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Abstract. No proven method is currently available for the
reliable short time prediction of earthquakes (minutes to
months). However, it is possible to make probabilistic haz-
ard assessments for earthquake risk. In this paper we discuss
a new approach to earthquake forecasting based on a pattern
informatics (PI) method which quantifies temporal variations
in seismicity. The output, which is based on an association
of small earthquakes with future large earthquakes, is a map
of areas in a seismogenic region (“hotspots”) where earth-
quakes are forecast to occur in a future 10-year time span.
This approach has been successfully applied to California, to
Japan, and on a worldwide basis. Because a sharp decision
threshold is used, these forecasts are binary–an earthquake
is forecast either to occur or to not occur. The standard ap-
proach to the evaluation of a binary forecast is the use of the
relative (or receiver) operating characteristic (ROC) diagram,
which is a more restrictive test and less subject to bias than
maximum likelihood tests. To test our PI method, we made
two types of retrospective forecasts for California. The first
is the PI method and the second is a relative intensity (RI)
forecast based on the hypothesis that future large earthquakes
will occur where most smaller earthquakes have occurred in
the recent past. While both retrospective forecasts are for the
ten year period 1 January 2000 to 31 December 2009, we
performed an interim analysis 5 years into the forecast. The
PI method out performs the RI method under most circum-
stances.

1 Introduction

Earthquakes are the most feared of natural hazards because
they occur without warning. Hurricanes can be tracked,
floods develop gradually, and volcanic eruptions are pre-
ceded by a variety of precursory phenomena. Earthquakes,
however, generally occur without any warning. There have
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been a wide variety of approaches applied to the forecast-
ing of earthquakes (Mogi, 1985; Turcotte, 1991; Lomnitz,
1994; Keilis-Borok, 2002; Scholz, 2002; Kanamori, 2003).
These approaches can be divided into two general classes;
the first is based on empirical observations of precursory
changes. Examples include precursory seismic activity, pre-
cursory ground motions, and many others. The second ap-
proach is based on statistical patterns of seismicity. Neither
approach has been able to provide reliable short-term fore-
casts (days to months) on a consistent basis.

Although short-term predictions are not available, long-
term seismic-hazard assessments can be made. A large frac-
tion of all earthquakes occur in the vicinity of plate bound-
aries, although some do occur in plate interiors. It is also
possible to assess the long-term probability of having an
earthquake of a specified magnitude in a specified region.
These assessments are primarily based on the hypothesis that
future earthquakes will occur in regions where past earth-
quakes have occurred (Frankel, 1995; Kossobokov et al.,
2000). Specifically, the rate of occurrence of small earth-
quakes in a region can be analyzed to assess the probability
of occurrence of much larger earthquakes.

The principal focus of this paper is a new approach to
earthquake forecasting (Rundle et al., 2002; Tiampo et al.,
2002b,a; Rundle et al., 2003; Appendix C). Our method
does not predict the exact times and locations of earthquakes,
but it does forecast the regions (hotspots) where earthquakes
are most likely to occur in the relatively near future (typ-
ically ten years). The objective is to reduce the areas of
earthquake risk relative to those given by long-term hazard
assessments. Our approach is based on pattern informatics
(PI), a technique that quantifies temporal variations in seis-
micity patterns. The result is a map of areas in a seismogenic
region (hotspots) where earthquakes are likely to occur dur-
ing a specified period in the future. A forecast for California
was published by our group in 2002 (Rundle et al., 2002).
Subsequently, sixteen of the eighteen California earthquakes
with magnitudes M≥5 occurred in or immediately adjacent
to the resulting hotspots. A forecast for Japan, presented in
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Tokyo in early October 2004, successfully forecast the loca-
tion of the M=6.8 Niigata earthquake that occurred on 23
October 2004. A global forecast, presented at the early De-
cember 2004 meeting of the American Geophysical Union,
successfully forecast the locations of the 23 December 2004,
M=8.1 Macquarie Island earthquake, and the 26 December
2004 M=9.0 Sumatra earthquake. Before presenting further
details of these studies we will give a brief overview of the
current state of earthquake prediction and forecasting.

2 Empirical approaches

Empirical approaches to earthquake prediction rely on lo-
cal observations of some type of precursory phenomena. In
the near vicinity of the earthquake to be predicted, it has
been suggested that one or more of the following phenom-
ena may indicate a future earthquake (Mogi, 1985; Turcotte,
1991; Lomnitz, 1994; Keilis-Borok, 2002; Scholz, 2002;
Kanamori, 2003): 1) precursory increase or decrease in seis-
micity in the vicinity of the origin of a future earthquake
rupture, 2) precursory fault slip that leads to surface tilt
and/or displacements, 3) electromagnetic signals, 4) chem-
ical emissions, and 5) changes in animal behavior. Similarly,
it has been suggested that precursory increases in seismic
activity over large regions may indicate a future earthquake
as well (Prozoroff, 1975; Dobrovolsky et al., 1979; Keilis-
Borok et al., 1980; Press and Allen, 1995).

Examples of successful near-term predictions of future
earthquakes have been rare. A notable exception was the
prediction of the M=7.3 Haicheng earthquake in northeast
China that occurred on 4 February 1975. This prediction led
to the evacuation of the city which undoubtedly saved many
lives. The Chinese reported that the successful prediction
was based on foreshocks, groundwater anomalies, and an-
imal behavior. Unfortunately, a similar prediction was not
made prior to the magnitude M=7.8 Tangshan earthquake
that occurred on 28 July 1976 (Utsu, 2003). Official reports
placed the death toll in this earthquake at 242 000, although
unofficial reports placed it as high as 655 000.

In order to thoroughly test for the occurrence of direct pre-
cursors the United States Geological Survey (USGS) initi-
ated the Parkfield (California) Earthquake Prediction Exper-
iment in 1985 (Bakun and Lindh, 1985; Kanamori, 2003).
Earthquakes on this section of the San Andreas had occurred
in 1857, 1881, 1901, 1922, 1934, and 1966. It was expected
that the next earthquake in this sequence would occur by the
early 1990’s, and an extensive range of instrumentation was
installed. The next earthquake in the sequence finally oc-
curred on 28 September 2004. No precursory phenomena
were observed that were significantly above the background
noise level. Although the use of empirical precursors cannot
be ruled out, the future of those approaches does not appear
to be promising at this time.

3 Statistical and statistical physics approaches

A variety of studies have utilized variations in seismicity over
relatively large distances to forecast future earthquakes. The
distances are large relative to the rupture dimension of the
subsequent earthquake. These approaches are based on the
concept that the earth’s crust is an activated thermodynamic
system (Rundle et al., 2003). Among the evidence for this be-
havior is the continuous level of background seismicity in all
seismographic areas. About a million magnitude two earth-
quakes occur each year on our planet. In southern Califor-
nia about a thousand magnitude two earthquakes occur each
year. Except for the aftershocks of large earthquakes, such
as the 1992 M=7.3 Landers earthquake, this seismic activity
is essentially constant over time. If the level of background
seismicity varied systematically with the occurrence of large
earthquakes, earthquake forecasting would be relatively easy.
This, however, is not the case.

There is increasing evidence that there are systematic pre-
cursory variations in some aspects of regional seismicity. For
example, it has been observed that there is a systematic vari-
ation in the number of magnitude M=3 and larger earth-
quakes prior to at least some magnitude M=5 and larger
earthquakes, and a systematic variation in the number of
magnitude M=5 and larger earthquakes prior to some mag-
nitude M=7 and larger earthquakes. The spatial regions as-
sociated with this phenomena tend to be relatively large, sug-
gesting that an earthquake may resemble a phase change with
an increase in the “correlation length” prior to an earthquake
(Bowman et al., 1998; Jauḿe and Sykes, 1999). There have
also been reports of anomalous quiescence in the source re-
gion prior to a large earthquake, a pattern that is often called
a “Mogi Donut” (Mogi, 1985; Kanamori, 2003; Wyss and
Habermann, 1988; Wyss, 1997).

Many authors have noted the occurrence of a relatively
large number of intermediate-sized earthquakes (foreshocks)
prior to a great earthquake. A specific example was the se-
quence of earthquakes that preceded the 1906 San Francisco
earthquake (Sykes and Jauḿe, 1990). This seismic activa-
tion has been quantified as a power law increase in seismicity
prior to earthquakes (Bowman et al., 1998; Jauḿe and Sykes,
1999; Bufe and Varnes, 1993; Bufe et al., 1994; Brehm and
Braile, 1998, 1999; Main, 1999; Robinson, 2000; Bowman
and King, 2001; Yang et al., 2001; King and Bowman, 2003;
Bowman and Sammis, 2004; Sammis et al., 2004). Unfortu-
nately the success of these studies has depended on knowing
the location of the subsequent earthquake.

A series of statistical algorithms to make intermediate term
earthquake predictions have been developed by a Russian
group under the direction of V. I. Keilis-Borok using pattern
recognition techniques (Keilis-Borok, 1990, 1996). Seismic-
ity in various circular regions was analyzed. Based primar-
ily on seismic activation, earthquake alarms were issued for
one or more regions, with the alarms generally lasting for
five years. Alarms have been issued regularly since the mid
1980’s and scored two notable successes: the prediction of
the 1988 Armenian earthquake and the 1989 Loma Prieta
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earthquake. While a reasonably high success rate has been
achieved, there have been some notable misses including the
recent M=9.0 Sumatra and M=8.1 Macquerie Island earth-
quakes.

More recently, this group has used chains of premoni-
tory earthquakes as the basis for issuing alarms (Shebalin
et al., 2004; Keilis-Borok et al., 2004). This method success-
fully predicted the M=6.5, 22 December 2003 San Simeon
(California) earthquake and the M=8.1, 25 September 2003
Tokachi-oki, (Japan) earthquake with lead times of six and
seven months respectively. However, an alarm issued for
southern California, valid during the spring and summer of
2004, was a false alarm.

4 Chaos and forecasting

Earthquakes are caused by displacements on preexisting
faults. Most earthquakes occur at or near the boundaries be-
tween the near-rigid plates of plate tectonics. Earthquakes in
California are associated with the relative motion between
the Pacific plate and the North American plate. Much of
this motion is taken up by displacements on the San An-
dreas fault, but deformation and earthquakes extend from the
Rocky Mountains on the east into the Pacific Ocean adjacent
to California on the west. Clearly this deformation and the
associated earthquakes are extremely complex.

Slider-block models are considered to be simple analogs
to seismicity. A pair of interacting slider-blocks have been
shown to exhibit classical chaotic behavior (Turcotte, 1997).
This low-order behavior is taken to be evidence for the
chaotic behavior of seismicity in the same way that the
chaotic behavior of the low-order Lorentz equations is taken
as evidence for the chaotic behavior of weather and climate.
Some authors (Geller et al., 1997; Geller, 1997) have argued
that this chaotic behavior precludes the prediction of earth-
quakes. However, weather is also chaotic, but forecasts can
be made. Weather forecasts are probabilistic in the sense that
weather cannot be predicted exactly. One such example is
the track of a hurricane. Probabilistic forecasts of hurricane
tracks are routinely made; sometimes they are extremely ac-
curate while at other times they are not. Another example of
weather forecasting is the forecast of El Niño events. Fore-
casting techniques based on pattern recognition and principle
components of the sea surface temperature fluctuation time
series have been developed that are quite successful in fore-
casting future El Nĩnos, but again they are probabilistic in
nature (Chen et al., 2004). It has also been argued (Sykes
et al., 1999) that chaotic behavior does not preclude the prob-
abilistic forecasting of future earthquakes. Over the past five
years our group has developed (Rundle et al., 2002; Tiampo
et al., 2002b,a; Rundle et al., 2003; Holliday et al., 2005a)
a technique for forecasting the locations where earthquakes
will occur based on pattern informatics (PI). This type of
approach has close links to principle component analysis,
which has been successfully used for the forecasting of El
Niños.

5 The PI method

Seismic networks provide the times and locations of earth-
quakes over a wide range of scales. One of the most sensitive
networks has been deployed over southern California and the
resulting catalog is readily available. Our objective has been
to analyze the historical seismicity for anomalous behavior
that would provide information on the occurrence of future
earthquakes. At this point we are not able to forecast the
times of future earthquakes with precision. However, our ap-
proach does appear to select the regions where earthquakes
are most likely to occur during a future time window. At the
present time, this time window is typically taken to be ten
years, although it appears that it is possible to utilize shorter
time windows.

Our approach divides the seismogenic region to be stud-
ied into a grid of square boxes whose size is related to the
magnitude of the earthquakes to be forecast. The rates of
seismicity in each box are studied to quantify anomalous be-
havior. The basic idea is that any seismicity precursors rep-
resent changes, either a local increase or decrease of seismic
activity, so our method identifies the locations in which these
changes are most significant during a predefined change in-
terval. The subsequent forecast interval is the decadal time
window during which the forecast is valid. The box size is se-
lected to be consistent with the size of the earthquakes being
forecasted (Bowman et al., 1998), and the minimum earth-
quake magnitude considered is the lower limit of sensitivity
and completeness of the network in the region under consid-
eration.

While a detailed explanation of the PI method that we have
used for earthquake forecasting is included in AppendixA, a
compact utilization is given as follows:

1. The region of interest is divided intoNB square boxes
with linear dimension1x. Boxes are identified by a
subscripti and are centered atxi . For each box, there is
a time seriesNi(t), which is the instantaneous number
of earthquakes per unit time at timet larger than the
lower cut-off magnitudeMc. The time series in boxi is
defined between a base timetb and the present timet .

2. All earthquakes in the region of interest with magni-
tudes greater than a lower cutoff magnitudeMc are in-
cluded. The lower cutoff magnitudeMc is specified in
order to ensure completeness of the data through time,
from an initial timet0 to a final timet2.

3. Three time intervals are considered:

(a) A reference time interval fromtb to t1.

(b) A second time interval fromtb to t2, t2>t1. The
change interval over which seismic activity changes
are determined is thent2−t1. The timetb is chosen
to lie betweent0 andt1. Typically we taket0=1932,
t1=1990, andt2=2000. The objective is to quantify
anomalous seismic activity in the change intervalt1
to t2 relative to the reference intervaltb to t1.
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(c) The forecast time intervalt2 to t3, for which the
forecast is valid. We take the change and forecast
intervals to have the same length. For the above
example,t3=2010.

4. The seismic intensity in boxi, Ii(tb, t), between two
timestb<t , can then be defined as the average number
of earthquakes with magnitudes greater thanMc that oc-
cur in the box per unit time during the specified time in-
tervaltb to t . Therefore, using discrete notation, we can
write:

Ii(tb, t) =
1

t − tb

t∑
t ′=tb

Ni(t
′), (1)

where the sum is performed over increments of the time
series, say days.

5. In order to compare the intensities from different time
intervals, we require that they have the same statistical
properties. We therefore normalize the seismic intensi-
ties by subtracting the mean seismic activity of all boxes
and dividing by the standard deviation of the seismic ac-
tivity in all boxes. The statistically normalized seismic
intensity of boxi during the time intervaltb to t is then
defined by

Îi(tb, t) =
Ii(tb, t)− < I (tb, t) >

σ(tb, t)
, (2)

where< I (tb, t)> is the mean intensity averaged over
all the boxes andσ(tb, t) is the standard deviation of
intensity over all the boxes.

6. Our measure of anomalous seismicity in boxi is the dif-
ference between the two normalized seismic intensities:

1Ii(tb, t1, t2) = Îi(tb, t2) − Îi(tb, t1). (3)

This measure is motivated by the assumption of pure
phase dynamics (Rundle et al., 2000a,b) that important
changes in seismicity will be given by the change in the
anomalous seismicity over time.

7. To reduce the relative importance of random fluctua-
tions (noise) in seismic activity, we compute the average
change in intensity,1Ii(t0, t1, t2) over all possible pairs
of normalized intensity maps having the same change
interval:

1Ii(t0, t1, t2) =
1

t1 − t0

t1∑
tb=t0

1Ii(tb, t1, t2), (4)

where the sum is performed over increments of the time
series, which here are days.

8. We hypothesize that the probability of a future earth-
quake in boxi, Pi(t0, t1, t2, ), is proportional to the
square of the average intensity change:

Pi(t0, t1, t2, ) ∝ 1Ii(tb, t1, t2)
2
. (5)

The constant of proportionality can be determined by re-
quiring unit probability but is not important to the anal-
ysis.

9. To identify anomalous regions, we wish to compute the
change in the probabilityPi(t0, t1, t2, ) relative to the
background so that we subtract the mean probability
over all boxes. We denote this change in the probability
by

1Pi(t0, t1, t2) = Pi(t0, t1, t2)− < Pi(t0, t1, t2) >, (6)

where<Pi(t0, t1, t2)> is the background probability for
a large earthquake.

Hotspots are defined to be the regions where
1Pi(t0, t1, t2) is positive. In these regions,Pi(t0, t1, t2) is
larger than the average value for all boxes (the background
level). Note that since the intensities are squared in defining
probabilities the hotspots may be due to either increases of
seismic activity during the change time interval (activation)
or due to decreases (quiescence). We hypothesize that
earthquakes with magnitudes larger thanMc+2 will occur
preferentially in hotspots during the forecast time intervalt2
to t3.

6 Applications of the PI method

The PI method was first applied to seismicity in southern
California and adjacent regions (32◦ to 37◦ N lat, 238◦ to
245◦ E long). This region was divided into a grid of 3500
boxes with1x=0.1◦ (11 km). Consistent with the sensi-
tivity of the southern California seismic network, the lower
magnitude cutoff was taken to be M=3. The initial time was
t0=1932, the change interval was fromt1=1990 tot2=2000,
and the forecast interval was fromt2=2000 tot3=2010. The
initial studies for California were published in 2002 (Rundle
et al., 2002), the results are reproduced in Fig.1. The col-
ored regions are the hotspots defined to be the boxes where
1P is positive. This forecast of where earthquakes would
likely occur was considered to be valid for the forecast in-
terval from 2000 to 2010 and would be applicable for earth-
quakes with M=5 and larger. Since 1 January 2000, eighteen
significant earthquakes have occurred in the test region. We
consider a significant earthquake to be an event that was ini-
tially assigned a magnitude 5 or larger. These are also shown
in Fig. 1, and information on these earthquakes is given in
Table1. We consider the forecast to be successful if the epi-
center of the earthquake lies within a hotspot box or in one
of the eight adjoining boxes (Moore, 1962). Sixteen of the
eighteen earthquakes were successfully forecast.
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Fig. 1. Application of the PI method to southern California. Col-
ored areas are the forecast hotspots for the occurrence of M≥5
earthquakes during the period 2000-2010 derived using the PI
method. The color scale gives values of the log10(P/Pmax). Also
shown are the locations of the eighteen earthquakes with M≥5 that
have occurred in the region since 1 January 2000. Sixteen of the
eighteen earthquakes were successfully forecast. More details of
the earthquakes are given in Table1.

The second area to which the PI method was applied was
Japan. The forecast hotspots for the Tokyo region (33◦ to
38◦ N lat, 136◦ to 142◦ W long) are given in Fig.2. The
initial time wast0=1965, and the change and forecast inter-
vals were the same as those used for California. Between 1
January 2000 and 14 October 2004, 99 earthquakes occurred
and 91 earthquakes were successfully forecast. This forecast
was presented at the International Conference on Geodynam-
ics, 14–16 October 2004, Tokyo by one of the authors (JBR).
Subsequently the Niigata earthquake (M=6.8) occurred on
23 October 2004. This earthquake and its subsequent M≥5
aftershocks were successfully forecast.

The PI method has also been applied on a worldwide
basis. In this case 1◦×1◦ boxes were considered,1x=1◦

(110 km). Consistent with the sensitivity of the global seis-
mic network the lower magnitude cutoff was taken to be
Mc = 5. The initial time wast0=1965; the change and fore-
cast intervals were the same as above. The resulting map
of hotspots was presented by two of the authors (DLT and
JRH) at the Fall Meeting of the American Geophysical Union
on 14 December 2004 (abstracts: AGUF2004NG24B-01 and
AGUF2004NG54A-08). This map is given in Fig.3. This
forecast of where earthquakes would occur was considered
to be valid for the period 2000 to 2010 and would be ap-
plicable for earthquakes with magnitudes greater than 7.0.

Table 1. Earthquakes with M≥5 that occurred in the California test
region since 1 January 2000. Sixteen of these eighteen earthquakes
were successfully forecast. The two missed events are marked with
an asterisk.

Event Magnitude Local Time

1 Big Bear I M=5.1 10 Feb. 2001
2 Coso M=5.1 17 July 2001
3 Anza I M=5.1 31 Oct. 2001
4 Baja M=5.7 22 Feb. 2002
5 Gilroy M=5.0 14 May 2002
6 Big Bear II M=5.4 22 Feb. 2003
7 San Simeon? M=6.5 22 Dec. 2003
8 San Clemente Island? M=5.2 15 June 2004
9 Bodie I M=5.5 18 Sep. 2004
10 Bodie II M=5.4 18 Sep. 2004
11 Parkfield I M=6.0 28 Sep. 2004
12 Parkfield II M=5.2 29 Sep. 2004
13 Arvin M=5.0 29 Sep. 2004
14 Parkfield III M=5.0 30 Sep. 2004
15 Wheeler Ridge M=5.2 16 April 2005
16 Anza II M=5.2 12 June 2005
17 Yucaipa M=4.9 16 June 2005
18 Obsidian Butte M=5.1 2 Sep. 2005

Between 1 January 2000 and 14 December 2004 there were
sixty eight M≥7 earthquakes worldwide; fifty seven of these
earthquakes occurred within a hotspot or adjoining boxes.
Subsequent to the meeting presentation, the M=8.1 Mac-
quarie Island earthquake occurred on 23 December 2004 and
the M=9.0 Sumatra earthquake occurred on 26 December
2004. The epicenters of both earthquakes were successfully
forecast.

7 Forecast verification

Previous tests of earthquake forecasts have emphasized the
likelihood test (Kagan and Jackson, 2000; Rundle et al.,
2002; Tiampo et al., 2002b; Holliday et al., 2005a). These
tests have the significant disadvantage that they are overly
sensitive to the least probable events. For example, con-
sider two forecasts. The first perfectly forecasts 99 out of
100 events but assigns zero probability to the last event. The
second assigns zero probability to all 100 events. Under a
log-likelihood test, both forecasts will have the same skill
score of−∞. Furthermore, a naive forecast that assigns uni-
form probability to all possible sites will always score higher
than a forecast that misses only a single event but is otherwise
superior. For this reason, likelihood tests are more subject to
unconscious bias. Other methods of evaluating earthquake
forecasts are suggested byHarte and Vere-Jones(2005) and
Holliday et al.(2005b).

An extensive review on forecast verification in the atmo-
spheric sciences has been given byJolliffe and Stephenson
(2003). The wide variety of approaches that they consider
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Fig. 2. Application of the PI method to central Japan. Colored
areas are the forecast hotspots for the occurrence of M≥5 earth-
quakes during the period 2000-2010 derived using the PI method.
The color scale gives values of the log10(P/Pmax). Also shown are
the locations of the 99 earthquakes with M≥5 that have occurred in
the region since 1 January 2000.

are directly applicable to earthquake forecasts as well. The
earthquake forecasts considered in this paper can be viewed
as binary forecasts by considering the events (earthquakes)
as being forecast either to occur or not to occur in a given
box. We consider that there are four possible outcomes for
each box, thus two ways to classify each red, hotspot, box,
and two ways to classify each white, non-hotspot, box:

1. An event occurs in a hotspot box or within the Moore
neighborhood of the box (the Moore neighborhood is
comprised of the eight boxes surrounding the forecast
box). This is a success.

2. No event occurs in a white non-hotspot box. This is also
a success.

3. No event occurs in a hotspot box or within the Moore
neighborhood of the hotspot box. This is a false alarm.

4. An event occurs in a white, non-hotspot box that is not
within the Moore neighborhood of a hotspot box. This
is a failure to forecast.

We note that these rules tend to give credit, as successful
forecasts, for events that occur very near hotspot boxes. We
have adopted these rules in part because the grid of boxes is
positioned arbitrarily on the seismically active region, thus
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Fig. 3. World-wide application of the PI method. Colored areas are
the forecast hotspots for the occurrence of M≥7 earthquakes during
the period 2000-2010 derived using the PI method. The color scale
gives values of the log10(P/Pmax). Also shown are the locations
of the sixty eight earthquakes with M≥7 that have occurred in the
region since 1 January 2000.

we allow a margin of error of±1 box dimension. In addi-
tion, the events we are forecasting are large enough so that
their source dimension approaches, and can even exceed, the
box dimension meaning that an event might have its epicen-
ter outside a hotspot box, but the rupture might then propa-
gate into the box. Other similar rules are possible but we have
found that all such rules basically lead to similar results.

The standard approach to the evaluation of a binary fore-
cast is the use of a relative operating characteristic (ROC) di-
agram (Swets, 1973; Mason, 2003). Standard ROC diagrams
consider the fraction of failures-to-predict and the fraction of
false alarms. This method evaluates the performance of the
forecast method relative to random chance by constructing
a plot of the fraction of failures to predict against the frac-
tion of false alarms for an ensemble of forecasts.Molchan
(1997) has used a modification of this method to evaluate the
success of intermediate term earthquake forecasts.

The binary approach has a long history, over 100 years, in
the verification of tornado forecasts (Mason, 2003). These
forecasts take the form of a tornado forecast for a specific
location and time interval, each forecast having a binary set
of possible outcomes. For example, during a given time win-
dow of several hours duration, a forecast is issued in which
a list of counties is given with a statement that one or more
tornadoes will or will not occur. A 2×2 contingency tableis
then constructed, the top row contains the counties in which
tornadoes are forecast to occur and the bottom row contains
counties in which tornadoes are forecast to not occur. Sim-
ilarly, the left column represents counties in which torna-
does were actually observed, and the right column represents
counties in which no tornadoes were observed.

With respect to earthquakes, our forecasts take exactly this
form. A time window is proposed during which the forecast
of large earthquakes having a magnitude above some min-
imum threshold is considered valid. An example might be
a forecast of earthquakes larger than M=5 during a period
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of five or ten years duration. A map of the seismically ac-
tive region is then completely covered (“tiled”) with boxes
of two types: boxes in which the epicenters of at least one
large earthquake are forecast to occur and boxes in which
large earthquakes are forecast to not occur. In other types of
forecasts, large earthquakes are given some continuous prob-
ability of occurrence from 0% to 100% in each box (Kagan
and Jackson, 2000). These forecasts can be converted to the
binary type by the application of a decision threshold. Boxes
having a probability below the threshold are assigned a fore-
cast rating ofnon-occurrenceduring the time window, while
boxes having a probability above the threshold are assigned
a forecast rating ofoccurrence. A high threshold value may
lead to manyfailures to predict(events that occur where no
event is forecast), but fewfalse alarms(an event is forecast at
a location but no event occurs). The level at which the deci-
sion threshold is set is then a matter of public policy specified
by emergency planners, representing a balance between the
prevalence of failures to predict and false alarms.

8 Binary earthquake forecast verification

To illustrate this approach to earthquake forecast verification,
we have constructed two types of retrospective binary fore-
casts for California. The first type of forecast utilizes the PI
method described above. We apply the method to southern
California and adjacent regions (32◦ to 38.3◦ N lat, 238◦ to
245◦ E long) using a grid of boxes with1x=0.1◦ and a lower
magnitude cutoffMc=3.0. For this retrospective forecast we
take the initial timet0=1932, the change intervalt1=1989
to t2=2000, and the forecast intervalt2=2000 to t3=2010
(Rundle et al., 2002; Tiampo et al., 2002b). In the analysis
given above we considered regions with1P positive to be
hotspots. The PI forecast under the above conditions with
1P>0 is given in Fig.4b. Hotspots include 127 of the 5040
boxes considered. This forecast corresponds to that given in
Fig. 1. The threshold for hotspot activation can be varied
by changing the threshold value for1P . A forecast using
a higher threshold value is given in Fig.4a. Hotspots here
include only 29 of the 5040 boxes considered.

An alternative approach to earthquake forecasting is to use
the rate of occurrence of earthquakes in the past. We refer
to this type of forecast as arelative intensity(RI) forecast.
In such a forecast, the study region is tiled with boxes of
size 0.1◦

×0.1◦. The number of earthquakes with magnitude
M≥3.0 in each box down to a depth of 20 km is determined
over the time period fromt0=1932 tot2=2000. The RI score
for each box is then computed as the total number of earth-
quakes in the box in the time period divided by the value
for the box having the largest value. A threshold value in
the interval[0, 1] is then selected. Large earthquakes having
M≥5 are then considered possible only in boxes having an
RI value larger than the threshold. The remaining boxes with
RI scores smaller than the threshold represent sites at which
large earthquakes are forecast to not occur. The physical jus-
tification for this type of forecast is that large earthquakes
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Fig. 4. Retrospective application of the PI and RI methods for
southern California as a function of false alarm rate. Red boxes are
the forecast hotspots for the occurrence of M≥5 earthquakes during
the period 2000 to 2005. Also shown are the locations of the M≥5
earthquakes that occurred in this region during the forecast period.
In (a), a threshold value was chosen such thatF≈0.005. In (b), a
threshold value was chosen such thatF≈0.021.

are considered most likely to occur at sites of high seismic
activity.

In order to make a direct comparison of the RI forecast
with the PI forecast, we select the threshold for the RI fore-
cast to give the same box coverage given for the PI forecast
in Figs.4a and4b, i.e. 29 boxes and 127 boxes respectively.
Included in all figures are the earthquakes with M≥5 that
occurred between 2000 and 2005 in the region under consid-
eration.

9 Contingency tables and ROC diagrams

The first step in our generation of ROC diagrams is the con-
struction of the 2×2 contingency table for the PI and RI fore-
cast maps given in Fig.4. The hotspot boxes in each map
represent the forecast locations. A hotspot box upon which
at leastone large future earthquake during the forecast pe-
riod occurs is counted as asuccessful forecast. A hotspot
box upon whichno large future earthquake occurs during the
forecast period is counted as anunsuccessful forecast, or al-
ternately, afalse alarm. A white box upon whichat leastone
large future earthquake during the forecast period occurs is
counted as afailure to forecast. A white box upon whichno
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Table 2. Contingency tables as a function of false alarm rate. In
(a), a threshold value was chosen such thatF ≈ 0.005. In (b), a
threshold value was chosen such thatF ≈ 0.021.

(a)

Pattern informatics (PI) forecast

Forecast Observed
Yes No Total

Yes (a) 4 (b) 25 29
No (c) 13 (d) 4998 5011

Total 17 5023 5040

Relative intensity (RI) forecast

Forecast Observed
Yes No Total

Yes (a) 2 (b) 27 29
No (c) 14 (d) 4997 5011

Total 16 5024 5040

(b)

Pattern informatics (PI) forecast

Forecast Observed
Yes No Total

Yes (a) 23 (b) 104 127
No (c) 9 (d) 4904 4913

Total 32 5008 5040

Relative intensity (RI) forecast

Forecast Observed
Yes No Total

Yes (a) 20 (b) 107 127
No (c) 10 (d) 4903 4913

Total 30 5010 5040

large future earthquake occurs during the forecast period is
counted as asuccessful forecast of non-occurrence.

Verification of the PI and RI forecasts proceeds in exactly
the same was as for tornado forecasts. For a given number of
hotspot boxes, which is controlled by the value of the prob-
ability threshold in each map, the contingency table (see Ta-
ble 2) is constructed for both the PI and RI maps. Values for
the table elementsa (Forecast=yes, Observed=yes),b (Fore-
cast=yes, Observed=no), c (Forecast=no, Observed=yes),
and d (Forecast=no, Observed=no) are obtained for each
map. The fraction of colored boxes, also called theproba-
bility of forecast of occurrence, is r=(a+b)/N , where the
total number of boxes isN=a+b+c+d. The hit rate is
H=a/(a+c) and is the fraction of large earthquakes that oc-
cur on a hotspot. Thefalse alarm rateis F=b/(b+d) and is
the fraction of non-observed earthquakes that are incorrectly
forecast.

To analyze the information in the PI and RI maps, the
standard procedure is to consider all possible forecasts to-
gether. These are obtained by increasingF from 0 (corre-
sponding to no hotspots on the map) to 1 (all active boxes
on the map are identified as hotspots). The plot ofH ver-
susF is the relative operating characteristic (ROC) diagram.
Varying the threshold value for both the PI and RI fore-
casts, we have obtained the values ofH and F given in
Fig. 5, blue for the PI forecasts and red for the RI fore-
casts. The results corresponding to the maps given in Fig.4
and the contingency tables given in Table2 are given by
the filled symbols. The forecast with 29 hotspot boxes
(Fig. 5a and Table2a) hasFPI=0.00498,HPI=0.235 and
FRI=0.00537,HRI=0.125. The forecast with 127 hotspot
boxes (Fig.5b and Table2b) hasFPI=0.0207,HPI=0.719
andFRI=0.0213,HRI=0.666. Also shown in Fig.5 is a gain
curve (green) defined by the ratio ofHPI (F ) to HRI (F ).
Gain values greater than unity indicate better performance
using the PI map than using the RI map. The horizontal
dashed line corresponds to zero gain. From Fig.5 it can be
seen that the PI approach outperforms (is above) the RI un-
der many circumstances and both outperform a random map,
whereH=F , by a large margin.

10 Discussion

The fundamental question is whether forecasts of the time
and location of future earthquakes can be accurately made. It
is accepted that long term hazard maps of the expected rate
of occurrence of earthquakes are reasonably accurate. But is
it possible to do better? Are there precursory phenomena that
will allow earthquakes to be forecast?

It is actually quite surprising that immediate local precur-
sory phenomena are not seen. Prior to a volcanic eruption,
increases in regional seismicity and surface movements are
generally observed. For a fault system, the stress gradually
increases until it reaches the frictional strength of the fault
and a rupture is initiated. It is certainly reasonable to hy-
pothesize that the stress increase would cause increases in
background seismicity and aseismic slip. In order to test
this hypothesis the Parkfield Earthquake Prediction Experi-
ment was initiated in 1985. The expected Parkfield earth-
quake occurred beneath the heavily instrumented region on
28 September 2004. No local precursory changes were ob-
served (Lindh, 2005).

In the absence of local precursory signals, the next ques-
tion is whether broader anomalies develop, and in particular
whether there is anomalous seismic activity. It is this ques-
tion that is addressed in this paper. Using a technique that
has been successfully applied to the forecasting of El Niño
we have developed a systematic pattern informatics (PI) ap-
proach to the identification of regions of anomalous seismic
activity. Applications of this technique to California, Japan,
and on a world-wide basis have successfully forecast the lo-
cation of future earthquakes. It must be emphasized that this
is not an earthquake prediction and does not state exactly
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Fig. 5. Relative operating characteristic (ROC) diagram. Plot of hit
rates,H , versus false alarm rates,F , for the PI forecast (blue) and
RI forecast (red). Also shown is the gain ratio (green) defined as
HPI (F )/HRI (F ). The filled symbols correspond to the threshold
values used in Fig.4 and Table2, solid circles for 29 hotspot boxes
and solid squares for 127 hotspot boxes. The horizontal dashed line
corresponds to zero gain.

when and where the next earthquake will occur. It is a fore-
cast of where future earthquakes are expected to preferen-
tially occur during a relatively long time window of ten years.
The objective is to reduce the possible future sites of earth-
quakes relative to a long term hazard assessment map.

Examination of the ROC diagrams indicates that the most
important and useful of the suite of forecast maps are those
with the least number of hotspot boxes, i.e. those with small
values of the false alarm rate,F . A relatively high propor-
tion of these hotspot boxes represent locations of future large
earthquakes, however these maps also have a larger number
of failures-to-forecast. Exactly which forecast map(s) to be
used will be a decision for policy-makers, who will be called
upon to balance the need for few false alarms against the de-
sire for the least number of failures-to-forecast.

Finally, we remark that the methods used to produce the
forecast maps described here can be extended and improved.
In it’s current state, the PI map is quite similar to the RI map.
We have found modifications to the procedures described in
Section 5 that allow the PI map to substantially outperform
the RI map as indicated by the respective ROC diagrams.
These methods are based on the approach of: 1) starting with
the RI map and introducing improvements using the steps
described for the PI method; and 2) introducing an additional
averaging step. This new method is outlined in AppendixB,
and a full analysis with results will be presented in a future
publication.

Appendix A Explanation of the PI method

Here we summarize the current PI method as described by
Rundle et al.(2003) andTiampo et al.(2002b). The PI ap-
proach is a six step process that creates a time-dependent sys-

tem state vector in a real valued Hilbert space and uses the
phase angle to predict future states (Rundle et al., 2003). The
method is based on the idea that the future time evolution of
seismicity can be described by pure phase dynamics (Mori
and Kuramoto, 1998; Rundle et al., 2000a,b). Hence, a real-
valued seismic phase function̂Ii(tb, t) is constructed and al-
lowed to rotate in its Hilbert space. Since seismicity in active
regions is a noisy function (Kanamori, 1981), only temporal
averages of seismic activity are utilized in the method. The
geographic area of interest is partitioned intoN square bins
with an edge lengthδx determined by the nature of the phys-
ical system. For our analysis we choseδx=0.1◦

≈11 km,
corresponding to the linear size of a magnitudeM ∼ 6 earth-
quake. Later analysis showed that the method was sensitive
to M∼5. Within each box, a time seriesNi(t) is defined by
counting how many earthquakes with magnitude greater than
Mmin occurred during the time periodt to t+δt . Next, the ac-
tivity rate functionIi(tb, T ) is defined as the average rate of
occurrence of earthquakes in boxi over the periodtb to T :

Ii(tb, T ) =

∑T
t=tb

Ni(t)

T − tb
. (A1)

If tb is held to be a fixed time,Ii(tb, T ) can be interpreted
as theith component of a general, time-dependent vector
evolving in anN -dimensional space (Tiampo et al., 2002b).
Furthermore, it can be shown that thisN-dimensional cor-
relation space is defined by the eigenvectors of anN × N

correlation matrix (Rundle et al., 2000a,b). The activity rate
function is then normalized by subtracting the spatial mean
over all boxes and scaling to give a unit-norm:

Îi(tb, T ) =
Ii(tb, T ) −

1
N

∑N
j=1 Ij (tb, T )√∑N

j=1[Ij (tb, T ) −
1
N

∑N
k=1 Ik(tb, T )]2

. (A2)

The requirement that the rate functions have a constant norm
helps remove random fluctuations from the system. Follow-
ing the assumption of pure phase dynamics (Rundle et al.,
2000a,b), the important changes in seismicity will be given
by the change in the normalized activity rate function from
the time periodt1 to t2:

1Îi(tb, t1, t2) = Îi(tb, t2) − Îi(tb, t1). (A3)

This is simply a pure rotation of theN -dimensional unit vec-
tor Îi(tb, T ) through time. In order to both remove the last
free parameter in the system, the choice of base year, as well
as to further reduce random noise components, changes in
the normalized activity rate function are then averaged over
all possible base-time periods:

1Î i(t0, t1, t2) =

∑t1
tb=t0

1Îi(tb, t1, t2)

t1 − t0
. (A4)

Finally, the probability of change of activity in a given box is
deduced from the square of its base averaged, mean normal-
ized change in activity rate:

Pi(t0, t1, t2) ∝ [1Î i(t0, t1, t2)]
2. (A5)
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In phase dynamical systems, probabilities are related to the
square of the associated vector phase function (Mori and Ku-
ramoto, 1998; Rundle et al., 2000b). This probability func-
tion is often given relative to the background by subtracting
off its spatial mean:

P ′

i (t0, t1, t2) ⇒ Pi(t0, t1, t2) −
1

N

N∑
j=1

Pj (t0, t1, t2), (A6)

WhereP ′ indicates the probability of change in activity is
measured relative to the background.

Appendix B Updated method

1. The region of interest is divided intoNB square boxes
with linear dimension1x. Boxes are identified by a
subscripti and are centered atxi . For each box, there is
a time seriesNi(t), which is the number of earthquakes
per unit time at timet larger than the lower cut-off mag-
nitudeMc. The time series in boxi is defined between
a base timetb and the present timet .

2. All earthquakes in the immediate and eight surrounding
regions of interest with magnitudes greater than a lower
cutoff magnitudeMc are included. The lower cutoff
magnitudeMc is specified in order to ensure complete-
ness of the data through time, from an initial timet0 to
a final timet2. We use this extended, orMoore(1962),
neighborhood to account for the uncertainty in event lo-
cation and the arbitrary choice of where to center our
boxes.

3. An intensity threshold is imposed such that only boxes
that have historically been the most active are retained
for analysis. The total number of earthquakes in each
box from the initial timet0 to the final timet2 are
counted, and boxes with counts less than the threshold
are removed.

4. The seismic intensity in boxi, Ii(tb, t), between two
timestb<t , can then be defined as the average number
of earthquakes with magnitudes greater thanMc that oc-
cur in the box per unit time during the specified time in-
tervaltb to t . Therefore, using discrete notation, we can
write:

Ii(tb, t) =
1

t − tb

t∑
t ′=tb

Ni(t
′), (B1)

where the sum is performed over increments of the time
series, which can be days to years.

5. Three time intervals are considered:

(a) A reference time interval fromtb to t1.

(b) A second time interval fromtb to t2, t2>t1. The
change interval over which seismic activity changes

are determined is thent2−t1. The timetb is chosen
to lie betweent0 andt1. Typically we taket0=1932,
t1=1990, andt2=2000. The objective is to quantify
anomalous seismic activity in the change intervalt1
to t2 relative to the reference intervaltb to t1.

(c) The forecast time intervalt2 to t3, for which the
forecast is valid.

6. Our measure of anomalous seismicity in boxi is the
difference between the seismic intensities att1 andt2:

1Ii(tb, t1, t2) = Ii(tb, t2) − Ii(tb, t1). (B2)

7. In order to compare the intensities from different time
intervals, we require that they have the same statistical
properties. We therefore normalize each of the seismic
intensities both individually over all choices fortb and
aggregately at each choice fortb. This is performed by
subtracting the mean seismic activity and dividing by
the standard deviation of the seismic activity. The sta-
tistically normalized seismic intensity of boxi is thus
defined by

1Ĩi(tb, t1, t2) =
1Ii(tb, t1, t2)− < 1Ii(t1, t2) >T

σT

1Îi(tb, t1, t2) =
1Ĩi(tb, t1, t2)− < 1Ĩ(tb, t1, t2) >A

σA

,

(B3)

where <1Ii(t1, t2)>T is the mean intensity differ-
ence of box i averaged over all choices oftb,
<1Ĩ(tb, t1, t2)>A is the time averaged mean intensity
difference averaged over all the boxes at each choice of
tb, andσT andσA are the respective standard deviations.

8. To reduce the relative importance of random fluctua-
tions (noise) in seismic activity, we compute the aver-
age change in intensity,1Ii(t0, t1, t2) over many differ-
ent pairs of normalized intensity maps having the same
change interval:

1Ii(t0, t1, t2) =
1

tmax − t0

tmax∑
tb=t0

√
1Îi(tb, t1, t2)2, (B4)

where the sum is performed over increments of the time
series for the distances between the normalized intensity
differences and the background. In view of the fact that
a time scaleτ=t2−t1 has been implicitly chosen, the
time tmax is chosen to betmax=t1−τ . This choice also
gives the averaging time periods in the intervalstb to t1
and tb to t2 more equal weight, thereby excluding the
possibility of large fluctuations caused by main shocks
occurring just prior tot1.

9. We hypothesize that the probability of a future earth-
quake in boxi, Pi(t0, t1, t2, ), is proportional to the
square of the mean intensity change:

Pi(t0, t1, t2, ) ∝ 1Ii(t0, t1, t2)
2
. (B5)
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The constant of proportionality can be determined by re-
quiring unit probability but is not important to the anal-
ysis.

10. To identify anomalous regions, we wish to compute the
change in the probabilityPi(t0, t1, t2, ) relative to the
background so that we subtract the mean probability
over all boxes. We denote this change in the probability
by

1Pi(t0, t1, t2) = Pi(t0, t1, t2)− < Pi(t0, t1, t2) >A, (B6)

where<Pi(t0, t1, t2)>A is the background probability
for a large earthquake.

Hotspot pixels are defined to be the regions where
1Pi(t0, t1, t2) is positive. In these regions,Pi(t0, t1, t2) is
larger than the average value for all boxes (the background
level). Note that since the intensities are squared in defin-
ing probabilities, the hotspots may be due to either increases
of seismic activity during the change time interval (activa-
tion) or due to decreases (quiescence). We hypothesize that
earthquakes with magnitudes larger thanMc+2 will occur
preferentially in hotspots during the forecast time intervalt2
to t3. A forecast map for all of California and its surrounding
area using this procedure is given in Fig.C1. More details
and results will be presented in a future publication.

Appendix C Previous research

The PI method was first introduced byRundle et al.(2002)
as an implication of the diffusive mean-field nature of earth-
quake dynamics. By treating seismicity as an example of a
self-organizing threshold system they created forecast map
for the occurrences of large earthquakes in southern Califor-
nia. At this time the method was known as Phase Dynamical
Probability Change (PDPC).

Tiampo et al. (2002b) defined the PDPC method in
mathematical terms and provided a rational explanation for
each step of the process. They also performed likelihood
tests against various null hypothesis and showed the PDPC
method forecasts earthquakes better than random catalogs
and better than a simple measure of past seismicity.

Holliday et al.(2005a) later performed a systematic anal-
ysis of the PDPC procedure. They varied the ordering of the
steps and the parameter values and found optimal choices
for the southern California region. The method at this time
came to be know as Pattern Informatics (PI).Holliday et al.
(2005b) then went on to investigate utilizing the PI method in
a complex phase space. They determined that there is a small
information gain for short-term (∼5 year) forecasts when us-
ing complex eigenvectors rather than real-valued eigenvec-
tors.

Nanjo et al. modified the PI method for use with the
Japanese catalogs and successfully forecast the 23 October
2004 M=6.8 Niigata earthquake. Similarly, Chen and Holl-
iday worked to modify the PI method for use with the Tai-
wanese catalogs. Insights from this work have led to the
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Fig. C1. Application of the modified PI method for all of California
and its surrounding area. Colored areas are the forecast hotspots for
the occurrence of M≥5 earthquakes during the period 2005–2015.

modified method for California forecasting presented in Ap-
pendixB and to a paper accepted for publication in Geophys-
ical Review Letters (The 1999 Chi-Chi, Taiwan, earthquake
as a typical example of seismic activation and quiescence).
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