, then we have a
change: mt−1 is incremented by the normal random variableδt to
obtainmt . The processxt is a noisy observation ofmt . Themodel
parameter vector, denoted byθ , is

θ =
(
η, σε, σµ

)
.

SMM-2. This model was studied bySalas and Boes(1980), Yao
(1988) and others. It can be described by the following equations

xt = mt + εt , mt =
(
1 − zt−1

)
· mt−1 + zt−1 · (µ + δt ) .

The processesε1, ε2, ..., z1, z2, ... and δ1, δ2, ... have the same
properties as in SMM-1. Hence SMM-2 behaves very similarly to
SMM-1, but when the meanmt changes it takes its new value ac-
cording to a Gaussian lawN

(
µ, σµ

)
independentlyof mt−1. The

model parameter vectoris

θ =
(
η, µ, σε, σµ

)
.

It is worth emphasizing that a SMM actuallyis a HMM.
Evidently, the pair(mt , zt ) is a Markov process, hence
((mt , zt ) , xt ) is a hidden Markov model. However,mt takes
values inR and zt takes values in{0, 1}, hence the possi-
ble states(i.e. values) of(mt , zt ) are uncountably infinite.
This fact creates considerable difficulties for estimation and
segmentation. “Standard” HMM’s have a finite number of
states; as a result one can perform ML parameter estimation
by the Baum-Welch (EM) algorithm. It is not immediately
obvious how to apply EM to the SMM. Recall that EM is
based on an alternating sequence of Expectation and Maxi-
mization steps; in the HMM case, the maximization step in-
volves the use of dynamic programming (DP) to compute an
optimal state sequence; but, when the state space is infinite,
DP is not feasible because one must evaluate the cost of an
infinite number of possible(mt−1,mt ) pairs.

2.2 Hiden Markov models which emulate SMM’s

We can handle the infinite dimensionality of SMM’s by a
finite-dimensional approximation. The standard way to do
this is by replacingR with a finite setS= {µ1, µ2, ..., µK}

(we number the states so thatµ1<µ2<...<µK ); then we can
estimate the parameters of the discretized HMM and per-
form time series segmentation by standard HMM methods.
However, a “good”approximation requires that theµk ’s are
packed sufficiently close and the endpointsµ1, µK are such
that (the original)mt stays in[µ1, µK ] with high probability
(practically equal to one). HenceK, the number of states,
must be sufficiently large.

We follow a different approach, which results in a more
economical model (smallerK). We actually test two varia-
tions of this basic approach, and for each variation we need
two slightly different HMM’s, one to approximate SMM-1
and another to approximate SMM-2. This results in four
variants of the basic model; the only difference between the
models is in the state transition probabilities. Hence the
first part of our description applies to all models. We intro-
duce a Markovian stochastic processs1, s2, ... taking values
in S= {1, 2, ..., K}. To each state we associate aparame-
ter µk (k=1, 2, ..., K). We also assume that theconditional
probability ofxt , givenst=k, isN (µk, σε). In other words,
theemissionfunctionf (x) = [fk (x)]Kk=1 (wherefk (x) is the
density ofxt conditional onst = k) is defined as follows (for
k=1, 2, ..., K ):

fk (x) =
1

√
2πσε

exp

{
−

1

2
·

(
x − µk

σε

)2
}

(1)

Hence(st , xt ) is an HMM. To obtain a full description of
the model it remains to specify thestate transition matrixP.
We will present four different choices, each of them being
(to some degree) similar to the original SMM models. All
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models use aP =
[
Pjk

]K
j,k=1 (for j, k=1, 2, ..., K):

Pjk =

{
(1 − η) + η · gjk if j = k

η · gjk if j 6= k
, (j, k = 1, 2, ..., K)

(2)

the only difference being in the quantitiesgjk. We now
present our four choices forgjk.

HMM-1. In the first model, henceforth referred to as HMM-1, we
define the quantitygjk by:

gjk = cj · e
−

(
µk−µj

)2
/2σ2

µ ,

cj =

(∑K
k=1 e

−
(
µk−µj

)2
/2σ2

µ

)−1 (j, k = 1, 2, ..., K) (3)

This model is a very rough, “pointwise”approximation of SMM-1.
In other words, we approximate the transition from statej to statek
by the value of the normal distribution (with meanµj ) at the point
µk (and then we have to normalize the transition probabilities). The
parameter vector of the model isθ=

(
η, σε, σµ, µ1, µ2, ..., µK

)
HMM-2. In the second model, henceforth referred to as HMM-2,
we define the quantitygjk as follows:

gj1 =
1√

2πσµ

∫ µ2+µ1
2

−∞
e
−

(
z−µj

)2
/2σ2

µdz

gjk =
1√

2πσµ

∫ µk+1+µk
2

µk+µk−1
2

e
−

(
z−µj

)2
/2σ2

µdz (k = 2, 3, ..., K − 1)

gjK =
1√

2πσµ

∫
∞
µK+µK−1

2
e
−

(
z−µj

)2
/2σ2

µdz

(4)

(we assume that the states are numbered so as to ensure
µ1<µ2<...<µK ). This model is an “interval-based” approxi-
mation of SMM-1. Namely, we correspond to thek-th state

of the model the interval
[

µk−1+µk

2 ,
µk+1+µk

2

]
(with the obvi-

ous modification for the 1-st andK-th states) and then com-
pute the corresponding transition probabilities as integrals of
normal distributions. The parameter vector of the model is
θ=

(
η, σε, σµ, µ1, µ2, ..., µK

)
HMM-3. In the third model, henceforth referred to as HMM-3, we
define the quantitygjk by:

gjk = cj · e
−(µk−µ)2/2σ2

µ ,

cj =

(∑K
k=1 e

−(µk−µ)2/2σ2
µ

)−1 (j, k = 1, 2, ..., K) (5)

This model is a pointwise approximation of SMM-2. The parameter
vector of the model isθ=

(
η, σε, σµ, µ, µ1, µ2, ..., µK

)
HMM-4. In the fourth model, henceforth referred to as HMM-4,
we define the quantitygjk by:

gj1 =
1√

2πσµ

∫ µ2+µ1
2

−∞
e
−(z−µ)2/2σ2

µdz

gjk =
1√

2πσµ

∫ µk+1+µk
2

µk+µk−1
2

e
−(z−µ)2/2σ2

µdz (k = 2, 3, ..., K − 1)

gjK =
1√

2πσµ

∫
∞
µK+µK−1

2
e
−(z−µ)2/2σ2

µdz

(6)

(we assume that the states are numbered so as to ensure
µ1<µ2<...<µK ). This model is an interval-based approximation
of SMM-2. Note thatgjk only depends onk. The parameter vector
of the model isθ=

(
η, σε, σµ, µ, µ1, µ2, ..., µK

)
3 The segmentation algorithm

The “basic” algorithm presented below applies to all the
HMM’s of the Sect.2. The algorithm takes asinput an ini-
tial estimate of the number of statesK(0) and a scaling pa-
rameterλ; it gives asoutputestimateŝt (the segmentation),̂η
(the escape probability), and̂µ1, µ̂2, ... (the segment means).
Four variants of the basic algorithm (one for each of the four
HMM’s) are obtained by choosing a particular formula for
the reestimation of the transition matrixP (one of Eqs.3–6).

The set of states (i.e. values ofst ) will be denoted byS, and
a state sequenceby s = (s1, s2, ..., st ). The number of states
will be denoted byK and the number of segments bỹK;
these arenot necessarily the same. Ani superscript indicates
theestimateof the respective quantity at thei-th step of the
algorithm; for instanceK is thetrue number of states, while
K(i) is the estimate ofK at thei-th step.

Before giving a listing of the algorithm, let us describe it
in broad terms

1. The “total” meanµ and total standard deviationσx are
estimated only once, during initialization; see Eq. (7).

2. The standard deviationsσµ and σε are fixed during
initialization, as fractions of the totalσx :

σε = λ · σx, σµ =

√
1 − λ2 · σx .

This is consistent with the constraintσ 2
x =σ 2

µ+σ 2
ε . Note

thatλ is a parameterof the algorithm; because the al-
gorithm performs robustly for a broad range ofλ val-
ues, the exact values to be used are not critical. We
have found by extensive experimentation (some of the
relevant experiments will be presented in Sect.4) that
λ ∈ [0.35, 0.55] works well for a broad range of time
series. All the experiments we report here useλ=0.4.1

3. Another parameter which must be chosen isK(0), the
initial number of segments; again, the algorithm per-
forms robustly for the rangeK(0) ∈ [5, 15]. All the
experiments we report here useK(0)=10.

1Recall thatλ determines the “estimates” ofσµ and σε. Of
courseλ could be estimated from the data, rather than being pre-
determined. An alternative approach, which does not useλ at all,
would be to directly reestimate (at every iteration)σµ from the
residuals of thesegmentedxt process andσε from the residuals of
theestimatedmt process. We have tried both these approaches and
obtained results were not as good as the ones we present here, using
the fixedλ parameter (these results are not presented in the current
paper, because of lack of space).
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4. After initialization, the main, iterative part of the algo-
rithm is performed. Thei-th iteration consists of three
parts.

(a) First estimatesη(i), µ(i)
1 , µ

(i)
2 , ... are obtained from

the previous segmentationt(i−1).

(b) Thenη(i), µ
(i)
1 , µ

(i)
2 , ... are used to recompute the

g
(i)
jk ’s and from these the transition matrixP(i).

(c) Finally, a new state sequences(i) and segmentation
t(i) are computed using the the transition matrixP(i)

and the Viterbi algorithm.

Algorithm 1 Segmentation algorithm
Require: Observations{xt , t=1, 2, ..., T },

Initial number of statesK(0),
Scaling parameterλ,
Maximum number of iterationsimax.

Ensure: Estimated segmentation̂t=t(i),
Estimated escape probabilitŷη=η(i),

Estimated segment meanŝµk=µ
(i)
k

(k=1, 2, ..., K̂ whereK̂ = K(i)).
Initialization
Initialize means and variances

µ =

∑T
t=1 xt

T
, σx =

√∑T
t=1 (xt − µ)2

T − 1
, (7)

σε = λ · σx , σµ =

√
1 − λ2 · σx (8)

Initialize the state set, state sequence, segmentation, number of
segments

S(0)
=

{
1, 2, ..., K(0)

}
, (9)

s
(0)
t = k iff

k − 1

K(0)
· T ≤ t <

k

K(0)
· T , (10)

t(0) =

{
t
(0)
0 , t

(0)
1 , ..., t

(0)

K̃(0)−1
, t

(0)

K̃(0)

}
= {0} ∪

{
t : s

(0)
t−1 6= s

(0)
t

}
∪ {T } ,

(11)

K̃(0)
= card

(
t(0)

)
− 1. (12)

Main
for i=1..imax do

Estimate the escape probability and the segment means

η(i)
=

K̃(i−1)

T
, (13)

µ
(i)
k

=

∑
t :s

(i−1)
t =k

xt∑
t :s

(i−1)
t =k

1
(k = 1, 2, ..., K(i−1)). (14)

Estimateg(i)
jk

usingµ
(i)
1 , µ

(i)
2 , ...,σµ and the appropriate for-

mula (HMM-1 is updated using Eq. (3); HMM-2 is updated
using Eq. (4) and so on).

Estimate the transition matrixP(i) usingη(i), g
(i)
jk

:

P
(i)
jk

=


(
1 − η(i)

)
+ η(i) · g

(i)
jk

if j = k

η(i) · g
(i)
jk

if j 6= k
(j, k = 1, ..., K(i−1))

(15)

Estimate the state sequences(i), using Viterbi algorithm (For-

ney(1973)) with P(i), σε, µ
(i)
1 , ..., µ

(i)

K(i−1) .
Estimate the segmentation and number of segments:

t(i) =

{
t
(i)
0 , t

(i)
1 , ..., t

(i)

K(i)−1
, t

(i)

K(i)

}
= {0} ∪

{
t : s

(i)
t−1 6= s

(i)
t

}
∪ {T }

(16)

K̃(i)
= card

(
t(i)

)
− 1 (17)

Compute the set of states and its cardinality

S(i)
=

{
k : there is somet such thats(i)

t = k
}

(18)

K(i)
= card

(
S(i)

)
(19)

Renumber the states so that

S(i)
=

{
1, 2, ..., K(i)

}
(20)

Adjust s(i), µ
(i)
k

and P(i) according to the renumbering of
states.

end for

The successive reestimations of parameters and state fol-
low the basic EM idea but our algorithm is only anapproxi-
mateEM algorithm (from this point on we will call itpseudo-
EM). While the states is estimated optimally (by Viterbi) in
every stage of the algorithm and the same is true ofη, theµ1,
....,µK estimates are not optimal. Exact determination of the
optimal µ values requires the solution of a difficult system
of nonlinear equations. However, the formula (14) seems in-
tuitively plausible and apparently works well in practice (see
the experiments of Sect.4).

The order of the model is the number of its free param-
eters; upon convergence it will bêK + 3 (for HMM-1 and
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Fig. 1. A realization of the time series used in Experiment no. 1, at
σε=0.10 (breaks at 3, 30, 67, 130, 194).

HMM-2) or K̂ +4 (for HMM-3 and HMM-4). Henceour al-
gorithm automatically determines the model order. This is a
particularly nice feature of the algorithm; compare with other
algorithms (Hubert, 1997, 2000; Kehagias, 2004) which re-
quire the use of amodel order selection criterionsuch as
Akaike’s information criterion (AIC), the Bayesian informa-
tion criterion (BIC) or Scheffe’s criterion.

4 Experiments

We now evaluate the performance of the segmentation al-
gorithm by applying it to the segmentation of several time
series.

4.1 Experiment no. 1: Artificial SMM time deries

In this experiment we use artificial data, which are cre-
ated according to the SMM-2 model withp=0.99, σµ=1,
µ0=4. We generate a time series of lengthT =300 and use
σε ∈ {0.00, 0.05, 0.10, ..., 0.25}. Two typical realizations of
the noisy time series appear in Fig.1 (σε=0.10) and Fig.2
(σε=0.25).

We apply the segmentation algorithm corresponding to
HMM-1 with K(0)=10 andλ=0.40. We measure segmenta-
tion accuracy byBeeferman’s segmentation metricPk, which
can be loosely interpreted as the probability of an observation
being “clearly ”misclassified (for a precise definition see Ap-
pendix A). We repeat the segmentation 200 times for each
value ofσε, compute thePk value and average over the 200
repetitions. Hence we obtain a curve ofPk as a function
of σε. We repeat the procedure for HMM-2, HMM-3 and
HMM-4. Hence we obtain a total of four curves, which are
plotted in Fig.3.

0 50 100 150 200 250 300
2.5

3

3.5

4

4.5

5

5.5

6

Fig. 2. A realization of the time series used in Experiment no. 1, at
σε=0.10 (breaks at 167, 195, 244, 273).

0 0.05 0.1 0.15 0.2 0.25
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0.04

0.06

0.08

0.1

0.12

noise

P
k

HMM−1
HMM−2
HMM−3
HMM−4

Fig. 3. Plot of Pk vs. σε, as obtained in Experiment no. 1, with
λ=0.40.

The low Pk values obtained indicate that the algorithm
yields good segmentations; this is true even at the highest
noise level used,σε=0.25.

4.1.1 Regarding the choice of algorithm parameters

We have claimed in Sect.3 that our algorithm performs well
for a wide range ofλ andK(0) values. We base our claim on
extensive experimentation; in this subsection we will present
some of our experiments regarding the dependence ofPk on
λ andK(0).
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Fig. 4. Plot ofPk vs.λ for various values ofσε. The model HMM-1
was used withK(0)=5.
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Fig. 5. Plot ofPk vs.λ for various values ofσε. The model HMM-1
was used withK(0)=10.

In Fig.4 we present a plot ofPk as a function ofλ, for vari-
ous values ofσε. Four curves are plotted, one for each type of
HMM. Each point of the curves was obtained in the manner
previously decribed (i.e. 200 experiments were performed at
every given(λ, σε) pair and the resultingPk was averaged).
The valueK(0)=5 was used. It can be seen thatPk attains
its best (smallest) values in the interval[0.35, 0.55].

Figures5 and 6 present the same results for the values
K(0)=10 andK(0)=15, respectively, and support the same
conclusions as above. Note also that, for a givenλ value,
thePk values are very similar forK(0)=5, 10, 15 (compare
Figs.4–6) ; this indicates that there is no critical dependence
of Pk onK(0).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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P
k

sge=0.00
sge=0.05
sge=0.10
sge=0.15
sge=0.20
sge=0.25

Fig. 6. Plot ofPk vs.λ for various values ofσε. The model HMM-1
was used withK(0)=15.

Similar results were obtained for HMM-2, HMM-3 and
HMM-4. Based on the above figures, we findλ=0.40 to be
a good choice, lying in the middle of the flat part of thePk

curve.

One way to assess the impact of usingλ=0.40 irrespective
of the time series is to compare the performance of the algo-
rithm usingλ=0.40 to the one obtained when usingλ=λ∗,
the true value ofλ. For the particular time series used in this
section, we haveσµ=1, σε=λ∗σx . Then

σ 2
x = σ 2

µ + σ 2
ε ⇒

(σε

λ∗

)2
= 1 + σ 2

ε ⇒ λ∗
=

σε√
1 + σ 2

ε

.

For the valuesσε we use we can build the following table

σε 0.000 0.050 0.100 0.150 0.200 0.250

λ∗ 0.000 0.050 0.995 0.148 0.196 0.243

In Fig.7 the horizontal axis corresponds to noise levelσε and
the vertical axis corresponds toPk values. TwoPk curves
are plotted; one is obtained usingλ=0.40, the second using
λ∗ (σε) (i.e. we performing the segmentation assuming the
true value ofλ known); the particular curves were obtained
from the HMM-1 model withK(0) = 10 ). It can be seen,
perhaps surprisingly, that the “optimal”λ∗ gives worse re-
sults thanλ=0.40. Similar results were obtained for models
HMM-2, HMM-3, HMM-4 and for K(0) equal to 5, 10 and
15. This suggests that the algorithm performs better with a
biased parameter estimate forλ but still provides accurate
segmentations.
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Fig. 7. Plot ofPk vs.σε for λ=0.40 andλ=λ∗. The model HMM-1
was used withK(0)=10.

4.2 Experiment no. 2: Artificial “handcrafted” time series

Next we investigate the performance of the segmentation al-
gorithm on data which arenot generated by the SMM mech-
anism. We use a “handcrafted” time series where we arbitrar-
ily selected the position and length of the segments (i.e. we
did not use any particular model). The length of the time se-
ries isT =400 and it contains three breaks (four segments) at
times 123, 230 and 282. In other words,t =(0, 123, 230, 282,
400). The mean values of the segments are 0.65, 0.90, 0.60,
0.95. We add to the time series Gaussian, zero mean white
noise at various levels:σε ∈ {0.00, 0.05, 0.10, ..., 0.25}.
Two typical realizations of the noisy time series appear in
Fig. 8 (σε=0.05) and Fig.9 (σε=0.25).

We apply the segmentation algorithm (using HMM-1, ...,
HMM-4) with λ=0.40 andK(0)=10. We repeat the segmen-
tation 200 times for each value ofσε, compute thePk value
and for each of HMM-1, ..., HMM-4 we average over the 200
repetitions Hence we obtain four curves ofPk as a function
of σε, which are plotted in Fig.10

We can see that the segmentation is very accurate at
low and mediumσε values and remains quite good even at
σε=0.25. We have obtained similar results for many other
pairs

(
λ, K(0)

)
∈ [0.35, 0.55]×{5, 10, 15} (not reported here

because of space limitations).
Numerical experiments show that the dependence ofPk

on λ andK(0) is similar to the one presented in Figs.4–7
in Sect.4.1.1. Namely, good segmentations can be obtained
for any pair

(
λ,K(0)

)
∈ [0.35, 0.55] × [5, 15]. Hence, for

example, in Fig.11 we present the dependence ofPk on λ,
for the HMM-2 model withK(0)

=10; in Fig.12we compare
the performance of the algorithm usingλ=0.40 to the one
obtained when usingλ∗, the true value ofλ. In both figures
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Fig. 8. A realization of the time series used in Experiment no. 2, at
σε=0.05 (breaks at 123, 230, 282).
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Fig. 9. A realization of the time series used in Experiment no. 2, at
σε=0.25 (breaks at 123, 230, 282).

we see the good performance ofλ=0.40. We omit the pre-
sentation of additional results because they are very similar
to the ones presented here.

4.3 Experiment no. 3: Artificial random time series

Let us now check the performance of our algorithm on
a completely random time series. We takext=0.65+εt

for t=1, 2, ..., 300. This time series contains no breaks
and is thus simply a white noise plus a constant com-
ponent. Ideally, the algorithm should identify that such
a time series contains a single segment. We useσε ∈

{0.0, 0.05, 0.010, 0.15, 0.20, 0.25}.
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Fig. 10. Plot of Pk vs. σε, as obtained in Experiment no. 2, with
λ=0.40.
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Fig. 11.Plot ofPk vs.λ for various values ofσε. The model HMM-
2 was used withK(0)=10.

We apply our algorithm with various values
λ∈ {0.05, 0.10, ..., 0.95} and plot the results for model
HMM-1 in Fig. 13. Similar results are obtained for HMM-2,
HMM-3 and HMM-4. It can be seen here that the value of
P k varies from one to zero as we increase the value ofλ,
more and more of the signal variance is accounted by the
random noise component of the HMM, and consequently
the segment means become less variable, which in practice
means that the number of segments identified goes down.
This is illustrated by Fig.14, which shows the average
number of segment identified as a function ofλ for different
values ofσε. It can be seen that forλ=0.40, the average
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Fig. 12. Plot of Pk vs. σε for λ=0.40 andλ = λ∗. The model
HMM-1 was used withK(0)=10.
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Fig. 13.Plot ofPk vs.λ for various values ofσε. The model HMM-
1 was used withK(0)=10.

number of segment is around two, which explains why the
value of P k is relatively low, meaning that the algorithm
performs reasonably well. It also means that a larger value of
λ will make the algorithm more conservative, making it less
likely to identify breaks in a time series when there are none,
but at the cost of a higher probabilityPk of misclassifying
observations when there are breaks in a time series.

4.4 Experiment no. 4: Senegal river discharge

In the fourth experiment we use the time series of the Senegal
river annual discharge data, measured at the Bakel station for
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Fig. 14. Average number of segments identified vs.λ for various
values ofσε. The model HMM-1 was used withK(0)=10.
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Fig. 15. Plot of the Senegal time series and a typical segmentation
(obtained by HMM-1).

the years 1903–1988. This time series has been previously
used inFortin et al.(2004a), Hubert(1997, 2000), Kehagias
(2004) andKehagias et al.(2006); it consists of 86 points and
its graph (together with a segmentation) appears in Fig.15.

We applied the four variants of the segmentation algorithm
to the Senegal data, usingK(0)=10 and several different val-
ues ofλ ∈ [0.35, 0.55]. A typical segmentation (obtained by
HMM-1 with λ=0.40) is plotted in Fig.15.

Since the “true” segmentation of the Senegal river data is
not known, we cannot computePk values. Instead, in Table1
we list the segmentations obtained by the four variants of our
algorithm (withλ=0.40). For comparison purposes we also
list the segmentation obtained by bothHubert(1997) using

Table 1. Segmentations of the Senegal river discharge time series.

HMM-1 1902 1938 1949 1967 1988
HMM-2 1902 1938 1949 1967 1988
HMM-3 1902 1938 1949 1967 1988
HMM-4 1902 1938 1949 1967 1988
Hubert 1902 1921 1936 1949 1967 1988
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Fig. 16. Global environmental temperature: plot of the time series
and a typical segmentation.

a branch-and-bound algorithm andKehagias(2004) using a
left-to-right HMM. All algorithms give the same breaks, at
years 1938 (or 1936), 1949 and 1967, but they do not give the
1921 break obtained inHubert(1997) andKehagias(2004).

4.5 Experiment No. 5: Global environmental temperature

In this experiment we use the time series of annual mean
global temperature for the period 1700–1980. The tempera-
tures for the period 1902–1980 come from actual measure-
ments while the remaining temperatures werereconstructed
according to a procedure described inMann et al.(1999)
and also at the Internet addresswww.ngdc.noaa.gov/paleo/
ei/ei intro.html. The time series has length 281; a plot ap-
pears in Fig.16.

The four variants of the segmentation algorithm give iden-
tical segmentations, as seen in Table2; comparing these to
the segmentation obtained by a left-to-right HMM inKeha-
gias (2004) we see that the only difference is in the years
1925–1934, namely the two breaks in these years are sub-
stituted by a single break in 1929 by the left-to-right HMM
algorithm.
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Table 2. Segmentations of the global environmental temperature
time series.

HMM-1 1699 1719 1811 1925 1934 1980
HMM-2 1699 1719 1811 1925 1934 1980
HMM-3 1699 1719 1811 1925 1934 1980
HMM-4 1699 1719 1811 1925 1934 1980
Kehagias(2004) 1699 1719 1811 1929 1980

Table 3. Average execution time for one run of the segmentation
algorithm.

HMM-1 HMM-2 HMM-3 HMM-4
Experiment no. 1 0.44 s 0.95 s 0.39 s 0.94 s
Experiment no. 2 0.38 s 0.82 s 0.37 s 0.84 s
Experiment no. 3 0.18 s 0.65 s 0.17 s 0.63 s
Experiment no. 4 0.11 s 0.15 s 0.13 s 0.17 s
Experiment no. 5 0.42 s 0.55 s 0.44 s 0.53 s

4.6 About execution times

In Table3 we give average execution time for a single seg-
mentation using a MATLAB implementation of the algo-
rithm (for HMM-i, i=1, 2, 3, 4) and for λ=0.40. It can
be seen that the algorithm is fast, hence it is particularly
easy to use as an exploration tool, running it with vari-
ous parameter choices and inspecting the resulting segmen-
tations in an interactive manner. For applications where
computing time is critical, we recommend using the “point-
wise”approximations of SMM’s (HMM-1 and HMM-3),
since they are always slightly faster and lead to segmenta-
tions that are as good as those obtained using the “interval-
based”approximations of SMM’s (HMM-2 and HMM-4), at
least as measured byPk.

5 Application to MCMC estimation

MCMC estimation of the parameters and change-points of
SMM models can be very slow: parameter estimation for
the SMM-2 model using the datasets presented in the pre-
vious sections can take hours instead of seconds using the
Bayesian Gibbs sampling algorithm proposed byFortin et al.
(2004a). This computing time can potentially be reduced if
reasonable values are provided to initialize the chain (both
for the parameters and latent variablesmt ). In this section
we show that the pseudo-EM algorithm presented in this pa-
per can help improve the performance of MCMC estimation
for the SMM-2 model.

Fortin et al. (2004a) use a slightly different parameter-
ization for the model SMM-2: they useσ 2

x =σ 2
µ+σ 2

ε and
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Fig. 17. Histogram of estimated values for the parameterη using
the pseudo-EM algorithm and the Gibbs sampler.

ω=σ 2
µ/σ 2

x as model parameters, instead ofσ 2
µ andσ 2

ε . De-

note byθ (0)
=(η(0), ω(0), µ(0), σ

2(0)
x ) the starting point of the

chain and byθ̃ = (η̃, ω̃, µ̃, σ̃ 2
x ) the exact (but typically un-

known) values of the parameters.
In Fortin et al.(2004a), the parameters are initialized from

the expectation of the prior distribution provided by the user.
The prior distribution is defined by eight hyperparameters,
two for each parameter of the model. If the user does not
supply values for these hyperparameters, the algorithm au-
tomatically uses uniform distributions for the parametersη

andω. Flat priors are also used for the parametersµ and
σ 2

x , but as the domain of definition of these parameters is not
bounded, the prior expectation forµ andσ 2

x must be reason-
ably close to the sample mean and variance. For this purpose,
the prior forµ is centered on the mean of five observations
chosen at random from the sample, and the prior forσ 2

x is
centered on the variance of these same five observations.

The latent variablesmt are initialized by sampling from
the predictive distributionp(mt |m

(0)
t−1, yt , θ

(0)). The perfor-
mance of the Gibbs sampler is quite sensitive to the prior
expectation of the transition probabilityη as well as to the
initial values obtained for the latent variablesmt .

Given the sensitivity of the Gibbs sampler’s performance
to the initial value chosen forη, the first idea that comes to
mind to hasten its convergence to a stationary distribution
is to better choose the value ofη(0). While the pseudo-EM
algorithm has been shown to lead to accurate segmentations,
this does not mean that the parameter estimates are reliable.

We simulated J=100 samples of size T =100
with the following population parameters:
η̃=0.1, ω̃=0.75, µ̃=0, σ̃ 2

x =1. We then estimated the
parameterη by K̂/T usingλ set to 0.4, andK(0) set to 50.

We used the Gibbs sampler to obtain posterior distribu-
tions for these same simulated samples, using default val-
ues for the hyperparameters. For each sample, we performed
R=2000 iterations, and kept only the last 1000. We hence
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obtained a sample ofJ ·R/2=100 000 values for each param-
eter.

Figure17 compares the histograms of the parameter esti-
mates obtained using the two estimation methods for param-
eterη, smoothed using the kernel density estimation function
provided by the MATLAB statistics toolbox (ksdensity ).

Recalling that the population value ofη is 0.1, it is clear
that the pseudo-EM algorithm underestimatesη, and that the
Bayesian method is much more reliable. Consequently, it
will not be straightforward to initialize theη parameter using
directly the output of the pseudo-EM algorithm.

At least for this case, the pseudo-EM parameter estimate
for the transition probability is biased, but we know that the
segmentation is accurate, at least in terms of the Beeferman’s
metric. This seems to be because changes of small amplitude
are not picked up by the algorithm, hence do not show up as
transitions, leading to an underestimation ofη.

Even if the pseudo-EM algorithm leads to biased param-
eter estimates, it does a good job at segmenting the time se-
ries. Hence, we could use this information instead to initial-
ize the latent variables in the algorithm. There is one caveat:
the Gibbs sampler algorithm works in a similar way to the
pseudo-EM algorithm for estimatingη: at each iteration, it is
reestimated from the ratio of the number of simulated transi-
tions to the sample size. This means that the Gibbs sampler
will start with a biasedη value. For our simulation experi-
ment, the value ofη used to start the simulation will be gen-
erally too low, which can bring the chain into a trapping state
from which it takes a lot of time to get out (possibly an in-
finite time!). To improve upon this strategy, a possibility is
to add a small amount of noise at random points in the seg-
mentation so as to increase the number of transitions to the
a priori estimate ofη · T . In this way, the Gibbs sampler
will still start both from a reasonable segmentation and an
acceptable value forη(0).

Denote byη(r,j) the value ofη simulated by the Gibbs
sampler at therth iteration and for thej th sample. Denote
also bym(r,j)

t the value ofmt simulated by the Gibbs sampler
at therth iteration and for thej th sample. Denote by{m̃t

(j)
}

the exact values of the latent variables for thej th sample. To
evaluate whether or not we are improving the performance of
the Gibbs sampler by initializing it with a segmentation given
by the pseudo-EM algorithm, we can look at the difference
betweenη(r,j) andη̃, and betweenm(r,j)

t andm̃t
(j). We ob-

viously need some goodness of fit measure to summarize this
data.

MCMC techniques, and in particular Gibbs sampling, are
used to derive posterior distributions for the parameters and
latent variables of interest. One must evaluate when the
Markov chain has converged to a stationary distribution, and
iterate sufficiently after that to obtain a large enough sample
to estimate reliably the posterior distribution. One way to
compare the performance of two MCMC techniques consists
of evaluating the sharpness and the accuracy of the probabil-

ity distributions derived from the two chains on the second
half of the iterations. After performing an even number of
iterationsR, we would like the cumulative posterior distribu-
tion of η approximated from the lastR/2 iterations to be as
close as possible to a Heaviside step function centered onη̃.
Similarly, we would like the cumulative posterior distribution
of mt − m̃t

(j) to be as close as possible to a Heaviside func-
tion centered on zero. The squared distance between a cumu-
lative distributionF(x) and a Heaviside functionH(x − x̃),
centered on the target valuex̃ and integrated over the domain
of definition of the variable of interest, is a useful measure
of both the sharpness and accuracy of the predictive distri-
bution. It is known as the Continuous Ranked Probability
Score, orCRPS (Matheson and Winkler, 1976):

CRPS(F, x̃) =

∫
∞

−∞

(F (x) − H(x − x̃))2dx (21)

whereH(x − x̃)=0 if x<x̃ andH(x−x̃)=1 if x≥x̃. Note
that theCRPS is simply the absolute error between the tar-
get value and the prediction if the predictive distributionF

is deterministic, i.e. ifF(x)=H(x−x̂), wherêx is the deter-
ministic prediction. TheCRPS is a negative score, meaning
that a smaller value means a better performance. Estimating
the value of theCRPS for an empirical cumulative distri-
bution function is possible, but costly. We preferred to fit a
parametric distribution to the samples. For the parameterη,
we chose to fit a beta distribution by maximum likelihood,
and then used adaptive Simpson quadrature to estimate the
CRPS numerically. For the latent variables, we chose to fit
a normal distribution by the method of moments. WhenF is
a normal distribution having a meanµ and a varianceσ 2, the
CRPS is given by:

CRPS(F, x̃) = σ ·

(
z̃ (28 (z̃) − 1) + 2ϕ (z̃) − π−1/2

)
(22)

wherez̃= (x̃−µ) /σ , 8 is the cumulative density function of
the normal distribution andϕ is its probability density func-
tion.

To obtain a single value ofCRPS for a given number of
iterationsR, we have pooled together all values ofη(r,j) for
r=R/2 + 1..R andj=1..J and all values ofm(r,j)

t − m̃t
(j)

for t=1..T , r=R/2 + 1..R andj = 1..J . Figures18 and19
show that theCRPS is lower both forη and for the latent
variables when we use the pseudo-EM algorithm to initialize
the Gibbs sampler.

As could be suspected, the improvement decreases as the
number of iteration increases, down to about 5% forη and
8% for the latent variables whenR reaches 2000. Still, the
score reached afterR=2000 iterations by the original Gibbs
sampler is reached after only 600 iterations forη and after
only 160 iterations for the latent variables when these la-
tent variables are initialized using the pseudo-EM algorithm.
While the time needed to perform the same number of it-
erations was only down slightly when initializing the Gibbs
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Fig. 18. CRPS for the predictive distribution ofη as a function of
the number of iterations.

sampler using the pseudo-EM algorithm, theCRPS score
obtained after the same number of iterations is improved,
which means that the time needed to reach a given level of
accuracy is reduced.

6 Conclusions

We have presented an HMM-based time series segmentation
algorithm. We have applied (the four variants of) the algo-
rithm to several segmentation tasks and obtained quite accu-
rate segmentations, even in the case of noisy data; in addition
the algorithm is quite fast (a couple of seconds for time se-
ries of a few hundred terms). An attractive feature of the
algorithm is the automatic determination of segmentation or-
der.

Several other computationally oriented segmentation algo-
rithms have appeared in the literature, for example Hubert’s
branch-and-bound algorithm (henceforth called BB) (Hu-
bert, 1997, 2000), Kehagias’ left-to-right HMM (henceforth
LR-HMM) (Kehagias, 2004) and Kehagias’ DP algorithm
(Kehagias et al., 2006). In addition,Fortin et al.(2004a) have
proposed a more sophisticated MCMC segmentation proce-
dure. A comparison leads to the following conclusions re-
garding the current algorithm.

1. It is at least as accurate and noise-robust as any of the
above algorithms, somewhat faster than LR-HMM and
DP andmuchfaster than BB and MCMC.

2. It automatically determines the number of segments;
this is also the case for MCMC, but not for BB, LR-
HMM and DP.

3. It uses a smaller number of states than LR-HMM.
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Fig. 19. CRPS for the predictive distribution of{mt } as a function
of the number of iterations.

4. It is not guaranteed to find the optimal solution; this is
also true of BB, LR-HMM and MCMC; the DP algo-
rithm is guaranteed to find the globally optimal segmen-
tationfor a given number of segments.

The MCMC procedure proposed byFortin et al.(2004a)
differs from the other segmentation algorithms in that it at-
tempts to find a more realistic model of the hydrological pro-
cess (assuming the time series to be generated by a shifting
means mechanism, it yields considerably more information
regarding the segmentation and the time series parameters)
and is oriented more towards model parameter estimation
rather than towards segmentation. While our main interest
is in the actual segmentation, an important motivation for
the current algorithm was to use it as an initializer for this
MCMC procedure. The experiments of Sect.5 indicate that
this is a viable approach.

Regarding future work, the rigorous study of the conver-
gence properties of our algorithm merits further research,
which will be reported in a future publication.

Appendix A The Beeferman metricPk

Beeferman’s segmentation metricPk (s, t) measures the er-
ror of a proposed segmentations=(0, s1, ..., sK−1, T ) with
respect to a “true” segmentationt= (0, t1, ..., tL−1, T ). Pk

first appeared in thetextsegmentation literature (Beeferman
et al., 1999) but it can be applied to any segmentation prob-
lem. Here we will only give a short intuitive discussion of
Pk. The interested reader can find more details inBeeferman
et al.(1999).

When iss identical tot? The following two conditions are
necessary and sufficient.
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1. Each pair of integers(i, j) which is in the same segment
undert is also in the same segment unders.

2. Each pair(i, j) in a different segment undert is also in
a different segment unders.

It follows that the difference betweens andt (i.e. theer-
ror of s with respect tot) is the amount by which the above
criteria are violated. This can happen in two ways:

1. some pair(i, j) which is in the same segment undert is
in a different segment unders;

2. or some pair(i, j) which is in the same segment under
t is in a different segment unders.

We can formalize the above description as follows. Define
a functionδs (i, j) to be 1 wheni andj are in the same seg-
ment undersand 0 otherwise; defineδt (i, j) similarly. Then
we are interested in the quantity

T∑
i=1

T∑
j=1

|δs (i, j) − δt (i, j)| . (A1)

There are two problems with (A1) and they both have to do
with the range of the summations. First, consideringall pos-
sible pairs(i, j) is too time consuming. Second, it yields
anundiscriminatingcriterion, because even a grossly wrong
s will agree with t on many pairs (for example most pairs
(i, i + 1) will be placed in the same segment and most(i, j)

pairs which are very far apart will be placed in different seg-
ments). Beeferman et al.(1999) propose to consider only
pairs which arek steps apart(i, i + k + 1), wherek is half
the average segment length.It has been empirically validated
that this choice ofk works well;Beeferman et al.(1999) also
discuss some theoretical justification for this choice. Hence
Pk is defined as follows

Pk (s, t) =

T −k−1∑
i=1

|δs (i, i + k + 1) − δt (i, i + k + 1)|

(A2)

and this is what we have used in Sect.4.
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