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Abstract. The statistical mechanics of 3-D helical flows is
re-examined for a continuum truncated at a top wavenumber.
Based on the principle of equipartition of the flow enstrophy
between helical modes, the emerging (i) energy spectrum law
“−2” and (ii) formal mathematical analogy between the he-
licity and the thermodynamic entropy are discussed. It is
noted that the “−2” scaling law is consistent with both spec-
tral equilibrium and spectral cascade paradigms. In an at-
tempt to apply the obtained results to a turbulent flow regime
within the Earth’s outer liquid core, where the net helicity
of a turbulent flow component is presumably explained by
Earth’s rotation, it has been noticed that it is the energy spec-
tral law “−1”, but not “−2”, which is likely realized there
and within the logarithmic accuracy corresponds to the case
of the velocity structure function[u (l)]2 independency on
the spatial scalel, the latter is consistent with observations.
It is argued that the “−1” scaling law can also be interpreted
in terms of the spectral equilibrium and it is emphasized that
the causes of the likely dominance of the spectral law “−1”
over the spectral law “−2” in this geophysical application
deserve further investigation and clarification.

1 Introduction

By writing this article I would like to commemorate the sci-
entific work by S. S. Moiseev, who was one of the pioneers in
systematic applications of the helicity concept to geophysical
fluid flows. His bold idea on possibility of the “kinetic alpha-
effect” and the “kinetic dynamos”, had been put forward in a
series of publications beginning with Moiseev et al. (1983a,
b), has become a long-lasting inspiration to the author of
these lines. However, I would like to dedicate this article to a
somewhat different topic but also related to the helicity con-
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cept and had been in the focus of S. S. Moiseev’s scientific
interests as well (cf. Moiseev and Chkhetiani, 1996), namely
to an issue of the energy and the helicity spectral distribution
in fluid flows possessing the net helicity and being viewed as
an ensemble of interacting helical Beltrami flows, or helical
modes hereafter. In the forthcoming, a particular emphasis
will be placed on the flow enstrophy and its distribution be-
tween helical modes of different spatial scales and also on
that presumably important role, which the enstrophy spec-
tral distribution may play in specifying the entire statistical
regime in helical flows.

2 Preliminaries

Consider an inviscid 3-D incompressible fluid flow, which
is spatially homogeneous and isotropic but lacks of mirror
symmetry. This flow is described by equations

∂tv+∇

(
v2/2

)
+(∇ × v)×v = −∇ (p/ρ) , ∇·v = 0, (1)

wherev is the velocity vector,p is the pressure andρ is the
uniform density. In Cartesian coordinates with the position
vectorx, consider a flow within a periodic boxV (D) of size
D. In this set-up Eq. (1) possess an infinite countable set of
steady Beltrami solutions (cf. Levich, 1987; Dritschel, 1991)
satisfying the equations

∇ × u±

k = ± k u±

k , ∇ · u±

k = 0, k > 0. (2)

Helical modes (2) are normalized by unity,
〈(

u±

k

)2
〉

≡

D−3
∫∫∫

V (D)

(
u±

k

)2
dx = 1, and always allow taking the

general solution of (1) in the form (Knorr et al., 1990; Wal-
effe, 1992) v (x, t)=

∑
k

[
ak (t) u+

k (x) + bk (t) u−

k (x)
]
,

whereak (t), bk (t) are time-dependent amplitudes. The ki-
netic energy, the helicity and the enstrophy of the fluid flow
read E =

〈
v2

〉
/2=

∑
k

(
a2
k+b2

k

)
/2, H = 〈v·∇×v〉 /2 =

Published by Copernicus GmbH on behalf of the European Geosciences Union and the American Geophysical Union.



162 M. V. Kurgansky: On statistical equilibrium in helical fluid flows

∑
k

k
(
a2
k−b2

k

)
/2 andF =

〈
(∇×v)2〉 /2 =

∑
k

k2
(
a2
k+b2

k

)
/2,

respectively. These formulas can symbolically be re-
written asE =

∑
k

(
E+

k +E−

k

)
, H =

∑
k

(
H+

k +H−

k

)
, and

F =
∑
k

(
F+

k +F−

k

)
, whereF+

k =kH+

k =k2E+

k andF−

k = −

kH−

k =k2E−

k . We further introduce the relative weight
0≤qk≤1 of helical modes with the positive helicity by writ-
ing E+

k =qkEk and E−

k = (1−qk) Ek; thereforeE=
∑
k

Ek,

H=
∑
k

Hk≡
∑
k

(2qk−1) kEk, andF=
∑
k

Fk≡
∑
k

k2Ek.

3 Spectral equilibrium and “helicity-entropy” analogy

The integralsE, H and F satisfy the Schwarz inequality
H 2

≤EF (Moffatt, 1969), which sets a lower bound on the
enstrophy valueF≥Fmin = H 2/E. On the other hand, one
may assume that in fluid flows with small but finite viscos-
ity the scale-selective Newtonian viscosity virtually does not
violate the energy and the helicity conservation law, espe-
cially because the sign-indefiniteness of the helicity dissipa-
tion function, but leads to maximum possible reduction of
the flow enstrophyF values, consistent with Moffatt’s lower
bound. The kinetic energy viscous dissipation rateε, be-
ing proportional toF , tends to minimum in this case. This
ε-property may be thought as a manifestation of the mini-
mum entropy production principle in non-equilibrium ther-
modynamics and also as a special assumption concerningε-
behavior in turbulent flows with the non-zero helicity. There-
fore, though being not precisely a constant of motion, the en-
stropyF in helical flows may have close each other upper and
lower bounds on its possible time-variations. This pseudo-
conservation property of the flow ensrophyF is laid into the
basis of proceeding arguments appealing to the ideas of equi-
librium statistical fluid dynamics (Salmon, 1998; Chapter 5)
and finally leading to the notion of equipartition of the flow
enstrophy between helical modes. One has to be much more
cautious in applying these ideas to our case than in the clas-
sical cases of 3-D reflexion-invariant turbulence or 2-D tur-
bulence, where the energy equipartition principle or the prin-
ciple of equipartition of a linear combination of energy and
enstrophy is used, respectively. On the other hand, the prin-
ciple of equipartition of the flow enstrophy between helical
modes, per se, i.e. when it is considered as a basing princi-
ple, could be of a certain heuristic value. A similar situation
occurs, e.g., with regard to the principle of equipartition be-
tween the kinetic energy and the magnetic energy in magne-
tohydrodynamics (cf. Elsasser, 1955), which enables one to
obtain simple but useful estimates in many interesting cases.
The point, however, is how to find conditions of such basing
principles validity and how to define an area of applicability
of them. Only the critical comparison, and resulting confor-
mity, of those deductions which can be inferred based upon

the proposed principle with the experimental or numerical
modeling results may lead to progress in that direction.

After this preamble, we proceed with formal arguments,
applied to our problem. A matter of fact, for Beltrami flows
(2) the enstrophy becomes a constant of motion, which
value is fixed by the equalityF=H 2/E given the inviscid
constants of motionE and H ; therefore, the enstrophy
related invariant probabilistic measure can be introduced.
Consider an infinite ensemble of flow realizations (replicas),
every replica being a steady Beltrami flow described by (2)
and having one and the sameF -value. Now, the proba-
bility pk=Fk/F (see Sect. 2 for notations) for a randomly
chosen replica to have a given spatial scale,k−1, fully
specifies the helicity and the energy spectral distribution
via the formulasHk=F k−1 (2qk−1) pk andEk=F k−2pk.
Different Beltrami flow patterns of either helicity sign but
having the samek-value are indistinguishable within this
approach and are ascribed equal a priori probabilities. We
truncate our fluid system at the minimumk0 and maximum
kmax wave numbers, wherek0 is high enough that the
modes are dense (mode spacing small compared withk).
Afterwards, we replace discrete probabilitiespk and factors
qk with the probability density functionp (k) and con-
tinuous weight functionq (k), such that

∫ kmax
k0

p (k)dk=1,

H=
∫ kmax
k0

Ĥ (k) dk≡F
∫ kmax
k0

[2q (k) −1] p (k)k−1dk, and

E=
∫ kmax
k0

Ê (k)dk≡F
∫ kmax
k0

p (k)k−2dk. Following the
ideas of equilibrium statistical fluid dynamics (see also
Burgers, 1939), it is anticipated that the total enstrophy
is equipartitioned between modes, having spatial scales
falling into the indicatedk-range. This also corresponds to
a general method of statistical inference by Jaynes (1957)
based on the Shannon informational entropy maximization,
in our case:

∫ kmax
k0

− logp (k) p (k)dk= max provided∫ kmax
k0

p (k)dk=1. It impliesp (k)= (kmax−k0)
−1

=constant

and χ≡F p (k) =F (kmax−k0)
−1

=constant, where χ

has the dimension of helicity density. These have two
consequences. First, energy spectral distribution reads

Ê (k) = χ k−2
≡ χ k

−6
3 (3)

and occupies an intermediate position between the classical
Kolmogorov-Obukhov “−5/3” and helicity cascade “−7/3”
(Brissaud et al., 1973) scaling laws. Kraichnan (1959)
pointed out and discussed the spectral law (3) but from a dif-
ferent viewpoint, in no way related to helicity. The spectral
law “−2” also corresponds to an idealized fluid flow, consid-
ered as an ensemble of tangential discontinuities (“fronts”) in
the velocity field (cf. Scorer, 1997); besides, this scaling law
emerges in rapidly rotating fluids (Zhou, 1995; see also be-
low). Second, under an assumptionδ (k) ≡ 2q (k) − 1 =

A/ (k1 + k), with A and k1 as constants, one obtains the
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formulas

H = Aχ

kmax∫
k0

(k1 + k)−1 k−1dk =
Aχ

k1
log

[
kmax(k1 + k0)

k0 (k1 + kmax)

]
,

E = χ

kmax∫
k0

k−2dk = χ
(
k−1

0 − k−1
max

)
. (4)

Two limit cases are of interest. First,k0<<kmax<<k1,
when δ (k) is quasi-constant throughout the interval
[k0, kmax] and formulas (4) yieldH∼= (Aχ/k1) log(L/λ),
E=χ (L−λ)∼=χL, where the notationsL=k−1

0 andλ=k−1
max

are introduced. The above expressions resemble classical
formulas for the entropyS=c logT +constant and the in-
ternal energyU=cT , taken for isochoric processes; here,
T is the absolute (Kelvin) temperature andc is the heat
capacity. In the light of this analogy, it might be conjec-
tured that the helicityH is an entropy-like variable, whereas
the maximum cut-off scaleL divided by the helical asym-
metry factor, δ0≡δ (0) =A/k1≤1, is the temperature ana-
logue. This analogy is lost whenδ0=0, i.e. the flow is non-
helical. Also, the most fundamental temperature definition
readsT −1

= dS/dU (Landau and Lifshitz, 1999), whereas
in the taken limit case it follows from (4) that(L/δ0)

−1
=

(∂ H/∂ E)|λ=constant. Second limit casek0<<k1<<kmax
corresponds to a realistic situation when the net helicity
is maximal at the largest scales but a flow is nearly non-
helical at the smallest scales (cf. Ditlevsen and Giuliani,
2001). Now, it follows from (4) thatH∼= (Aχ/k1) log(k1L),
E=χ (L − λ) ∼=χ L, which only re-scales the helicity but
maintains the thermodynamic analogy. In a particular case
of k2

1=k0kmax one simply getsH∼= (Aχ/2k1) log(L/λ). Fi-
nally, for k1<<k≤kmax our model predicts the same “−2”
scaling law for both the helicity and the energy spectral dis-
tribution, in a certain analogy with the notion of helicity cas-
cade linearity (cf. Ditlevsen and Giuliani, 2001).

4 Discussions and some geophysical implications

The results of Section 3 find some support in the direct
numerical simulation (DNS) of the decay of turbulence by
Holm and Kerr (2002). Their diagnostics showed that the
initial value problem for turbulence evolves through an early
stage, with still negligible dissipation, when vortex sheets are
formed from smooth initial conditions and afterwards they
roll up into helical (“strongly Beltramized”) vortex tubes.
In this context, it is worth mentioning again that the spec-
tral law “−2” exactly corresponds to a fluid flow considered
as an ensemble of vortex sheets. Once helical vortex tubes
have formed, viscous dissipation grows rapidly in the DNS
and the energy spectrum gradually approaches the classical
k−5/3 characteristic of a turbulent energy cascade, but be-
fore it is accomplished, the energy spectrum remains steeper

than “−5/3”; see Fig. 6 in Holm and Kerr (2002). Once a
clear “−5/3” spectrum appears, the energy decay becomes
self-similar. In the light of these DNS results, it may be con-
jectured that the spectral law (3) is most relevant to a nearly
inviscid fluid flow, whose dynamics is dominated by both en-
ergy and helicity conservation. The latter flow most closely
corresponds to early stages of the decay of turbulence starting
from helical initial conditions. Later on, the viscous dissipa-
tion becomes significant and the downscale energy cascade
develops, where the helicity plays a secondary role compared
to the energy (cf. Kraichnan, 1973).

In a real Navier-Stokes fluid, the minimum cut-off scale
λ, which entersH -definition in Sect. 3 and providesH the
properties of a coarse-grained quantity, can on pure dimen-
sional grounds be expressed through the fluid viscosityν and
the basic parameterχ by the formulaλ ∼

3
√

ν2/χ . On the
other hand, it can be inferred thatχ∼=Fλ andε = 2νF ∼=

2νχ/λ, for increasingly small but still finiteν-values. Elim-
ination ofλ between these two estimates yieldsχ ∼

4
√

ε3/ν,
namely a formula which is “reciprocally dual” to the Kol-
mogorov microscaleη ∼

4
√

ν3/ε definition.

We see that arguments of Sect. 3 allow for a formal anal-
ogy between the helicity and the thermodynamic entropy.
Kraichnan (1973) considered the thermodynamics of abso-
lute equilibrium of the helical turbulence in an inviscid 3-D
truncated set-up, but from a different viewpoint, based on
the Gibbs statistics, energy & helicity conservation princi-
ples and without any use of the enstrophyF . Despite (3)
is quite different from the absolute equilibrium spectra by
Kraichnan (1973) our results are in accordance with his main
conclusion that strong net helicity depresses overall turbulent
energy transfer. Also, Kraichnan’s (1973) words are worth to
be cited, namely that the absolute equilibrium ensembles of
course are very far from the actual states of viscous turbu-
lence and that their value is in pointing to direction in which
the actual, non-equilibrium state may be plausibly expected
to transfer excitation.

From an alternative, direct energy cascade perspective, the
spectrum (3) is consistent with the concept of an inertial
range, which requires 1<n<3 for spectra obeying thek−n-
law (Kraichnan, 1959). It is slightly steeper than the Kol-
mogorov spectrum and it would be interesting to search for
hints on (3) in observational or numeric simulation data (see
also above).

In general cases, for a turbulent helical flow character-
ized by the constant energy downscale cascade rateε, the
corresponding helicity downscale cascade rateσ (l) taken
for some spatial scalel can, on pure dimensional grounds
and by the use of the “local-cascade-approximation”, be ex-
pressed in the formσ (l) ∼[h (l)]3/ε. Here,h (l) is the he-
licity per unit volume dominated at the same spatial scalel.
This parameterization of course is not unique, but it attracts
with its simplicity and, what is probably most important,
the obtained cubic dependency ofσ (l) on h (l) is perfect
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Fig. 1. Schematic of the intersection between the graphs
of three different structure functions[u (l)]2 =Cnu2

∗ (l/l∗)n, for
n=0, 2/3, 1 (a horizontal dashed, a solid and an inclined dashed
line, respectively), occurring in a single triple point forCn=C=1.
The abscissa and the ordinate of any point in the graph are measured
in x=l/l∗ andy = [u (l)/u∗]2, respectively; the definitions of both
l∗ andu∗ are given in the text.

from the general symmetry viewpoint, merely because both
σ (l) andh (l) are pseudo-scalar quantities. Now, a request
of the helicity flux constancy,σ (l)=constant, implies that
h (l) ∼constant. Using an estimate|h (l)| ∼[u (l)]2/l, where
u (l) is the characteristic turbulent velocity at the scalel, one
gets[u (l)]2 ∝ l, consistent with the spectrum̂E (k) ∝ k−2,
see (3). We conclude that both spectral equilibrium and spec-
tral cascade paradigms give practically identical results in the
considered case of turbulent fluid flows with the net helicity.
In performing the above estimates we use an approximation
of the helicity only as a relation between the velocity and the
spatial scale, thus following the existing tradition in helical
turbulence studies (cf. Moffatt, 1978), though this approxi-
mation has its inherent limitations and should be applied to
helical turbulence with major precautions.

In rotating fluids, the overall fast fluid rotation may pro-
vide a turbulent flow the net helicity and also makes the
flow spatially anisotropic. In this analysis, we account for
the former property but neglect the latter one, for the sake
of simplicity. In this case and when based on the exist-
ing experience of studying the helicity balance for the Ek-
man boundary layer flow (see Kurgansky, 2002 and refer-
ences therein), one can assume thatσ (l) ∼�h (l), where
� is the angular velocity of fluid rotation; in other words,
�−1 stands for the characteristic time of helicity destruc-
tion in weakly viscous and rapidly rotating fluids. Com-
parison betweenσ (l) ∼[h (l)]3/ε andσ (l) ∼�h (l) leads to
the formula[h (l)]2 ∼ε�, which together with the estimate
|h (l)| ∼[u (l)]2/l yields [u (l)]2 ∼l

√
ε�. The last expres-

sion is consistent with the “−2” spectral scaling law by Zhou

(1995) and finds its direct experimental support in Baroud et
al. (2002).

One of the most prominent areas of these results appli-
cation would be the study of helical turbulent flows within
the Earth’s outer liquid core, whereε∼10−12m2 s−3 (Ja-
cobs, 1987–1991; Golitsyn, 1991),�∼10−4 s−1 and, hence,
√

ε�∼10−8 ms−2. However, direct application of the above
derived formulas yieldsu (l)∼10−1 ms−1 at the largest scale
l∼106 m, which by three orders of magnitude exceeds the
usually assumed valueu (l)∼10−4 ms−1, had been derived
from the terrestrial magnetic field secular variations analy-
sis based upon the frozen-in magnetic field hypothesis (cf.
Bloxham and Jackson, 1991). We conclude that only very
small spatial scales of motion, if at all, are relevant to
the [u (l)]2 ∼l

√
ε� scaling law. Also, an application of

the Kolmogorov “2/3” scaling law,[u (l)]2 ∼ (εl)2/3, gives
u (l) ∼10−2 ms−1 for the above indicated valuel∼106 m. On
the other hand, for large spatial scales, where the Rossby
number becomes increasingly small, the direct energy cas-
cade rate might be specified by a quantityε∼[u (l)]2/τ (l),
with τ (l)∼�−1 replacing the turbulent eddy turnover time
τ (l) ∼l/u (l) in the Kolmogorov theory. In this way, we
obtain [u (l)]2 ∼ε/�∼10−8 m2 s−2, which gives a correct
order-of-magnitude estimate of the observed fluid velocities
within the Earth’s outer core (cf. Golitsyn, 1991). Kurgan-
sky (1995) used this estimate and also an independence of
the turbulent velocity on the spatial scale as a plausible sce-
nario to construct a dissipative dynamo model. If to use
the notationsl∗≡

√
ε/�3, u∗≡

√
ε/�, then the above written

three different formulas for[u (l)]2 can be presented in a uni-
versal form[u (l)]2 =Cnu

2
∗ (l/ l∗)

n, wheren=0, 2/3, 1 and
Cn=O (1) are non-dimensional constants. WhenCn=C=1,
then the corresponding graphs intersect in a single pointO

having coordinatesl=l∗, [u (l)]2 =u2
∗; thisO-point can con-

ventionally be named the triple point (see, Fig. 1). If the
constantsCn were different but still sufficiently close each
other, then the triple pointO would split into three sepa-
rate points positioned in the vertices of a small triangleABC
centered atO. For the Earth’s outer core the characteristic
spatial scale,l∗∼100 m, is very small. The Rossby number
Ro (l) ≡u (l)/� l∼ (l/l∗)

−1+n/2 plays the role of a control
parameter in the problem. Forl<l∗, Ro (l) >1 and rota-
tion is not dynamically important; therefore, the Kolmogorov
regime withn=2/3 emerges. Atl=l∗, when alsoRo∼1, the
“bifurcation” occurs and the fluid flow must choose between
two alternative regimes, either withn=1 or with n=0. As
it is evident from inspecting of Fig. 1, these two regimes
cannot co-exist and, most likely, the regime withn=0 dom-
inates within the Earth’s outer core, when the fall of power
spectrum of the kinetic energy is significantly slower relative
to the Kolmogorov spectrum (cf. Reshetnyak, 2005). This
likely lack of “available room” for the “−2” energy spec-
trum (corresponding ton=1 and [u (l)]2 ∝l) in the turbu-
lent motion within the Earth’s liquid core is surprising and
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needs future explanation. We only note that an assumption
for its existence atl<l∗ would be physically controversial be-
cause, in any case, the Kolmogorov regime must emerge for
the finest spatial scales.

Because the turbulent flow regime withn=0 plays, seem-
ingly, such an important role in the Earth’s outer core, it is
instructive to re-visit arguments of Section 3 and to investi-
gate how this case can be explained in terms of the spectral
equilibrium. To do it, we specify the Beltrami flows via the
Helmholtz vector equation

∇
2u±

k + k2 u±

k = 0, ∇ · u±

k = 0 (5)

that follows from (2). In their turn, Eqs. (2) factorize (5).
Prior to work of Knorr et al. (1990) and Waleffe (1992),
Eq. (5) was the standard way to specify the Beltrami flows.
Contrary to (2), Eq. (5) does not distinguish between Bel-
trami flows of different helicity sign. Keeping this in mind,
consider a discrete probability distribution for Beltrami flows
over k2-values (but notk-values as in Sect. 3!), provided
all flow replicas possess the same enstrophyF -value. Af-
ter that, for a sufficiently dense set of discretek2-values has
been truncated at the wavenumbersk2

0 andk2
max, we introduce

a continuous probability density functioñp
(
k2

)
, such that∫ k2

max

k2
0

p̃
(
k2

)
dk2

=1. By applying the maximum entropy prin-

ciple we deduce that̃p
(
k2

)
=

(
k2

max − k2
0

)−1
= constant;

also,χ̃ ≡ F
(
k2

max − k2
0

)−1
= constant has now the physical

dimension of velocity squared. In an analogy to the argu-
ments of Sect. 3 one getŝE (k) =2Fp̃

(
k2

)
k−1

≡2χ̃k−1 and
the total kinetic energy of a flow reads

E =

∫ kmax

k0

Ê (k) dk = 2χ̃ log(kmax/k0) ≡ 2χ̃ log(L/λ) , (6)

which within the logarithmic accuracy is independent on the
scaleL, consistent with the previous arguments.

One may be tempted to conjecture that the case ofn=1,
with basic helical modes given by (2), allows for an anal-
ogy with a fermionic quantum system, whereas the case of
n = 0, corresponding to (5), is analogous to a bosonic case
of two helical modes having the samek-value but opposite
helicity signs and constituting a couple with zero net helic-
ity, the latter in a definite analogy to the coupling of two
fermionic particles occurring in superconductors. The clas-
sical Kolmogorov turbulence, corresponding ton=2/3, is
merely non-helical. In the light of this analogy, it can also be
added that Eq. (2) manifest themselves as a distant analogue
of Dirac’s quantum mechanical equations, whereas Eq. (5)
have some resemblance to the relativistic Schrödinger equa-
tion.

5 Conclusions

In this article, the equilibrium statistical mechanics of 3-D
helical flows is re-examined for a continuum truncated at a

top wavenumber. Based on the principle of equipartition of
the flow enstrophy between helical modes, the emerging en-
ergy spectrum law “−2” and a formal mathematical analogy
between the helicity, on the one hand, and the thermody-
namic entropy, on the other hand, are discussed. It is noted
that the “−2” scaling law is consistent with both spectral
equilibrium and spectral cascade paradigms.

An attempt was made to apply the obtained results to a
turbulent flow regime within the Earth’s outer core, where
the net helicity of a turbulent flow component is presumably
explained by Earth’s rotation. Somewhat surprisingly, it was
noticed that it is the energy spectral law “−1”, but not “−2”,
which is likely realized for core motions. Thisk−1 spec-
tral law within the logarithmic accuracy corresponds to the
velocity structure function[u (l)]2, which is independent on
the spatial scalel (cf. (6)), the latter is consistent with obser-
vations. It was argued that the “−1” scaling law can also be
interpreted in terms of the spectral equilibrium and was em-
phasized that the causes of the likely dominance of the spec-
tral law “−1” over the spectral law “−2” in this geophysical
application deserve future investigation and clarification.
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