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Abstract. We investigated the usability of the method of lo-
cal linear models (LLM), multilayer perceptron neural net-
work (MLP NN) and radial basis function neural network
(RBF NN) for the construction of temporal and spatial trans-
fer functions between different meteorological quantities,
and compared the obtained results both mutually and to the
results of multiple linear regression (MLR). The tested meth-
ods were applied for the short-term prediction of daily mean
temperatures and for the downscaling of NCEP/NCAR re-
analysis data, using series of daily mean, minimum and max-
imum temperatures from 25 European stations as predic-
tands. None of the tested nonlinear methods was recognized
to be distinctly superior to the others, but all nonlinear tech-
niques proved to be better than linear regression in the major-
ity of the cases. It is also discussed that the most frequently
used nonlinear method, the MLP neural network, may not
be the best choice for processing the climatic time series –
LLM method or RBF NNs can offer a comparable or slightly
better performance and they do not suffer from some of the
practical disadvantages of MLPs.

Aside from comparing the performance of different meth-
ods, we paid attention to geographical and seasonal varia-
tions of the results. The forecasting results showed that the
nonlinear character of relations between climate variables is
well apparent over most of Europe, in contrast to rather weak
nonlinearity in the Mediterranean and North Africa. No clear
large-scale geographical structure of nonlinearity was iden-
tified in the case of downscaling. Nonlinearity also seems
to be noticeably stronger in winter than in summer in most
locations, for both forecasting and downscaling.

Correspondence to:J. Miksovsky
(jiri.miksovsky@mff.cuni.cz)

1 Introduction

Within the last two decades, numerous new methods of time
series analysis have been developed for dealing with non-
linear data (see, e.g. Abarbanel, 1996; Kantz and Schreiber,
1997; Haykin, 1999; Galka, 2000 for an overview), and a lot
of them have found their place in the study of meteorologi-
cal signals (see examples in Sect. 4). But it has also been
shown that application of nonlinear methods does not auto-
matically grant better results than use of their linear coun-
terparts (e.g. Tang et al., 2000), despite the fact that the
meteorological series originate from an inherently nonlinear
system. Application of nonlinearity tests reveals some cli-
matic data sets to appear linear (Palus and Novotna, 1994;
Schreiber and Schmitz, 2000; Miksovsky and Raidl, 2005),
while others may exhibit nonlinear characteristics (Palus and
Novotna, 1994; Palus, 1996; Tsonis, 2001; Miksovsky and
Raidl, 2005). In this paper, our intention was to address
the problem of nonlinearity of the atmospheric time series
from a rather practical point of view and to ascertain the per-
formance of several nonlinear methods of time series analy-
sis for two typical meteorological problems: construction of
temporal (prediction) and spatial (downscaling) mappings at
synoptic time scales. The examined methods included a non-
linear technique which has already become common in the
atmospheric sciences (multilayer perceptron neural network
– MLP NN), as well as methods which are less common, at
least to date – local linear models in the reconstructed phase
space (LLM) and radial basis function neural networks (RBF
NN). Performance of nonlinear methods was compared both
to each other and to the results of multiple linear regression
(MLR). Aside from presenting examples of the obtained re-
sults, including their spatial and seasonal variances, we have
tried to draw conclusions about the tested methods’ disad-
vantages and strong points, as well as the pros and cons as-
sociated with their implementation.
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Fig. 1. The pattern of predictors used in the case of prediction (Pat-
tern A) and downscaling (Pattern B), displayed for the predictand
series located at 50◦ N, 15◦ E. The grid of horizontal and vertical
lines illustrates the full resolution of the NCEP/NCAR reanalysis
data set.

2 Methods

2.1 Choice of predictors

The first problem which needs to be addressed before time
series analysis methods can be applied is the issue of the
structure of the predictor space. The climate system, as
well as its local subsystems, has an infinite number of de-
grees of freedom, meaning that an infinite number of vari-
ables would be required for its state exact description. But
there are methods by which the state can be characterized,
at least approximately and locally, in a relatively low num-
ber of quantities. Techniques referred to as phase space (PS)
reconstruction represent a way of achieving such a descrip-
tion. The most classical method of phase space reconstruc-
tion, time delay reconstruction from a scalar series (Packard
et al., 1980; Takens, 1981), has been applied for analysis
of climatic time series at a number of occasions, from early
attempts to discover some kind of climate attractor (among
many e.g. Fraedrich, 1986; Keppenne and Nicolis, 1989),
to its practical implementations for the forecast of meteo-
rological or hydrological variables (e.g. Abarbanel, 1996;

Pérez-Mũnuzuri and Gelpi, 2000; Jayawardena and Gurung,
2000). Many more examples from various climate-related
disciplines can be found in the paper by Sivakumar (2004).
But it also turns out that the information content in a sin-
gle time series is not always sufficient for the climate sys-
tem’s state characterization. This is especially true when the
nonlinear component of the analyzed signal is to be studied
(Miksovsky and Raidl, 2005). Fortunately, meteorological
measurements (or numerical model outputs, reanalyses and
similar data sets) are typically available for several variables
and in numerous locations, which allows for the use of mul-
tivariate phase space reconstruction (Keppenne and Nicolis,
1989). The vector in the reconstructed phase space, char-
acterizing the system’s state in timet (and representing the
vector of predictors), is denotedy(t) here,

y (t) = (X1 (t) , X2 (t) , ... , Xm (t)) , t = 1, . . ., L , (1)

wherem characterizes the dimension of the reconstructed PS
and is usually referred to as the embedding dimension,L is
the length of the series andXi(t), i=1, . . . ,m, are elements
of y(t). For multivariate reconstruction fromm scalar series
xi(t), elements ofy(t) take the following simple form:

Xi (t) = xi (t) , i = 1, . . ., m . (2)

An important issue is the choice of suitable predictor series,
i.e. specifying which series, and how many, will be used in
the role ofxi(t). We used NCEP/NCAR reanalysis series as
potential predictors here, meaning that thousands of series of
different quantities from numerous grid points and pressure
levels were available, whereas only a few predictors were
needed. Choice of predictors is a nontrivial problem and it
can be done in several ways such as using step-wise regres-
sion or reducing the dimensionality of the predictor space by
means of principal component analysis, but no approach can
generally be considered to be the absolutely best one. Also,
use of different sets of predictors may sometimes result in
quite different outcomes, as shown by Huth (2004) for tem-
perature downscaling. We have tested several methods for
predictors selection and decided to utilize a pre-set pattern of
input variables, consisting of values ofT1000, MSLP andh500
from different grid points (see Sect. 3 for data sets descrip-
tion). Use of the pre-set pattern is fast and easy to implement;
it does not favor the MLR method like the use of the step-
wise linear regression could and it also gave better results (in
terms of root mean squared error – RMSE) than use of the
principal components as predictors, similarly to the findings
of Huth (2002). Moreover, using the same type and number
of predictors for different tested methods, locations and sea-
sons makes intercomparison of the results easier, because the
composition of the predictor space need not be taken into ac-
count as one of the variables. The patterns used for prediction
(Sect. 4.1) and downscaling (Sect. 4.2) both had dimension
m=14; their structure is shown in Fig. 1.
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2.2 Methods used

Mapping from the predictor vectory(t) to predictand
xPRED(t) (transfer function) can be generally expressed as

xPRED ( t) =8 (y ( t)) =8 (X1 ( t) , X2 ( t) , ..., Xm ( t)) . (3)

The exact form of8 depends on the mapping construc-
tion technique employed. We tested four methods here, one
linear and three nonlinear. Their brief descriptions are in
Sects. 2.2.1 (multiple linear regression), 2.2.2 (local linear
models), 2.2.4 (MLP neural networks) and 2.2.5 (RBF neu-
ral networks). The respective forms of8 are represented by
Eqs. (4), (5), (6) and (8).

2.2.1 Multiple linear regression

Linear methods still represent the most frequently used tool
of time series analysis. They are usually less complicated
than their nonlinear counterparts, with lower demands re-
garding computational power, and, unlike nonlinear meth-
ods, without many parameters to be determined prior to their
application. We used multiple linear regression (MLR) here
as a typical representative of linear techniques. The mapping
had the form

xPRED(t) = v0 +

m∑
i=1

vi Xi (t) , (4)

wherevi , i=0, . . . ,m, are the regression coefficients.

2.2.2 Method of local linear models

Origin of the method of local models dates back to the sec-
ond half of the eighties and it is associated with research fo-
cused on the problems of chaotic dynamics, strange attrac-
tors and phase space reconstruction. The method was shown
to be suitable for the prediction of low-dimensional chaotic
systems (Farmer and Sidorowich, 1987), as well as simple
physical (e.g. Sauer, 1993) or biological (e.g. Sugihara and
May, 1990) systems. In meteorology, too, its applications
have been demonstrated, for example, for cloud coverage
forecast (Ṕerez-Mũnuzuri and Gelpi, 2000) or rainfall predic-
tion (Sivakumar et al., 2000). A detailed description of the
method and more examples of its application can be found in
the monographs by Abarbanel (1996) or Kantz and Schreiber
(1997).

Since successful phase space reconstruction enables char-
acterization of the system’s state by anm-dimensional vector
like Eq. (1), it is also possible to quantify the similarity of dif-
ferent states, typically by computing the Euclidian distance
of their respective vectorsy. In order to construct a mapping
approximating the time evolution from timet or spatial rela-
tion between different variables in timet , a certain number
N of statesy(t, j), j=1, . . . , N , is found in the history of
the system as states with the smallest distance toy(t). From
the relation between such states and the corresponding val-
uesx(t, j) of the predictand, a mapping can be constructed

which approximates some local neighbourhood ofy(t) in the
phase space by a linear model:

xPRED(t) = v0( t) +

m∑
i=1

vi ( t) Xi ( t) . (5)

Note that, unlike in Eq. (4), coefficientsvi(t) are not time-
invariant and they need to be computed separately for each
time t . Computation ofm+1 coefficientsvi(t) from N pairs
of y(t, j) andx(t, j) is a linear regression problem, solv-
able in the least-squares sense. It should be mentioned that
using a fixed value of the number of nearest neighborsN is
not the only possible way of defining local neighborhood in
the phase space. It is also possible to work with the directly
specified size of the neighborhood (e.g. Hegger et al., 1999),
or to pick an individual value ofN for every t , as done by
Jayawardena et al. (2002). Here, however, all local models
were realized using a constantN for the entire analyzed se-
ries.

2.2.3 Artificial neural networks

Neural networks (NNs) have become very popular in var-
ious scientific areas as a convenient tool for many practi-
cal tasks, including time series analysis and data process-
ing. Typical artificial neural network is a complex struc-
ture, consisting of some number of interconnected, simple
signal processing units – artificial neurons (or, shortly, neu-
rons). Neurons typically have several inputs and a single
output; the information received by inputs is processed by
the neuron and the outcome is then transmitted to its neigh-
bors. For data processing tasks, so-called feedforward NNs
are the ones most frequently applied. A typical feedforward
NN consists of several layers of neurons – one, called the
input layer, which receives inputs, then one or more hidden
layers of signal-processing neurons, and finally, an output
layer in which the results are computed to their final form.
The output layer can comprise of one or more neurons (pro-
ducing one or more output values simultaneously), but we
only used single-output networks here. Two different types
of feedforward networks were studied in this paper: Multi-
Layer Perceptrons (MLPs) and Radial Basis Function (RBF)
networks. For more information on NNs, see, e.g. mono-
graphs by Haykin (1999) or Principe et al. (2000).

2.2.4 Multilayer perceptron neural networks

MultiLayer Perceptrons (MLPs) are by far the best known
and most frequently used design of neural networks – to such
an extent that they are sometimes (incorrectly) viewed as be-
ing equivalent to NNs generally. The operation performed
by neurons in the hidden layer of MLP is a weighted sum-
mation. For MLP with one hidden layer and a single neuron
in the output layer, the transfer function can be expressed as

xPRED(t) = v0 +

M∑
i=1

vi f

(
w0i +

m∑
j=1

wjiXj (t)

)
, (6)
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Fig. 2. The schematic structure of multilayer perceptron neural net-
work.

wherewji is the weight of the connection between thei-th
neuron in the hidden layer and thej -th neuron in the input
layer,vi is the weight of the connection between thei-th neu-
ron in the hidden layer and the neuron in the output layer, and
M is the number of neurons in the hidden layer (structure of
a MLP network is schematically shown in Fig. 2). Function
f (x), called the activation function, is generally nonlinear.
We used the logistic function,

f (x) =
1

1 + exp(−x)
. (7)

Apparently, the character of the mapping in Eq. (6) is given
by the values of the weightsvi andwji , which have to be de-
termined before the network can be used. Values of weights
are computed using examples of input-output pairs from
some training set (supervised learning). The basic learning
technique, backpropagation of errors, is an iterative proce-
dure using values of errors for the training cases to calcu-
late the weights adjustments. The backpropagation technique
exists in several variants, differing in their implementation
complexity, needed learning time, and tendency to be trapped
in a local minimum of the error function instead of reach-
ing the global minimum. We have used the quasi-Newton
method for MLPs training (e.g. Haykin, 1999), with weights
initialized to uniformly distributed random values.

2.2.5 Radial basis function neural networks

In many aspects similar to MLPs, radial basis function neu-
ral networks (RBF NNs – Fig. 3) are feedforward networks
with one hidden layer and one or more neurons in the output
layer. There are two principal differences between MLPs and
RBF networks. First, instead of the weighted summation of
the inputs, performed by the neurons in the hidden layer of
MLPs, RBF networks employ radial basis functions, usually
the Gaussian ones. The transfer function can be expressed as

xPRED(t) = v0 +

M∑
i=1

vi exp

(
−

‖y (t) − ci ‖
2

2σ 2
i

)
, (8)

Input layer Hidden layer Output layer

X1

Xm

1

xPREDΣ

Fig. 3. The schematic structure of radial basis function neural net-
work.

whereci is the position of the centre of thei-th radial basis
function (assigned to thei-th neuron in the hidden layer,i=1,
. . . , M), σi characterizes the width of thei-th RBF, and the
meaning ofvi andM is the same as in Eq. (6).

The second major difference between RBF and MLP neu-
ral networks is in the learning algorithm. While weights in
MLPs are determined in some sort of iterative learning pro-
cedure, training of RBF NNs can be done in two separate
phases. First, positions and shapes of the radial basis func-
tions are specified (i.e.ci andσi , i=1, . . . ,M). The simplest
way to do this is to takeM randomly chosen timest1, t2, . . . ,
tM from the training set and use the corresponding vectors in
the input space as centres of RBFs,ci=y(ti), i=1, . . . ,M.
A more sophisticated way of settingci , k-means clustering
(MacQueen, 1967; Haykin, 1999), did not notably improve
the results in our case. Values ofσi can be set individually
for each neuron, but in praxis a single value is often used,
σi=σ , i=1, . . . ,M, which we followed. As soon as the po-
sitions of RBF centres and sigma are set, finding the values
of weightsvi , i=0, . . . ,M, is a linear problem which can be
easily solved using the least-squares approach.

2.3 Computation settings

When testing a time series analysis method, it is important
to construct the mapping from one part of the data set, and
then to test its performance on an independent interval. For
neural networks, the former set is usually referred to as a
training set while the latter is called a testing set. We use the
same convention for LLM and MLR methods, too.

All utilized nonlinear methods here need one or more pa-
rameters to be determined before they can be applied (num-
ber of nearest neighborsN for LLM method, number of hid-
den neuronsM for both types of neural networks, width of
radial functionsσ for RBF networks). The parameters were
chosen to give the lowest RMSE for the testing set (a range
of parameter values was tested and the best performing one
was then used for the actual computation). RMSE depen-
dence on the above mentioned parameters typically had a
broad, flat minimum and so it was relatively easy to pick
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their optimal values. An exception to this rule was observed
for the number of hidden neurons in MLPs, when the depen-
dence of RMSE onM exhibited notable fluctuations, due to
the sensitivity of the results to the initial values of the net-
work’s weights. This was compensated for by repeated train-
ing (see below), but even then the error curve was visibly less
smooth than for RMSE as a function ofN or RBF NNs’M.

Optimization of the parameters was done for the entire
year as a whole, not separately for individual seasons. For
different tasks, the number of nearest neighbors for the LLM
method ranged between 200 and 700. As for the MLP neural
networks, the best results were typically obtained with the
number of hidden neurons 8 to 12, but sometimes as high as
20. In the case of RBF NNs, the optimal number of hidden
units was much higher, usually between 200 and 400. The
width of radial functions was set toσ=3.2 (very little sensi-
tivity of the results to its value was observed, so we kept it
fixed for all tasks). Training of neural networks, both MLP
and RBF, was performed 5 times from random initial weights
(or RBF centres’ positions, respectively) and the presented
results are an average of this five-member ensemble. In ret-
rospect, repeated learning was probably not necessary for the
RBF networks, since variance of the results within the en-
semble was quite low. In the case of MLPs, a single realiza-
tion could profoundly misrepresent the performance of the
method, so using an entire ensemble was important to reduce
the effect of sensitivity to the initial values of weights. Input
values for all neural networks were normalized to range [0,1]
by subtracting the minimum of the series and then dividing
the value with the series’ max-min range. MLP networks
were trained for 1500 epochs by the quasi-Newton method.

An important part of the input data is information about
the season of the year. In order to introduce this informa-
tion to the computations, application of the MLR and LLM
methods was done separately for each season. For NNs, we
did perform the training for the entire training set as a whole,
and information about the season was introduced by four ex-
tra neurons in the input layer, each of which was assigned to
one season (the effective dimension of the input space was
thereforem=18 for all neural networks). These neurons’ ac-
tivations were equal to 1 for the season they controlled, and
0 otherwise (i.e. just one of these four neurons was active for
a given time – the one assigned to the corresponding season).
Another possibility of introducing information about the sea-
son would be using sine and cosine of the Julian day (as done
by Trigo and Palutikof, 1999). The usual climatological def-
inition of the seasons was utilized:

Winter = December+ January+ February = DJF,
Spring = March+ April + May = MAM ,

Summer= June+ July+ August = JJA and
Autumn = September+ October+ November= SON.

3 Data

The first data set utilized was the NCEP/NCAR reanalysis
by Kistler et al. (2001), obtained from the page of NOAA-

CIRES CDC athttp://www.cdc.noaa.gov. It is available for
the years from 1948 on, and it covers an entire world with
reanalysis of several meteorological variables in the regu-
lar 2.5◦

×2.5◦ grid, including data for various pressure lev-
els. Series of mean daily temperature at the level 1000 hPa
(T1000) were used here, as well as series of mean sea level
pressure (MSLP) and series of geopotential height of the
500 hPa level (h500).

As for directly measured meteorological series, perhaps
the largest publicly available data set of European tempera-
ture, precipitation and pressure measurements was collected
by Klein Tank et al. (2002) and it is obtainable from the In-
ternet page of the European Climate Assessment and Dataset
(ECA&D – http://eca.knmi.nl/). Measurements from many
different sources were assembled by the authors, so series of
various quality and length are part of ECA&D, and many of
them contain missing values. We used series of daily mean,
minimum and maximum temperature from 25 European sta-
tions – see Table 1 for their list. Many more series can be
obtained from ECA&D – these 3×25 were selected in order
to cover most of Europe with series available for the years
1961 to 2000, or ending not too long before the year 2000,
and containing as little missing values as possible.

4 Results

4.1 Prediction

Forecast of future weather is what most people view as a fun-
damental purpose of meteorology’s existence. And although
today’s weather forecasts are made almost exclusively by
means of numerical models, there are many supplementary
tasks for which time series analysis can be more suitable,
for example, because the available data do not allow for use
of a generally demanding NWF model, because of unsuit-
able spatial or temporal scale or due to a lack of available
computing capacity. It was shown that nonlinear methods
can be applied for tasks like prediction of road temperatures
(Shao, 1998), precipitation forecasting (Waelbroeck et al.,
1994; Hall et al., 1999; Sivakumar et al., 2000), or forecast of
cloud cover (Ṕerez-Mũnuzuri and Gelpi, 2000), although in
some cases nonlinear methods do not seem to be more suit-
able than the linear ones, as demonstrated, for example, by
Tang et al. (2000) for Central Pacific SST forecast.

The gridded NCEP/NCAR reanalysis data set represents
a suitable basis for study of spatial distribution of the pre-
dictive potential of nonlinear methods. First, we performed
the prediction of theT1000 series one day ahead by the LLM
and MLR methods for every grid point in the area between
65◦ N, 25◦ W and 25◦ N, 45◦ E, i.e. for 493 points in total.
Years 1961–1990 were used as the training set, while the test-
ing set consisted of the years 1991–2000. The structure of
the predictor space is demonstrated in Fig. 1a for the grid
point 50◦ N, 15◦ E (the pattern was moved to be centered
on the location of the predicted series). Unlike for all the
other computations in this paper, a fixed number of nearest

http://www.cdc.noaa.gov
http://eca.knmi.nl/
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Table 1. A list of stations used for downscaling tests. Asterisk (*) marks the stations for which at least one of the series of daily mean,
minimum or maximum temperature did not cover the entire period 1961–2000.

Station Country Latitude Longitude Alt. NCEP/NCAR
(m) nearest grid point

Beograd* Yugoslavia 44◦48′ N 20◦28′ E 132 45◦00′ N, 20◦00′ E
Berlin Germany 52◦27′ N 13◦18′ E 55 52◦30′ N, 12◦30′ E
Bordeaux France 44◦50′ N 00◦41′ W 47 45◦00′ N, 00◦00′

Bologna Italy 44◦29′ N 11◦15′ E 60 45◦00′ N, 10◦00′ E
Bremen Germany 53◦03′ N 08◦47′ E 4 52◦30′ N, 10◦00′ E
Brindisi* Italy 40◦38′ N 17◦56′ E 10 40◦00′ N, 17◦30′ E
Eskdalemuir UK 55◦19′ N 03◦12′ W 242 55◦00′ N, 02◦30′ W
Helsinki Finland 60◦10′ N 24◦57′ E 4 60◦00′ N, 25◦00′ E
Heraklion* Greece 35◦20′ N 25◦11′ E 39 35◦00′ N, 25◦00′ E
Hurbanovo Slovakia 47◦53′ N 18◦12′ E 115 47◦30′ N, 17◦30′ E
Karlsruhe Germany 49◦01′ N 08◦23′ E 114 50◦00′ N, 07◦30′ E
Kremsmuenster* Austria 48◦03′ N 14◦08′ E 383 47◦30′ N, 15◦00′ E
Larissa* Greece 39◦39′ N 22◦27′ E 74 40◦00′ N, 22◦30′ E
St. Petersburg* Russia 59◦58′ N 30◦18′ E 6 60◦00′ N, 30◦00′ E
Linkoeping Sweden 58◦24′ N 15◦32′ E 93 57◦30′ N, 15◦00′ E
Malaga Spain 36◦40′ N 04◦29′ W 7 37◦30′ N, 05◦00′ W
Marseille France 43◦18′ N 05◦24′ E 75 42◦30′ N, 05◦00′ E
Moskou* Russia 55◦50′ N 37◦37′ E 156 55◦00′ N, 37◦30′ E
Oslo Blindern Norway 59◦57′ N 10◦43′ E 94 60◦00′ N, 10◦00′ E
Oxford UK 51◦46′ N 01◦16′ W 63 52◦30′ N, 02◦30′ W
Paris France 48◦49′ N 02◦20′ E 75 50◦00′ N, 02◦30′ E
Praha Czech Rep. 50◦05′ N 14◦25′ E 191 50◦00′ N, 15◦00′ E
Tortosa Spain 40◦49′ N 00◦29′ E 48 40◦00′ N, 00◦00′

Utsira Fyr Norway 59◦18′ N 04◦53′ E 55 60◦00′ N, 05◦00′ E
Valentia Observatory* Ireland 51◦56′ N 10◦13′ W 9 52◦30′ N, 10◦00′ W

Winter Summer

Fig. 4. RMSE (◦C) of 1-day ahead prediction of temperature at the 1000 hPa level (T1000) by LLM method. Three black crosses mark the
positions of the grid points from Table 2.

neighbors was used for all grid points,N=250. The results
are shown in Fig. 4 (RMSE for LLM method) and 5 (RMSE
for LLM method, divided with RMSE for MLR, which we
will call effective nonlinearity, since it quantifies an improve-
ment which can be gained from replacing linear MLR with
the nonlinear method of local models).

The lowest values of RMSE were detected over the
Mediterranean Sea and Atlantic Ocean, and, in summer, in
the Near East. Errors in summer were generally lower than
in winter. The absolute values of the errors coincide well
with values of average interdiurnal temperature change, i.e.
errors were higher in the areas with higher temperature vari-
ability. When the spatial structure of effective nonlinearity

was analyzed, the observed pattern was more complex. In
winter, most of continental Europe appears to be a region of
increased nonlinearity, with the highest differences between
RMSE for the LLM and MLR methods in Western Europe
and Russia. Nonlinearity seems to be rather weak in the mar-
itime areas, as well as in Northern Africa and the Near East.
In summer, nonlinearity is weaker than in winter in most ar-
eas, and there is a clear contrast between the Mediterranean
area (very weak nonlinearity, except for Tunisia and North-
ern Libya) and the rest of Europe (rather stronger nonlin-
earity, especially in Northern France, Belgium and Nether-
lands). This observed pattern bears an interesting resem-
blance to the positions of the climatic zones, as nonlinearity
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Table 2. RMSE (◦C) of 1-day ahead prediction of NCEP/NCART1000series for three different grid points. The values in bold indicate that
the nonlinear method gave better results than multiple linear regression, according to the paired Wilcoxon test at the 95% confidence level.
The values in the first row show RMSE of persistent prediction.

50◦ N, 0◦ E 50◦ N, 15◦ E 40◦ N, 15◦ E
DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Pers. 2.12 1.8 1.73 1.74 2.73 2.41 2.31 2.31 1.42 1.15 0.99 1.23
MLR 1.75 1.48 1.3 1.5 2.3 1.9 1.65 1.86 1.11 0.98 0.83 0.99

LLM 1.41 1.28 1.07 1.21 1.93 1.57 1.44 1.54 0.96 0.88 0.83 0.88
MLP 1.52 1.35 1.18 1.24 1.9 1.54 1.46 1.57 0.98 0.92 0.81 0.89
RBF 1.39 1.26 1.07 1.15 1.87 1.52 1.38 1.54 0.95 0.87 0.79 0.88

Winter Summer

Fig. 5. Effective nonlinearity for 1-day ahead prediction of temperature at the 1000 hPa level (T1000), i.e. RMSE for LLM method expressed
in % of RMSE for multiple linear regression (lower values indicate stronger nonlinearity). Three black crosses mark the positions of the grid
points from Table 2.

seems to be stronger in the temperate zone and weaker in the
subtropical and tropical areas (various climate classifications
can be found in Essenwanger, 2001).

There is a comparison of 1-day ahead prediction results in
Table 2 for all tested methods and all seasons of the year for
three selected NCEP/NCAR grid points: 50◦ N, 0◦ E (a grid
point which exhibited strong effective nonlinearity in both
summer and winter), 50◦ N, 15◦ E (medium nonlinearity in
both seasons) and 40◦ N, 15◦ E (medium nonlinearity in win-
ter, very weak in summer). Positions of the respective grid
points are indicated by crosses in Figs. 4 and 5. Aside from
comparing RMSEs, differences between individual methods
were ascertained using the paired Wilcoxon test (e.g. Wilks,
1995), applied at the absolute values of daily errors. The
significance of the differences between errors from the MLR
and nonlinear methods is indicated in Table 2 – values in bold
signal that the nonlinear method was better than MLR at the
95% level of confidence. RBF NN typically gave the best
results of all three nonlinear methods in terms of RMSE, but
the difference of error medians was not significant, accord-
ing to the Wilcoxon test, in most of the tested cases. On
the other hand, nonlinear methods, especially LLM and RBF
NNs, typically gave better results than MLR, both with re-
spect to RMSE and to the significance of the difference of
daily errors.

Visually, there was just little difference between the series
of predictions from all four tested methods. Superiority of
nonlinear techniques in the geographic areas with strong ef-
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Fig. 6. Histogram of the absolute values of the prediction errors
for 1-day ahead prediction of NCEP/NCART1000 series at 50◦ N,
15◦ E (whole year).

fective nonlinearity was, however, clearly visible in the dis-
tribution of errors, with residuals close to zero being rela-
tively more frequent for nonlinear methods than for MLR
– see example in Fig. 6. What all methods had in com-
mon was a certain tendency to underestimate high values
of temperature and overestimate the low ones, thus actually
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Table 3. RMSE (◦C) of NCEP/NCAR reanalysis downscaling for four European stations. The values in bold indicate that the nonlinear
method gave better results than multiple linear regression, according to the Wilcoxon test at the 95% confidence level. Underline indicates
that the method performed better than all the other three, according to the Wilcoxon test. The values in the first row for each station show
RMSE obtained by means of mean climatology.

Mean temperature Min. temperature Max. temperature
DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

Praha

Clim. 4.68 3.96 3.44 3.53 4.75 3.45 2.71 3.50 4.81 4.71 4.31 4.07
MLR 1.88 1.29 1.19 1.40 2.27 1.76 1.45 1.85 1.85 1.66 1.52 1.77
LLM 1.73 1.26 1.17 1.28 2.23 1.72 1.44 1.74 1.67 1.66 1.52 1.69
MLP 1.77 1.24 1.20 1.34 2.16 1.70 1.41 1.75 1.72 1.63 1.52 1.68
RBF 1.75 1.22 1.21 1.29 2.18 1.70 1.42 1.72 1.73 1.63 1.52 1.68

Oslo

Clim. 4.67 3.46 2.84 3.38 5.01 3.35 2.71 3.83 4.44 4.24 3.62 3.52
MLR 2.44 1.64 1.33 1.58 2.96 2.00 1.71 2.19 2.54 2.38 1.92 1.97
LLM 2.12 1.65 1.30 1.49 2.69 1.96 1.72 2.09 2.27 2.34 1.88 1.86
MLP 2.13 1.57 1.33 1.50 2.69 1.83 1.67 2.06 2.28 2.31 1.89 1.77
RBF 2.10 1.59 1.32 1.45 2.67 1.84 1.67 2.09 2.26 2.29 1.87 1.74

Oxford

Clim. 3.46 2.86 2.46 2.83 3.78 3.14 2.45 3.44 3.66 3.37 3.40 2.93
MLR 1.54 1.09 1.16 1.23 2.29 1.94 1.61 2.20 1.68 1.61 1.83 1.37
LLM 1.44 1.07 1.15 1.21 2.19 1.81 1.61 2.11 1.55 1.56 1.81 1.33
MLP 1.44 1.06 1.15 1.24 2.18 1.79 1.57 2.13 1.60 1.59 1.79 1.35
RBF 1.43 1.08 1.15 1.22 2.16 1.78 1.58 2.13 1.53 1.55 1.791.31

Bordeaux

Clim. 3.75 3.13 2.97 3.25 4.25 3.16 2.72 3.63 3.98 4.25 4.15 3.86
MLR 1.75 1.47 1.45 1.50 2.50 2.38 2.18 2.37 2.26 2.05 1.87 1.87
LLM 1.69 1.42 1.45 1.44 2.40 2.22 2.11 2.21 2.18 2.00 1.88 1.85
MLP 1.72 1.44 1.40 1.45 2.39 2.25 2.07 2.19 2.19 1.97 1.85 1.80
RBF 1.66 1.43 1.40 1.45 2.38 2.26 2.07 2.22 2.16 2.01 1.86 1.81

Fig. 7. Plot of the prediction residuals (the predicted temperature
minus the original observed temperature) against the original tem-
perature for 1-day ahead prediction of NCEP/NCART1000series at
50◦ N, 15◦ E (whole year). Bold line represents the linear fit of the
residuals.

decreasing the variance of the series of predictions compared
to the original one. This kind of behavior was observed for
all seasons, as well as the year as a whole, and it is demon-
strated for the grid point 50◦ N, 15◦ E in Fig. 7. The problem
of a deformed distribution of values is commonly encoun-

tered in the context of the application of empirical models in
climate research, particularly in statistical downscaling, and
various strategies have been proposed for handling it, such as
variance inflation or partial randomization (e.g. von Storch,
1999). All results presented here are direct outputs of the
transfer functions, without being subject to any form of ad-
ditional postprocessing.

4.2 Downscaling

Statistical downscaling of large-scale data is another com-
mon task of meteorological time series analysis, and one
in which nonlinear methods are sometimes used. Several
studies have been published devoted to downscaling or post-
processing of temperatures by nonlinear methods, mostly
MLPs (Trigo and Palutikof, 1999; Schoof and Pryor, 2001;
Marzban, 2003; Casaioli et al., 2003) or neural networks
based on RBF functions (Weichert and Bürger, 1998). Here,
downscaling of the gridded large-scale data was done for the
predictand series of daily mean, minimum and maximum
temperatures. NCEP/NCAR reanalysis series were used as
predictors. The pattern of predictors (Fig. 1b) was centered
on the NCEP/NCAR grid point closest to the respective sta-
tion (see the last column of Table 1). Years 1961–1990 were
used as the training set, and years 1991–2000 as the testing
set. In some cases, the testing set was shorter than 10 years
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Fig. 8. Results of NCEP/NCAR reanalysis downscaling by LLM and MLR methods for 25 European stations – daily mean temperature.
Color of the station’s background shows the result of the test of the hypothesis that the absolute values of daily errors were the same for both
methods, against the alternative that errors were smaller for LLM – red means that the hypothesis was not rejected at the level of confidence
of 95%, yellow that it was rejected at 95%, but not at 99%, and green means that the difference or errors was significant at the 99% level of
confidence (one-sided paired Wilcoxon test was used).
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Fig. 9. Same as Fig. 8, for daily minimum temperature.

because the predictand temperature series was not available
for the whole interval (such stations are marked with an as-
terisk in Table 1). Moreover, some of the series contained
missing values – in those cases, the respective days were ex-
cluded from the computation. The number of missing values
was, however, always very small in comparison with the total
size of the data set, so their presence should not have caused
any major shift in the results.

For all 25 stations from Table 1, results of downscaling
by MLR and LLM methods for daily mean (Fig. 8), mini-
mum (Fig. 9) and maximum (Fig. 10) temperature in win-
ter and in summer are presented. Aside from computing the
relative differences between RMSE for the LLM and MLR
methods, we also tested the statistical significance of the dif-
ference of the medians of the absolute values of daily errors
for the LLM and MLR methods. The testing was done by the
one-sided paired Wilcoxon test, and its outcomes are repre-
sented by different colors of the respective station’s back-
ground in Figs. 8 to 10. Full results for the four stations are
shown in Table 3. Situations when nonlinear method gave
better results than MLR at the 95% level of confidence are
indicated by bold print. To compare the results to outcomes
of a low-skill method, the table also contains RMSE obtained
by means of mean climatology (i.e. when monthly mean val-
ues of the predictand were used in the role ofxPRED(t) from
Eq. (3)).

Nonlinear methods generally performed better than MLR,
but there were distinct differences between the seasons –
most profoundly nonlinear behavior was typical for winter,

while in summer, nonlinear techniques seemed to grant just
a very small, if any, improvement in the comparison with
MLR at most stations. This can be easily seen from Fig. 11,
where histograms of the absolute values of downscaling er-
rors are shown for mean daily temperature from Oslo (a sta-
tion, where the contrast between winter and summer was par-
ticularly clear). A tendency was observed in all methods to
underestimate high temperatures and overestimate the low
ones, as in the case of the forecasts in Sect. 4.1.

Situations when one of the methods was superior to all the
others, according to the Wilcoxon test, were rather rare, and
they are marked with an underline in Table 3. None of the
nonlinear methods could be identified as the best one in all
cases, or the majority of the cases. However, when one of
the methods was tested as the best performing one, it was
usually either the method of local models or the RBF neural
network.

Unlike the forecasts studied in Sect. 4.1, results of down-
scaling were influenced by local conditions of individual sta-
tions and by eventual problems with series quality (shorter
length of some series, as well as the fact that the series
in ECA&D were collected from many different sources,
and they may not be mutually as easily comparable as
NCEP/NCAR reanalysis data). Thus, we have not tried to
draw any detailed conclusions about the geographical struc-
ture of errors or nonlinearity based on the behavior of indi-
vidual stations. A few points can be made, nonetheless:



988 J. Miksovsky and A. Raidl: Testing the performance of three nonlinear methods

Winter Summer1.00
96 %

0.95
94 %

1.51
93 %

1.55
92 %

1.83
97 %

1.80
96 %

1.84
96 %

2.27
89 % 1.55

92 %

1.46
96 %
2.14
96 %

1.74
98 %

2.18
97 %

2.07
98 %

1.51
98 %

1.61
99 %

3.42
98 %

1.32
95 %

2.23
93 %

1.57
97 %

2.66
94 %

1.49
96 %

2.16
90 %

 

1.67
90 % 2.49

94 %

1.30
96 %

1.18
94 %

1.82
95 %

1.81
99 %

1.75
100%

1.65
101%

1.35
99 %

1.88
98 % 1.70

102%

1.59
100%
1.94

101%
1.89
99 %

1.88
100%

1.99
98 %

2.49
99 %

1.79
100%

2.80
98 %

1.75
94 %

1.44
98 %

1.48
97 %

1.96
102%

1.63
99 %

1.60
100%

 

1.52
100% 1.85

102%

  
Effective nonlinearity, i.e. RMSE 
      for LLM in % of RMSE for MLR 

1.44
94 %

Geographical location 
of the station

RMSE [  C] for LLM methodo

60 N

50 N

40 N

10 W 0 E 10 E 20 E 30 E 10 W 0 E 10 E 20 E 30 E

Fig. 10. Same as Fig. 8, for daily maximum temperature.
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Fig. 11. Histogram of the absolute values of downscaling errors for mean daily temperature from Oslo, Norway, in winter (left) and summer
(right).

– Values of RMSE were higher in winter than in summer
at most stations, for mean and minimum temperatures;
for maximum temperature, almost half of the stations
showed higher values of error in summer. The effec-
tive nonlinearity was typically stronger in winter than
in summer for all three types of temperature. In sum-
mer, nonlinear methods even performed a little worse
than MLR sometimes, and for many stations, the differ-
ence in the medians of errors was not conclusive at the
confidence level of 95%.

– Errors were lower for daily mean temperatures than for
maximum or minimum ones in most locations. This is
not surprising as mean values are already averaged in
time, and therefore smoother. The extreme temperatures
represent values in a single moment during the day,
hence they are more prone to be affected with a noise
component of the atmospheric dynamics, and more dif-
ficult to determine.

– In Sect. 4.1, we pointed out that nonlinearity in the
Mediterranean area seems to be significantly weaker
than for the rest of Europe. Here, a similar rule does
not apply and there is no clear connection between the
geographic position of the station and the degree of ex-
hibited nonlinearity, as even geographically close sta-
tions exhibited quite a different behavior in a number of
cases.

5 Discussion

The presented analyses, carried out for different tasks and
various series, do not identify any of the tested nonlinear
methods to be definitely superior to the others. It is, however,
obvious that in most cases the LLM, MLP NN and RBF NN
methods outperformed multiple linear regression. Applica-
tion of nonlinear methods seems, therefore, to be useful for
meteorological time series analysis at synoptic time scales,
but the issue remains as to which one of them should be
used preferably. Aside from the performance itself, attention
should also be paid to the application properties of the con-
testants. Advantages and drawbacks of individual methods
may be summarized as follows:

– Method of local linear models’advantage is that its use
need not be preceded by the potentially time-consuming
training of weights. On the other hand, the execution
itself takes longer than for the already trained NNs, due
to the search for nearest neighbors, which needs to be
carried out for every processed state. This method is
faster than both types of NNs when applied just once for
a given setting, as we did in order to obtain the results
for Figs. 4 and 5. Its speed also makes estimation of
suitable parameters (specifically,N) by a trial-and-error
technique easier.

– MLP s are the most frequently used nonlinear technique
of the tested ones, which is an advantage by itself, due
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to support in many existing software applications. Their
features are well documented and thoroughly discussed
by a number of authors (among others Haykin, 1999;
Principe et al., 2000). Perhaps the most severe draw-
back of MLPs is the possibility that the learning proce-
dure will end in a local minimum of the error function
instead of reaching the global one. The seriousness of
this problem can be reduced by means of repeated train-
ing or by application of a global minimum search tech-
nique (such as the one used by Casaioli et al., 2003),
but usually at the cost of increased training time. There
is also the possibility of overtraining, when the learn-
ing procedure runs for too long a time, and the network
becomes overoptimized for the description of the cases
from the learning set, thus losing its ability to gener-
alize. None of these problems is unsolvable, but they
cause the application of MLPs to be potentially tricky,
with many nontrivial decisions to be made and the learn-
ing process which needs to be supervised.

– RBF NNs do not suffer from the “local minimum trap”
problem (at least not their form that we used here), be-
cause the supervised optimization of the weights to the
output layer can be treated as a linear problem. Certain
variations of the results can arise from the random se-
lection of the RBF centers, but these were very small in
our case. There is also no need to worry about the net-
work becoming overtrained. Nonetheless, it is still pos-
sible to overfit the network in the sense of too many free
parameters (when too many hidden neurons are used).
Training of RBF NNs is usually faster than that of MLPs
(especially considering the need for repeated training of
MLPs).

Therefore, the RBF NNs and LLM method can offer better
application properties than MLPs in many respects. Consid-
ering their relatively easy implementation, we believe that
these methods can be recommended as a worthy alternative
to MLPs.

The error and nonlinearity maps in Figs. 4, 5 and 8 to 10
offer some insight into the geographic structure of spatiotem-
poral relations between the atmospheric variables, but they
should be interpreted carefully. For prediction (Figs. 4 and
5), the fact that the reanalysis and not measured data was
used may be partly responsible for the character of the ob-
served structures. There is also an issue of selection of the
input variables – the presented results were obtained for one
specific pattern of predictors, and it can be argued that the
maps could change if a different one was used. We repeated
the tests for various sets of predictors, differing in both type
and number of variables used, and although the details of the
maps changed, the basic geographic structure of nonlinearity
seemed quite robust and unaffected by the modification of
the computation settings. There still was an area of distinct
nonlinearity over continental Europe, more apparent in win-
ter than in summer, while over the Mediterranean and North-
ern Africa, nonlinearity was weaker. These results suggest

that the nonlinear character of the climate system is strongly
reflected in the atmospheric time series in the midlatitudes,
and that the relations between them cannot be fully described
by linear mappings. In the tropical areas south of Europe, a
purely linear description seems more sufficient.

Interpretation of the downscaling tests needs to be done
with respect to their possible dependence on the tested sta-
tions’ local conditions. The observed profound differences
between even close stations suggest that conclusions about
the skill and suitability of time series analysis methods, ob-
tained for a limited area or a single station, cannot be au-
tomatically generalized and applied to different locations.
Noteworthy is the seasonal variance of the results, which im-
plies the presence of a strong detectable nonlinear component
in the relations between predictors and predictand in winter,
and a rather linear character of these relations in summer.

It is also interesting that the effective nonlinearity is gener-
ally weaker for downscaling than for forecasting tasks (com-
pare results in Figs. 5 and 8). This does not necessarily mean
that the relations between predictors and predictand are in-
trinsically more linear in the case of downscaling. The reason
for this difference may lie in the fact that while the forecast-
ing tests were done solely on reanalysis data, which are rel-
atively smooth by construction, downscaling predictands are
local measurements. They reflect the situation in just a very
small area, so it is possible for them to contain a stronger
high-dimensional component, which may be nonlinear in its
nature, but has a character of noise and is too complex to be
described by any time series analysis method, even a nonlin-
ear one.

6 Conclusions

Our primary intention was to make a comparison of three
nonlinear methods and to identify the one most suitable for
the analysis of climatic data at synoptic time scales. It turned
out that the most commonly applied nonlinear method, multi-
layer perceptron neural network, may not necessarily be the
best possible choice. The other two tested nonlinear tech-
niques, method of local linear models and radial basis func-
tion neural network, performed equally well, even better in
many cases, they do not suffer from MLPs’ drawbacks, such
as the problem of local minima of the error function or the
danger of overtraining, and their implementation is relatively
easy. We can therefore recommend them as a worthy alter-
native to MLPs.

The constructed maps of the geographical structure of er-
rors and effective nonlinearity revealed profound spatial vari-
ations of the results. In case of prediction, a distinct con-
trast between the temperate zone (stronger nonlinearity) and
the subtropical and tropical zones (weaker nonlinearity) was
found, especially in summer. As for downscaling tests, we
were not able to identify any apparent large-scale geograph-
ical distribution of nonlinearity, probably because the results
for individual stations were influenced by the local condi-
tions at least as much as by the large-scale climate dynamics.
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For both forecasting and downscaling, profound seasonal
dependence of the results was observed, with errors being
larger and nonlinearity being stronger in winter than in sum-
mer in most locations.
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