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Abstract. We investigated the influence of atmospheric
noise on the generation of interannual El Niño variability.
Therefore, we perturbed a conceptual ENSO delay model
with surrogate windstress data generated from tropical wind-
speed measurements. The effect of the additional stochastic
forcing was studied for various parameter sets including pe-
riodic and chaotic regimes. The evaluation was based on a
spectrum and amplitude-period relation comparison between
model and measured sea surface temperature data. The ad-
ditional forcing turned out to increase the variability of the
model output in general. The noise-free model was unable to
reproduce the observed spectral bandwidth for any choice of
parameters. On the contrary, the stochastically forced model
is capable of producing a realistic spectrum. The weakly
nonlinear regimes of the model exhibit a proportional rela-
tion between amplitude and period matching the relation de-
rived from measurement data. The chaotic regime, however,
shows an inversely proportional relation. A stability analy-
sis of the different regimes revealed that the spectra of the
weakly nonlinear regimes are robust against slight parame-
ter changes representing disregarded physical mechanisms,
whereas the chaotic regime exhibits a very unstable realistic
spectrum. We conclude that the model including stochastic
forcing in a parameter range of moderate nonlinearity best
matches the real conditions. This suggests that atmospheric
noise plays an important role in the coupled tropical pacific
ocean-atmosphere system.

1 Introduction

Over thirty years agoBjerknes(1969) described the basic
feedback mechanisms underlying El Niño/Southern Oscilla-
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tion (ENSO). These mechanisms are based on coupling be-
tween the ocean and the atmosphere.

The observed interannual variability of ENSO can in prin-
ciple be explained by deterministic dynamics: Strong non-
linear interactions between ocean and atmosphere lead to
low order deterministic chaos (Timmermann and Jin, 2003).
Nonlinear interactions of ENSO modes with the seasonal cy-
cle can also lead to deterministic chaos (Tziperman, 1994,
1995). The latter concept is able to explain the locking of El
Niño to the seasonal cycle.

Recently, a discussion has arisen about the influence of
atmospheric noise on the ocean and the coupled ocean-
atmosphere system (Thompson and Battisti, 2001; Kessler,
2002; Fedorov, 2003). Models based solely on chaotic be-
havior cannot explain the full amount of ENSO variability,
e.g. all models failed to predict the devastating 1997/98 El
Niño (Fedorov, 2003). For this event,Lengaigne(2004)
studied the effect of measured high- and low-frequency
winds, based on GCM simulations. These investigations
revealed that tropical wind anomalies (especially westerly
wind bursts) are well able to influence the onset and growth
of El Niños and even trigger a warm event. More conceptual
examinations of this question consist of driving simple mod-
els with Gaussian noise (Stone and Price, 1998). Here the
models are easily influenced by noise and are able to show
stochastic resonance.

However, it is still under debate as to whether wind bursts
are capable of causing ENSO variability or rather are the ef-
fect of the latter. Also, there is disagreement about whether
typical atmospheric noise may at all be strong enough to
influence the onset, progression, strength and period of El
Niños.

Our approach to this controversial discussion is on a
level of complexity between time consuming GCM studies
and overly simple conceptual models disregarding essential
physical mechanisms. We investigate the possible effects
of – undoubtedly present – atmospheric noise, by utilizing
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Table 1. Parameter list of the GT model.

Parameter Description

a, b scaling parameters of additional noise drive
AWinde equatorial additional noise drive
AWindn northern additional noise drive

A∗ relates non-equatorial windstress to equatorial SST
b0 mean ocean-atmosphere coupling strength
Co Kelvin wave propagation speed

τwind wind affected fraction of basin crossing time
ε strength of seasonal variation

εm damping coefficient of the ocean
εT thermal damping coefficient
h thermocline depth anomaly

H1 upwelling layer depth
µ seasonal varying coupling
ρ density of ocean water

re/w coastal boundary wave reflection coefficients
τ1,2 basin crossing time (1 Rossby,2 Kelvin)
T temperature anomaly at eastern boundary

Tsub temperature anomaly at depthH1
ω̄ mean upwelling

a conceptual model of considerable complexity and adding
realistic stochastic forcing to the internal (i.e. deterministic)
windstress. For this purpose we construct surrogates from
measured windspeed data, in such a way that the low fre-
quency variability is conserved while the high frequency part
is randomized. This allows us to investigate the influence of
realistic windstress on the spectrum, strength and period of
ENSO on a conceptual basis. These investigations include
chaotic and quasiperiodic model regimes.

The criteria to evaluate the quality of this stochastic exten-
sion are also based on measured data. We calculate spectra
and amplitude-period relations (APR) of the model runs with
the additional forcing and compare them with the same diag-
nostic measures from the NINO3 region of theKaplan(1998)
reconstruction and noise free model runs, respectively. Tak-
ing into account the natural origin of most model parameters,
we performed a stability analysis. The model has to repro-
duce its spectrum and APR in a reasonable parameter space.
A measure of robustness was introduced for this purpose.

The paper is organized as follows: In the second section
the model and our stochastic forcing are introduced in more
detail. The influence of the additional forcing is presented in
Sect.3. The last section presents our conclusions.

2 Model and methodology

2.1 The model

The investigations within this paper are based on the ENSO
model ofGalanti and Tziperman(2000), hereafter GT. This

delay oscillator consists of two zonal ocean stripes and de-
scribes the eastern thermocline depth anomalyh as a function
of wind-excited Kelvin and Rossby waves (with parameters
listed in Table1):

h(t) = e−εm(τ1+τ2)rwreh(t − τ1 − τ2)

−e−εm(τ2+
τ1
2 )rw

A∗

βρ
τWindτ1µ(t − τ2 −
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A change of zonal, equatorial windstress over the central Pa-
cific simultaneously generates upwelling (respectively down-
welling) Kelvin waves and downwelling (respectively up-
welling) Rossby waves (see Eq.1). These waves travel to and
from the Pacific ocean and are reflected at the coastal bound-
aries. In this way, they carry the upwelling and downwelling
signal to the Ecuadorean coast and determine the eastern
tropical pacific thermocline depth. Since the wave reflection
and propagation weakens and delays the traveling signal, a
nonintuitive and complex interplay of forces arises. For a de-
tailed description of the model, seeGalanti and Tziperman
(2000).

The strength of the zonal windstress (τx) is assumed to be
in balance with the eastern sea surface temperature (SST) and
the ocean-atmosphere coupling (see Eq.2). The latter varies
according to the seasonal cycle (µ) around a mean value (b0):

τx = b0µT

µ = 1 + ε cos(2πt/12− 5π/6). (2)

The SST at the eastern boundary is given as a function of
thermal damping (εT ) and upwelling (̄ω):

∂tT = −εT T − γ
ω̄

H1
(T − Tsub(h)) (3)

The temperature of the upwelling water is modeled as the hy-
perbolic tangent of the thermocline depth anomaly and rep-
resents the main nonlinearity in the GT (Galanti and Tziper-
man, 2000).

2.2 Stochastic forcing

To implement stochastic forcing, we extended the model with
two additive terms:AWindn andAWinde. These terms were
included in the part of the model that relates windstress to
SST and thus represent additional windstress:

h(t) = e−εm(τ1+τ2)rwreh(t − τ1 − τ2)
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Fig. 1. Windstress: measurement (left) and surrogates (right). The phase and amplitude conservation of lower frequencies including the
annual cycle can be seen. The phase of higher frequencies follows a uniform random distribution.
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Fig. 2. SST (left) and power spectrum (right) of the Kaplan NINO3 reconstruction. In the time series, the multiscale variability of ENSO
can be seen. This results in a broad spectrum with at least four characteristic peaks of the following periods: I: 3.6 years; II: 5.8 years; III:
10-20 years; VI: 2.8 years.

ble to the Kaplan data and simultaneously behaves robustly
under natural conditions, i.e. small parameter changes. To
this end, we slightly altered the parameters of Table 1 and
utilized a simple measure (V ) to evaluate resulting spectral
changes:

V±(p, δp) =
1

N

N∑

n=1

(sn(p)− sn(p± δp))2

sn(p)2
(5)

where sn(p) is the spectral power of the nth frequency pro-
duced by parameter set p. The spectral power sn(p ± δp) is
produced by a slightly different parameter set.

We applied variations of a few percent to one parameter
at a time. The calculation of V was repeated for the four
regimes (periodic, modelock, SOR, chaotic). As expected,
the periodic regime results to be the most stable while the
spectrum of the chaotic regime turns out to react very sensi-
tively even to minor parameter changes. In the latter regime,
a Kaplan-like spectrum is only reproduced for an unreal-
istically strongly confined parameter region (see Table 2).

From this point of view, the chaotic regime, despite show-
ing reasonable variability, seems not to be suitable to rep-
resent the real ENSO system. On the contrary, under pa-
rameter changes of 5-10% the SOR shows a broad spectrum
with characteristic peaks and an El Niño-like time series.
In Fig. 6 a sample comparison between the SOR and the
chaotic regime of the SGT is shown. Each graph consists of
three spectra that correspond to slightly different parameter-
sets (−δp ;± 0; +δp). The varied parameters in this fig-
ure are: ocean-damping (εm), western wave reflection co-
efficient (rw) and mean upwelling strength (ω̄). It becomes
evident that the SOR spectrum is robust under the applied pa-
rameter variations. In some parameters, the spectrum of the
chaotic regime is equally or even more robust (see end of Ta-
ble 2) than the SOR, but in general the chaotic regime tends
to change dramatically under slight parameter variations.

Fig. 1. Windstress: measurement (left) and surrogates (right). The phase and amplitude conservation of lower frequencies including the
annual cycle can be seen. The phase of higher frequencies follows a uniform random distribution.
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To study the influence of the additional forcing terms on the
model behavior in general, we performed model runs with
simple concepts of additional forcing (constant-, gaussian-,
sinusoidal-gaussian forcing). From these model realiza-
tions, we calculated the corresponding spectra, attractors and
amplitude-period relations (For details see AppendixB). By
comparison of spectra and attractors of the stochastic runs
with those of the standard deterministic model, we obtained
the following results:

Forcing with different constants results in different model
attractors. One can interpret additional noise as continued
change to these constants, thus causing jumps between the
attractors. Therefore, the reconstructed attractor under the
influence of noise is similar to the undisturbed chaotic at-
tractor (see Fig.4) where the system jumps between different
resonance frequencies (Tziperman, 1995).

The complexity of the results, i.e. the number of different
reached attractors, depends on the amplitude and mean value
of the noise forcing. Here, a moderate mean value added to a
low amplitude noise has the same effect as a zero mean noise
with a considerably larger amplitude. Zero mean noise with
small amplitude has only a negligible effect.

Since the model is driven by seasonal modulation of the
ocean-atmosphere coupling, the impact of the additional
forcing also varies throughout the year. Consequently, the
existence and the right phase relation of annual variability in
the additional forcing have proven to be of great importance
to increase model variability.

In order to provide a realistic forcing, we constructed
nonzero mean windstress surrogates from windspeed data
measured by central pacific buoys in the following way: The

spectral band representing the annual (+/− a half year) vari-
ability has been kept to conserve the phase and shape of the
annual cycle of the real data. Lower frequencies have been
erased to ensure that ENSO variability present in the wind
data does not affect our analysis and thus avoiding circular
reasoning. To account for stochastic variability, we random-
ized the phases of high frequency contributions. These sur-
rogates are added to the model’s internal windstress, with an
additional amplitude of less than 10 percent (for further de-
tails, see AppendixA).

The correct construction of surrogates proved to be cru-
cial for the success of this method. In this surrogate driven
model (SGT), the generation of ocean waves is no longer
bound strictly to the internal state of the oscillator, especially
the slowly changing SST, but is also subject to external in-
fluences. The latter have a stochastic component but are not
entirely random (see Fig.1). This corresponds to findings of
Eisenman and Tziperman(2005).

3 The noise driven oscillator

The quality of the model output is evaluated against the SST
reconstruction done byKaplan(1998). This global data set
covers the years 1856–1991. From the time series, integrated
over the NINO3 region of this data set, we derived the power
spectrum and a simple amplitude-period relation (APR). The
derivation of these diagnostics are explained in AppendixB.

3.1 Spectrum

The GT undergoes the quasiperiodic route to chaos (Eccles
and Tziperman, 2004). For a detailed explanation of this
route, seeTziperman(1995). Depending on the strength of
the seasonal forcing, one can distinguish three regimes of the
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Fig. 1. Windstress: measurement (left) and surrogates (right). The phase and amplitude conservation of lower frequencies including the
annual cycle can be seen. The phase of higher frequencies follows a uniform random distribution.
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Fig. 2. SST (left) and power spectrum (right) of the Kaplan NINO3 reconstruction. In the time series, the multiscale variability of ENSO
can be seen. This results in a broad spectrum with at least four characteristic peaks of the following periods: I: 3.6 years; II: 5.8 years; III:
10-20 years; VI: 2.8 years.

ble to the Kaplan data and simultaneously behaves robustly
under natural conditions, i.e. small parameter changes. To
this end, we slightly altered the parameters of Table 1 and
utilized a simple measure (V ) to evaluate resulting spectral
changes:

V±(p, δp) =
1

N

N∑

n=1

(sn(p)− sn(p± δp))2

sn(p)2
(5)

where sn(p) is the spectral power of the nth frequency pro-
duced by parameter set p. The spectral power sn(p ± δp) is
produced by a slightly different parameter set.

We applied variations of a few percent to one parameter
at a time. The calculation of V was repeated for the four
regimes (periodic, modelock, SOR, chaotic). As expected,
the periodic regime results to be the most stable while the
spectrum of the chaotic regime turns out to react very sensi-
tively even to minor parameter changes. In the latter regime,
a Kaplan-like spectrum is only reproduced for an unreal-
istically strongly confined parameter region (see Table 2).

From this point of view, the chaotic regime, despite show-
ing reasonable variability, seems not to be suitable to rep-
resent the real ENSO system. On the contrary, under pa-
rameter changes of 5-10% the SOR shows a broad spectrum
with characteristic peaks and an El Niño-like time series.
In Fig. 6 a sample comparison between the SOR and the
chaotic regime of the SGT is shown. Each graph consists of
three spectra that correspond to slightly different parameter-
sets (−δp ;± 0; +δp). The varied parameters in this fig-
ure are: ocean-damping (εm), western wave reflection co-
efficient (rw) and mean upwelling strength (ω̄). It becomes
evident that the SOR spectrum is robust under the applied pa-
rameter variations. In some parameters, the spectrum of the
chaotic regime is equally or even more robust (see end of Ta-
ble 2) than the SOR, but in general the chaotic regime tends
to change dramatically under slight parameter variations.

Fig. 2. SST (left) and power spectrum (right) of the Kaplan NINO3 reconstruction. In the time series, the multiscale variability of ENSO
can be seen. This results in a broad spectrum with at least four characteristic peaks of the following periods: I: 3.6 years; II: 5.8 years;
III: 10–20 years; VI: 2.8 years.

GT (periodic/quasiperiodic, modelock, chaotic). It is evident
that all regimes lack the observed ENSO variability when one
compares GT spectra (see left panel of Fig.3) with observa-
tions (see Fig.2).

All GT regimes are able to reproduce the main El Niño
peak but fail to produce the spectral bandwidth of the Kaplan
reconstruction. It is not surprising that the broadest spectrum
and therefore the most variability is produced by the chaotic
regime.

The addition of stochastic forcing with power in the fre-
quency band of one per year or higher as defined in Sect.2.2
increases model variability in general (see right panel of
Fig. 3). This especially affects the El Niño spectral main
band, i.e. frequencies of interannual variability. Here, addi-
tional oscillations are excited and the lower frequencies gain
more power in general. This is very astonishing since the
additional forcing strength is only a few percent of model
generated windstress and has no power in the affected ENSO
spectral band at all. Estimation of correlation dimensions
(not shown) revealed that the dynamics of a regime is not al-
tered by our additional forcing. It is of interest that the peri-
odic regime is not able to show much variability even under
noise forcing. Therefore, we regard the periodic regime as
less able to reflect natural conditions.

By making small changes to the parameters we were able
to find a regime (hereafter called the spectral optimized
regime, SOR) which is well able to reproduce the Kaplan
spectrum and the variability of the SST. The similarity is es-
pecially remarkable when keeping the conceptual nature of
the model in mind (Fig.5). The parameterization of this
regime has a stronger seasonal cycle and therefore has a
stronger nonlinearity than the modelock model runs. The
SOR may therefore show weakly chaotic behavior.

3.2 Stability

Many parameters of the GT are idealized parameterizations
of complex processes that are subject to slow and rapid
changes, e.g. it is unlikely that the latitude of Rossby wave
propagation is constant as represented by the second model
stripe. Fluctuations of this latitude result in a change of prop-
agation speed and reflection coefficient. A conceptual model
naturally disregards certain physical mechanisms. However,
it should react robustly to reasonable parameter variations.
Therefore, we did a pragmatic stability analysis of the SGT
and the deterministic GT to study the robustness of these
models to such parameter variations. The aim was to find the
parameter regime that produces realistic variability compara-
ble to the Kaplan data and simultaneously behaves robustly
under natural conditions, i.e. small parameter changes. To
this end, we slightly altered the parameters of Table1 and
utilized a simple measure (V ) to evaluate resulting spectral
changes:

V±(p, δp) =
1

N

N∑
n=1

(sn(p) − sn(p ± δp))2

sn(p)2
(5)

wheresn(p) is the spectral power of thenth frequency pro-
duced by parameter setp. The spectral powersn(p±δp) is
produced by a slightly different parameter set.

We applied variations of a few percent to one parameter
at a time. The calculation ofV was repeated for the four
regimes (periodic, modelock, SOR, chaotic). As expected,
the periodic regime results to be the most stable while the
spectrum of the chaotic regime turns out to react very sensi-
tively even to minor parameter changes. In the latter regime,
a Kaplan-like spectrum is only reproduced for an unreal-
istically strongly confined parameter region (see Table2).
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Fig. 3. Quasiperiodic route to chaos: Power spectrum of the deterministic model (GT, left) and the stochastically forced model (SGT, right).
The weakly nonlinear deterministic regimes exhibit a single oscillation at the ENSO main frequency. The deterministic chaotic regime
generates a small spectral band around that frequency. In all regimes, the applied stochastic forcing broadens the spectrum and excites strong
additional oscillations.

3.3 Amplitude-period relation

It is still unclear whether a strong El Niño has a longer or
shorter duration compared to a weaker one, or even if El Niño
period and amplitude are rather independent of each other.
Eccles and Tziperman (2004) obtained the following results
in their study of the GT model: For the chaotic regime, they
inferred an inversely proportional relation, i.e. the stronger
the El Niño, the shorter its duration. For the modelock and
periodic regime, however, they found a proportional relation

instead, i.e. stronger El Niños last longer than weaker ones.
Since the latter regimes have an constant intrinsic period,
the investigations had to be rather indirect. By parameter
variations, period changes were induced. An additional ap-
proach to this question is possible for models with noise (see
Appx. B): As the stochastic forcing of the SGT results in am-
plitude and period variations in all regimes, we could investi-
gate the APR directly even in the weakly nonlinear regimes.
The left panel in Fig. 7 shows the results of the deterministic
GT, the right panel those of the stochastic SGT.

Fig. 3. Quasiperiodic route to chaos: Power spectrum of the deterministic model (GT, left) and the stochastically forced model (SGT, right).
The weakly nonlinear deterministic regimes exhibit a single oscillation at the ENSO main frequency. The deterministic chaotic regime
generates a small spectral band around that frequency. In all regimes, the applied stochastic forcing broadens the spectrum and excites strong
additional oscillations.

From this point of view, the chaotic regime, despite show-
ing reasonable variability, seems not to be suitable to rep-
resent the real ENSO system. On the contrary, under pa-
rameter changes of 5–10% the SOR shows a broad spec-

trum with characteristic peaks and an El Niño-like time se-
ries. In Fig.6 a sample comparison between the SOR and
the chaotic regime of the SGT is shown. Each graph con-
sists of three spectra that correspond to slightly different
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Fig. 4. Quasiperiodic route to chaos: Attractor of the deterministic model (GT, left) and the stochastically forced model (SGT, right). The
route to chaos results in a growing attractor of increasing complexity. The applied stochastic forcing also results in an increased complexity.

For the periodic and modelock regime of the GT, our ap-
proach revealed a one and a two point relation (c.f. corre-
sponding attractors shown in Fig. 4). Our result for the
chaotic regime confirms the inversely proportional relation
found by Eccles and Tziperman (2004).

The periodic stochastic regime shows a obvious propor-
tional relation of period and amplitude. While in the stochas-
tic modelock case a proportional tendency is still recogniz-
able, no obvoius APR seems to exist in the stochastically dis-
turbed chaotic case. Further increase of the coupling to the
seasonal cycle results in an inversely proportional relation
(not plotted). Hence, both findings of Eccles and Tziperman

(2004) hold for the stochastically forced model too.

The fundamental difference between the model APR
of strong (chaotic) and weakly nonlinear (quasiperiodic)
regimes can be utilized for a comparison with measured data:
For the NINO3 region SST data, we obtained a rather pro-
portional relation (See Fig. 8). This result is neither matched
by the chaotic regime nor by the SOR in deterministic or
stochastic model runs. On the other hand, the stochastically
forced model runs show more conformity with the obser-
vations. Within the SGT runs, the modelock and the mod-
elock/weakly chaotic SOR resemble the observed relation
best.

Fig. 4. Quasiperiodic route to chaos: Attractor of the deterministic model (GT, left) and the stochastically forced model (SGT, right). The
route to chaos results in a growing attractor of increasing complexity. The applied stochastic forcing also results in an increased complexity.

parameter-sets (−δp; ±0; +δp). The varied parameters in
this figure are: ocean-damping (εm), western wave reflection
coefficient (rw) and mean upwelling strength (ω̄). It becomes
evident that the SOR spectrum is robust under the applied pa-
rameter variations. In some parameters, the spectrum of the
chaotic regime is equally or even more robust (see end of Ta-

ble 2) than the SOR, but in general the chaotic regime tends
to change dramatically under slight parameter variations.
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Fig. 5. SST (left) and power spectrum (right) of the spectral optimized regime (SOR) of the stochastic model (ε = 0.7). The model exhibits
El Ni ños of various amplitude and period similar to the Kaplan data (see Fig. 2). This results in a model spectrum with recognizable ENSO
main peaks (I-IV). Obviously the high frequency variability is not captured by the model.

Table 2. Regime sensitivity to variations in parameter-set

Parameter SOR (V− + V+) Chaotic regime (V− + V+)

rw ± 1% 0.48 394.41
re ± 1% 0.23 11.79
εm ± 5% 0.22 96.71
εt ± 5% 0.22 20.68
ω̄ ± 1% 0.20 36.34

H1± 1% 0.28 31.96
ρ± 1% 1.13 1.17
L ± 1% 0.38 0.55
b0 ± 1% 0.56 0.29

4 Summary and conclusions

We investigated the influence of additional surrogate forcing
on the variability of a conceptual ENSO model. The forcing
noise shares the power spectrum as well as the shape and
phase of the annual cycle with TOGA/TAO windspeed data.
The quality of the model runs was evaluated in the following
way: We compared the model spectra and amplitude-period
relation (APR) to the corresponding counterparts of observed
NINO3 region SST data. As complex physical processes
are represented by simple parameters in conceptual models,
these parameters are assumed to be subject to considerable
fluctuations. Thus, as a further criterion, we investigate the
model’s ability to produce a robust and realistic spectrum
under reasonable parameter changes. A measure of robust-
ness was introduced for this purpose.

The results of our study were the following:
From the stochastic and the deterministic periodic regime are
very stable but show insufficient variability. Thus, the ob-
served spectrum and APR are reproduced only rudimentar-

ily.
While the deterministic modelock regime also lacks com-

plexity, the stochastic forcing leads to a drastically increased
variability. The spectrum and the APR match the observa-
tions well. The model output was found to be robust under
realistic parameter variations.

The deterministic chaotic regime shows a rather complex
behavior but still does not match the bandwidth of the
Kaplan spectrum. Adding the stochastic forcing results in a
further increment of variability and therefore spectral band-
width. Nonetheless, the resemblance with the observations is
easily destroyed by slight parameter changes. Furthermore,
the deterministic chaotic APR and its stochastic counterpart
show a strong inversely proportional tendency that does not
fit the observations at all.

To summarize, the spectrum, APR and stability analy-
sis favor regimes with medium nonlinearity and additional
stochastic forcing. In particular, a modelock/weakly chaotic
regime disturbed by surrogate data (SOR) representing trop-
ical pacific surface winds well matching our criteria could be
found: This regime resembles the spectrum of NINO3 region
SST measurement data, i.e. the variability within the ENSO
spectral band and the four ENSO main spectral peaks were
reproduced. Additionally, the APR is consistent with the ob-
served one. Finally, this regime turned out to be stable under
reasonable parameter changes.

The inability of all deterministic regimes to express ob-
served ENSO variability, and the result that additional forc-
ing raises the spectral power within the ENSO main band
(2-7 years), suggest that atmospheric noise plays a signifi-
cant role for the ENSO dynamics. This external influence
includes high frequency weather noise as well as low fre-
quency windstress variations that interact with the seasonal
cycle presented by ocean-atmosphere coupling. However, all
these results have to be interpreted in the light of the con-
ceptual origin of this model. Thus, it would be interesting to

Fig. 5. SST (left) and power spectrum (right) of the spectral optimized regime (SOR) of the stochastic model (ε=0.7). The model exhibits
El Niños of various amplitude and period similar to the Kaplan data (see Fig.2). This results in a model spectrum with recognizable ENSO
main peaks (I–IV). Obviously the high frequency variability is not captured by the model.

3.3 Amplitude-period relation

It is still unclear whether a strong El Niño has a longer or
shorter duration compared to a weaker one, or even if El Niño
period and amplitude are rather independent of each other.
Eccles and Tziperman(2004) obtained the following results
in their study of the GT model: For the chaotic regime, they
inferred an inversely proportional relation, i.e. the stronger
the El Niño, the shorter its duration. For the modelock and
periodic regime, however, they found a proportional relation
instead, i.e. stronger El Niños last longer than weaker ones.
Since the latter regimes have an constant intrinsic period,
the investigations had to be rather indirect. By parameter
variations, period changes were induced. An additional ap-
proach to this question is possible for models with noise (see
AppendixB): As the stochastic forcing of the SGT results
in amplitude and period variations in all regimes, we could
investigate the APR directly even in the weakly nonlinear
regimes. The left panel in Fig.7 shows the results of the
deterministic GT, the right panel those of the stochastic SGT.

For the periodic and modelock regime of the GT, our ap-
proach revealed a one and a two point relation (cf. corre-
sponding attractors shown in Fig.4). Our result for the
chaotic regime confirms the inversely proportional relation
found byEccles and Tziperman(2004).

The periodic stochastic regime shows a obvious propor-
tional relation of period and amplitude. While in the stochas-
tic modelock case a proportional tendency is still recogniz-
able, no obvoius APR seems to exist in the stochastically dis-
turbed chaotic case. Further increase of the coupling to the
seasonal cycle results in an inversely proportional relation
(not plotted). Hence, both findings ofEccles and Tziperman
(2004) hold for the stochastically forced model too.

Table 2. Regime sensitivity to variations in parameter-set

Parameter SOR (V− + V+) Chaotic regime (V− + V+)

rw±1% 0.48 394.41
re±1% 0.23 11.79
εm±5% 0.22 96.71
εt±5% 0.22 20.68
ω̄±1% 0.20 36.34

H1±1% 0.28 31.96
ρ±1% 1.13 1.17
L±1% 0.38 0.55
b0±1% 0.56 0.29

The fundamental difference between the model APR
of strong (chaotic) and weakly nonlinear (quasiperiodic)
regimes can be utilized for a comparison with measured data:
For the NINO3 region SST data, we obtained a rather pro-
portional relation (see Fig.8). This result is neither matched
by the chaotic regime nor by the SOR in deterministic or
stochastic model runs. On the other hand, the stochastically
forced model runs show more conformity with the obser-
vations. Within the SGT runs, the modelock and the mod-
elock/weakly chaotic SOR resemble the observed relation
best.

4 Summary and conclusions

We investigated the influence of additional surrogate forcing
on the variability of a conceptual ENSO model. The forc-
ing noise shares the power spectrum as well as the shape and
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Fig. 6. Power spectrum variations of the spectral optimized regime (SOR, left) and of the chaotic regime (right) of the stochastically forced
model. Upper panel: Variation of ocean-damping (εm). Middle panel: Variation of western wave reflection coefficient (rw). Lower panel:
Variation of mean upwelling strength (ω̄).

repeat this study with more complex models.

Appendix A Construction of the surrogates

The construction of the surrogates turned out to be a cru-
cial part of this work. The construction is based upon zonal
windspeed data taken from the TOGA/TAO buoy array. After
removal of the mean value, we applied a Fourier transforma-
tion. In the frequency domain, we performed two essential
operations. First, we used a low pass filter to erase every pe-

riod longer than one and a half years from the spectrum. This
operation eliminates the main El Niño time scales from the
time series. Second, we added a uniform distributed phase to
all oscillations with periods shorter than 100 days. Note that
this second procedure does not alter the power spectrum of
the data set. After inverse Fourier transformation and addi-
tion of the mean value, we now have a new windspeed time
series. This time series has exactly the same power spec-
trum as the original one except for the deleted low frequen-
cies. Furthermore, the oscillations between 1.5 years and
100 days keep their original phase relations to interact with

Fig. 6. Power spectrum variations of the spectral optimized regime (SOR, left) and of the chaotic regime (right) of the stochastically forced
model. Upper panel: Variation of ocean-damping (εm). Middle panel: Variation of western wave reflection coefficient (rw). Lower panel:
Variation of mean upwelling strength (ω̄).

phase of the annual cycle with TOGA/TAO windspeed data.
The quality of the model runs was evaluated in the following
way: We compared the model spectra and amplitude-period
relation (APR) to the corresponding counterparts of observed
NINO3 region SST data. As complex physical processes
are represented by simple parameters in conceptual models,

these parameters are assumed to be subject to considerable
fluctuations. Thus, as a further criterion, we investigate the
model’s ability to produce a robust and realistic spectrum un-
der reasonable parameter changes. A measure of robustness
was introduced for this purpose.
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Fig. 7. Amplitude-period relation of GT (left) and SGT (right). While no APR could be derived from the deterministic regimes with weak
nonlinearity, the deterministic chaotic regime shows an inversely proportional relation. The stochastically forced regimes show a clearly
proportional APR which is most distinct in the periodic case. With increasing nonlinearity, a growing influence of an inversely proportional
relation is visible. All model APRs cover only periods longer than 2 years.

the seasonal cycle of the model in a natural way. Finally,
the phases of quick oscillations faster than 100 days are dis-

turbed randomly to represent the stochastic component of the
atmosphere. A simple drag relation turns this time series into

Fig. 7. Amplitude-period relation of GT (left) and SGT (right). While no APR could be derived from the deterministic regimes with weak
nonlinearity, the deterministic chaotic regime shows an inversely proportional relation. The stochastically forced regimes show a clearly
proportional APR which is most distinct in the periodic case. With increasing nonlinearity, a growing influence of an inversely proportional
relation is visible. All model APRs cover only periods longer than 2 years.
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Fig. 8. Amplitude-period relation of the Kaplan NINO3 reconstruc-
tion. A rather proportional relation is visible.

windstress.
In order to pay tribute to the two ocean stripes of the GT,
we derived our surrogates from two different locations of the
central pacific (0N170W, 8N170W). In this way, we could
force the two stripes independently of each other with char-
acteristic time series. Model runs brought best results with
an amplitude of the additional forcing that corresponds to
2.8% (respectively 9.8%) of the negative (respectively posi-
tive) undisturbed, internal model windstress in the equatorial
stripe. In the off-equatorial stripe, the forcing matches 0.8 %
(respectively 2.8 %) of the model-generated windstress. This
corresponds only to a few thousandth of observed windstress
and is because the GT generates relatively weak windstress
compared to observations.

Appendix B Diagnostics

While the Kaplan power spectrum is constructed in the
usual manner. To derive the APR , we determined all local
extrema that were at least 19 months apart, and locally fitted
parabola to the extrema. The amplitude of an El Niño was
taken to be the mean of a maximum and the two neighboring
minima. We defined the corresponding period as the time
span between those enclosing minima.

The power spectra of the model are the means over five
thousand time windows (each 140 years long and far away
from the models spin up). Derivation of the model’s APR
was done by taking duration and maximum SST of every at-
tractor cycle. The attractor used for this purpose was built
by taking the three terms of Eq. (4) as components of a three
dimensional vector. This reconstruction is isomorphic to at-
tractors gained by the embedding of model SST but period
dependent folding problems are avoided.
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The results of our study were the following:
The stochastic and the deterministic periodic regime are very
stable but show insufficient variability. Thus, the observed
spectrum and APR are reproduced only rudimentarily.

While the deterministic modelock regime also lacks com-
plexity, the stochastic forcing leads to a drastically increased
variability. The spectrum and the APR match the observa-
tions well. The model output was found to be robust under
realistic parameter variations.

The deterministic chaotic regime shows a rather complex
behavior but still does not match the bandwidth of the
Kaplan spectrum. Adding the stochastic forcing results in a
further increment of variability and therefore spectral band-
width. Nonetheless, the resemblance with the observations is
easily destroyed by slight parameter changes. Furthermore,
the deterministic chaotic APR and its stochastic counterpart
show a strong inversely proportional tendency that does not
fit the observations at all.

To summarize, the spectrum, APR and stability analy-
sis favor regimes with medium nonlinearity and additional
stochastic forcing. In particular, a modelock/weakly chaotic
regime disturbed by surrogate data (SOR) representing trop-
ical pacific surface winds well matching our criteria could be
found: This regime resembles the spectrum of NINO3 region
SST measurement data, i.e. the variability within the ENSO
spectral band and the four ENSO main spectral peaks were
reproduced. Additionally, the APR is consistent with the ob-
served one. Finally, this regime turned out to be stable under
reasonable parameter changes.

The inability of all deterministic regimes to express ob-
served ENSO variability, and the result that additional forc-
ing raises the spectral power within the ENSO main band
(2–7 years), suggest that atmospheric noise plays a signifi-
cant role for the ENSO dynamics. This external influence

includes high frequency weather noise as well as low fre-
quency windstress variations that interact with the seasonal
cycle presented by ocean-atmosphere coupling. However, all
these results have to be interpreted in the light of the con-
ceptual origin of this model. Thus, it would be interesting to
repeat this study with more complex models.

Appendix A

Construction of the surrogates

The construction of the surrogates turned out to be a cru-
cial part of this work. The construction is based upon zonal
windspeed data taken from the TOGA/TAO buoy array. After
removal of the mean value, we applied a Fourier transforma-
tion. In the frequency domain, we performed two essential
operations. First, we used a low pass filter to erase every pe-
riod longer than one and a half years from the spectrum. This
operation eliminates the main El Niño time scales from the
time series. Second, we added a uniform distributed phase to
all oscillations with periods shorter than 100 days. Note that
this second procedure does not alter the power spectrum of
the data set. After inverse Fourier transformation and addi-
tion of the mean value, we now have a new windspeed time
series. This time series has exactly the same power spec-
trum as the original one except for the deleted low frequen-
cies. Furthermore, the oscillations between 1.5 years and
100 days keep their original phase relations to interact with
the seasonal cycle of the model in a natural way. Finally,
the phases of quick oscillations faster than 100 days are dis-
turbed randomly to represent the stochastic component of the
atmosphere. A simple drag relation turns this time series into
windstress.

In order to pay tribute to the two ocean stripes of the GT,
we derived our surrogates from two different locations of the
central pacific (0 N 170 W, 8 N 170 W). In this way, we could
force the two stripes independently of each other with char-
acteristic time series. Model runs brought best results with
an amplitude of the additional forcing that corresponds to
2.8% (respectively 9.8%) of the negative (respectively posi-
tive) undisturbed, internal model windstress in the equatorial
stripe. In the off-equatorial stripe, the forcing matches 0.8%
(respectively 2.8%) of the model-generated windstress. This
corresponds only to a few thousandth of observed windstress
and is because the GT generates relatively weak windstress
compared to observations.

Appendix B

Diagnostics

While the Kaplan power spectrum is constructed in the usual
manner. To derive the APR , we determined all local extrema
that were at least 19 months apart, and locally fitted parabola
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to the extrema. The amplitude of an El Niño was taken to
be the mean of a maximum and the two neighboring min-
ima. We defined the corresponding period as the time span
between those enclosing minima.

The power spectra of the model are the means over five
thousand time windows (each 140 years long and far away
from the models spin up). Derivation of the model’s APR
was done by taking duration and maximum SST of every at-
tractor cycle. The attractor used for this purpose was built
by taking the three terms of Eq. (4) as components of a three
dimensional vector. This reconstruction is isomorphic to at-
tractors gained by the embedding of model SST but period
dependent folding problems are avoided.
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