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Abstract. We present the results of numerical experiments
performed with the use of a fully non-linear non-hydrostatic
numerical model to study the baroclinic response of a long
narrow tank filled with stratified water to an initially tilted
interface. Upon release, the system starts to oscillate with
an eigen frequency corresponding to basin-scale baroclinic
gravitational seiches. Field observations suggest that the dis-
integration of basin-scale internal waves into packets of soli-
tary waves, shear instabilities, billows and spots of mixed
water are important mechanisms for the transfer of energy
within stratified lakes. Laboratory experiments performed by
D. A. Horn, J. Imberger and G. N. Ivey (JFM, 2001) repro-
duced several regimes, which include damped linear waves
and solitary waves. The generation of billows and shear in-
stabilities induced by the basin-scale wave was, however, not
sufficiently studied.

The developed numerical model computes a variety of
flows, which were not observed with the experimental set-up.
In particular, the model results showed that under conditions
of low dissipation, the regimes of billows and supercritical
flows may transform into a solitary wave regime. The ob-
tained results can help in the interpretation of numerous ob-
servations of mixing processes in real lakes.

1 Introduction

For lakes with trench-like profiles, measurements have
shown that the pycnocline changes after wind events. The
connection of these processes with internal seiches was re-
ported byMortimer (1952) for the long and narrow Winder-
mere (UK) and for Loch Ness (UK) byThorpe(1977). More
recent observations of basin-scale and higher-frequency in-
ternal waves after wind events were reported byStevens
(1999) for the Sook Lake Reservoir near Victoria, British
Columbia, Canada.
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The baroclinic response of a stratified lake to wind forcing
depends on the shape of the shore line, bottom topography,
water stratification, and intensity and direction of the wind.
Measurements byThorpe(1974) in Loch Ness, for example,
had shown that the generated baroclinic seiche disintegrates
into shorter waves during its oscillation.

The study of the disintegration of a baroclinic seiche into
short period internal waves can be simplified by considera-
tion of this process in a rectangular tank. In such a case all
secondary effects will be removed. The wind blowing along
the lake upwells the pycnocline in one part of the lake and
downwells it at the opposite side. The inclination of the pyc-
nocline in the tank may be considered to be a result of wind
action.

Horn et al.(2001), with the help of a simple two-layer
rectangular model found five different wave regimes of the
disintegration of the initial basin-scale internal seiche into
small-scale internal waves: (i) damped linear waves; (ii) soli-
tons; (iii) supercritical flow; (iv) Kelvin-Helmholz billows;
(v) bores and billows. The names of regimes were given ac-
cording to the basic phenomenon which predominates at the
beginning of the motion. They found that for the long narrow
tank filled with stratified water the baroclinic wave regime
depends basically upon two nondimensional parameters: the
undisturbed position of the interface,h/H , defined as the ra-
tio of the pycnocline depthh to the overall tank depthH , and
the non-dimensional amplitude of the initial basin-scale wave
defined as the ratio of the initial deflection of the pycnocline
η to its undisturbed depthh (Fig. 1).

Taking into account that the period of an internal seiche in
an enclosed basin is given by equation

T = 2D/cp , (1)

the seiche flow is periodic with periodT and maxi-
mum velocities occurring when the flow is horizontal at
t=T/4, 3T/4, 5T/4,... HereD is the length of the tank,cp
the linear long-wave phase speed

cp =
[
g′h(H − h)/H

]1/2
, (2)
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Fig. 1. Schematic diagram of the model set-up.

whereg′
=(1ρ/ρ0)g, g is the acceleration due to gravity,ρ0

the averaged density and1ρ the density difference between
the two layers.

When t=T/4, horizontal velocities at the centre of the
basin become maximal and the development of Kelvin-
Helmholtz instabilities is one of the possible scenarios for
the flow evolution. The formation of Kelvin-Helmholtz bil-
lows depends on the value of the local Richardson number,

Ri =
g′1h

(1U)2
(3)

and it is probable whenRi attains the critical value. Here1h
is the thickness of the density interface and1U=g′2ηt/D
(Horn et al., 2001) is the difference between the velocities
of the layers. If the value ofRi=0.25 is considered as criti-
cal for the development of instabilities, the flow is stable for
timest<TKH , where

TKH =
D

η

(
1h

g′

)1/2

. (4)

The flow in the tank will remain stable ifTKH≥T/4 where
T is given by Eq. (1).

There is also an additional important process which can
develop in a tank at large initial inclination of the interface.
Being strongly inclined the density interface begins to move
faster than the phase velocity of long internal wavescp. This
gives rise to a supercritical regime, and the local Froude
number becomes larger than unity. For a two-layer fluid the
Froude number can be introduced as

F = (F 2
1 + F 2

2 )
1/2 , (5)

whereF 2
1 =U2

1/g
′h, F 2

2 =U2
2/g

′(H − h), U1 andU2 are the
velocities in the upper and lower layers, respectively. The
time at which the flow becomes first supercritical by setting
F=1 is given by (Horn et al., 2001)

Tb =
T

4

h

η

[
H(H − h)2

h3 + (H − h)3

]1/2

. (6)

If Tb<T/4 the flow becomes supercritical.
The non-linear steepening of the density interface is the

next important process which results in the formation of the
bore and its disintegration into solitary waves. According to

a weakly nonlinear theory solitary waves can be explained by
the Korteweg-de Vries equation

ζt + cpζx + αζζx + βζxxx = 0 , (7)

whereζ is the wave displacement, andα andβ are the non-
linear and dispersion coefficients, respectively. For a two-
layer fluid these coefficients read

α =
3cp(H − 2h)

2(H − h)h
, β = cp

(H − h)h

6
. (8)

Equation (7) can be rewritten in terms of characteristic lines,
viz. dx/dt=−(cp+αζ) when the dispersion term is ne-
glected. It is seen that the lineaer phase speedcp is corrected
by the termαζ , which is responsible for the wave steepening.
Thus, the steepening timescale can be simply determined as

Ts ∼
D

αη
. (9)

If Ts>Td , whereTd is the time of viscous damping,

Td =
1

γ
, (10)

the viscosity supresses the formation of solitary waves and
the internal seiche attenuates gradually with time. Hereγ is
the measure of the e-foding energy decay. To findγ we fol-
low Batchelor(1967) who estimated the rate of energy dissi-
pation in the boundary layer per unit area,Ẽt , as

dẼ

dt
= −

ρ0νU
2

2δ
. (11)

HereU is the maximum flow velocity outside the boundary
layer, δ=(νT /π)1/2 is its thickness, andν is the viscosity.
The total energy dissipation rate in the top, bottom and inter-
face boundary layers can be expessed according to Eq. (11)
as

dE

dt
= −

∫
A

[
ρ0νU

2
1

2δ
+
ρ0νU

2
2

2δ
+
ρ0ν1U

2

21h

]
dA , (12)

where 1U=U1−U2 is velocity difference between lay-
ers andA is the area of the boundary layer. Taking
into account thatUj (x)=Ûj (D− |D−2x|)/D (j=1, 2) and
U1h=−U2(H−h), Eq. (12) can be rewritten as

dE

dt
= −

νρ0AÛ2
2

6

[
1

δ

(
H − h

h

)2

+
1

1h

(
H

h

)2
]
. (13)

The total energy of the internal seiche is given by

E =
ρ0A

6

[
Û2

1h+ Û2
2 (H − h)

]
=
ρ0A

6

(H − h)H

h
Û2

2 .(14)

The ratio of Eqs. (13) to (14) gives the coefficient of the en-
ergy decay

γ =
ν

δ

(H − h)

hH
+

ν

1h

H

h(H − h)
. (15)
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The times cales presented above are based on the the-
ory valid for weakly non-linear and two layer fluid approx-
imations. In the present paper we suggest an approach,
which is free of the disadvantages of two-layer models and
which can incorporate effects of strong nonlinearity and non-
hydrostaticity. We apply the mathematical numerical model
developed on a very fine grid to examine the influence of
nonlinearity of a wave process on the mechanism of energy
transfer from large to small scale motions (and eventually to
turbulence and mixing, as an extreme situation).

2 Mathematical model

The water motion in a tank is considered in the Cartesian co-
ordinate system 0xyz with the z-axis directed upward (z=0
is the top boundary of the tank), x-axis is directed along the
tank, and y-axis is perpendicular to the(x, z) plane (Fig.1).
In the two-dimensional case when the transverse motions are
neglected, the governing system of equations reads

ut+uux+wuz=−Px/ρ̄0+ν(uxx+uzz) ,

wt+uwx+wwz=−Pz/ρ̄0−gρ/ρ̄0+ν(wxx+wzz) ,

ux+wz=0,
ρt+uρx+wρz−ρ̄0/gN

2(z)w=k(ρxx+ρzz) .

(16)

Here,u andw are the velocities of the water in thex and
z directions;P andρ are the pressure and the density re-
spectively; ρ̄0=const is the reference density,ν the coef-
ficient of viscosity, andk the coefficient of diffusivity and
N(z)=(−gρ0z/ρ̄0)

1/2 is the buoyancy frequency.
Introducing the stream functionψ (u=ψz, w=−ψx) and

the vorticityω (ω=ψxx+ψzz), system (Eq.16) can be rewrit-
ten as

ωt + J (ω,ψ) = gρx/ρ̄0 + ν(ωxx + ωzz) ,

ρt + J (ρ,ψ)+ ρ̄0/gN
2(z)ψx = k(ρxx + ρzz) ,

(17)

whereJ (A,B)=AxBz−AzBx is the Jacobian operator.
The following boundary conditions are used at the top,

z=0, and bottom,z=−H , of the tank:

ψ = 0, ψz = 0, ρz = 0, ω = ω0 , (18)

and at the lateral left,x = 0, and right,x = D, boundaries

ψ = 0, ψx = 0, ρx = 0, ω = ω0 . (19)

Here the value ofω0 6=const is calculated from the previous
temporal step withω0=0 whent=0.

The problem (Eqs.17–19) is solved numerically with the
help of the alternative direction implicit method (Vlasenko
et al., 2005). The numerical runs were carried out with
the molecular value of viscosityν=10−6 m2 s−1, and with
diffusivity k=10−6 m2 s−1. The spatial resolution was
1x=1z=2.4×10−4 m. Stability of the model scheme was
achieved by taking1t=10−2 s.

Fig. 2. The regime boundaries for the basin-scale seiche disinte-
gration, plotted in terms of the initial basin-scale waveη/h and
the depth ratioh/H whenH=0.29 m,D=6 m,1ρ=20 kg m−3,
1h=0.02 m. The cases discussed here are identified by the num-
bered dots.

3 Scenarios of seiche evolution

The main parameters of the experimental equipment ofHorn
et al.(2001) were used as a basis for the modelling. The fully
enclosed experimental tank, 600 m long (D), 0.29 m deep
(H ) and 0.30 m wide (Fig.1) was replaced by a mathemat-
ical region infinite in they-direction and the same values of
lengthD=600 m and depthH=0.29 m. The density contrast
between the layers,1ρ=20 kg m−3, and the layer thickness
1h=0.02 m was similar to that in the laboratory tank.

In the laboratory experiments the interface was generally
below the mid-depth position so that the lower layer was the
thinner layer. This is the reverse of the stratification found in
most lakes in which the surface layer is usually thinner than
the lower layer. Because of the rigid lid and constant depth of
the tank, this reversal does not alter the physics of the system
in the laboratory experiments.

Figure2 shows the boundaries between different regimes
obtained in the(η/h, h/H) plane. The thick lineTs=Td sep-
arates the regimes of solitons and damped linear waves. Tak-
ing into account Eqs. (8)–(10) and (15) we can expect gener-
ation of solitary waves when

η

h
>

2νD

3Hcp

[(
πcp/2νD

)1/2
(1 − h/H)2 + 1/1h

]
h/H(1 − 2h/H)

. (20)

If the Froude number equals unity supercritical flow pre-
cedes the formation of solitons. The boundaryTb=T/4 of
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Fig. 3. Evolution of the density field for case 1 (Fig. 2), ath/H=0.5, η/h=0.9 (regime “Kelvin-Helmholtz billows”).

this regime is given by the dotted line in Fig.2, and super-
critical flow is formed under the conditions

η

h
>

[
(1 − h/H)2

(h/H)3 + (1 − h/H)3

]1/2

. (21)

This equation was obtained with the help of Eq. (1) and
Eq. (6).

The dashed lineTKH=T/4 separates regimes II and III
from IV and V when the shear between layers becomes large
enough and the Richardson number falls to 1/4. Kelvin-
Helmholtz billows are formed when

η

h
> 2

[(
1

h/H
− 1

)
1h

H

]1/2

. (22)

Thus three curves in Fig.2 divide the(η/h, h/H) plane
into five regimes: (i) damped linear waves, (ii) solitons, (iii)
supercritical flow, (iv) Kelvin-Helmholz billows and (v) su-
percritical flow and billows. Inspection of Eqs. (20)–(22)
shows that only the dotted curveTb=T/4 which is the bound-
ary between subcritical and supercritical conditions is inde-
pendent of the fluid stratification and dimensions of the tank.

With the help of the numerical model we reproduce all
regimes presented in Fig.2. Results of five experimemts
marked by circle with numbers are discussed below.

3.1 Regime (iv): Kelvin-Helmholtz billows

We start our analysis with the consideration of the regime
“Kelvin-Helmholtz billows” to point out some important fea-
tures of the performed analysis.

In many fluid systems, turbulence and mixing are gov-
erned by a competition between large scale shear and stable

ambient density stratification. The Kelvin-Helmholtz insta-
bility of the stratified, parallel shear layer has been a standard
model for this class of flows ever since it was described by
Kelvin in 1871.

A simple way to produce Kelvin-Helmholtz billows un-
der laboratory conditions was suggested byThorpe(1971,
1973). The methodology of the experiments was similar to
that of Horn et al.(2001): an inclined interface of the wa-
ters with different densities was produced by a rotation of
the tank. After sudden back-rotation the ensuing evolution
of the interface produces several types of motion described
above. The trick to avoid the generation of internal solitary
waves is to arrange the initial conditions att=0 in such a way
that the initial density interface coincides with the tank’s di-
agonal. As is known from the theory, the quadratic termα
in a weakly nonlinear Korteweg-de Vries Eq. (7) vanishes
when the interface is located exactly in the middle of the wa-
ter depth.

More evidently, the absence of solitary waves can be seen
from a dependence of the wavelengthλ upon the amplitude
of solitary wave,a. For a two-layer fluid, as in the considered
case, the relationshipλ=λ(a) reads

λ2
=

4

3

h2(H − h)2

a(H − 2h)
(23)

(Ostrovsky and Stepanynts, 1989). From this equation it is
evident thatλ→∞ whenh→H/2.

Thus, the disintegration of a basin-scale internal wave into
a series of solitary waves becomes impossible, and gen-
eration of only Kelvin-Helmholtz billows is expected. Of
course, this process occurs only in the presence of strong
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Fig. 4. The dependence of the value of Richardson number vs time
for the regime “Kelvin-Helmholtz” billows.

shearing currents whenRi<0.25 (Turner, 1973) and the flow
loses its stability.

An example of the reconstruction of the background den-
sity profile due to mixing produced by billows is shown in
Fig. 3. The initial parameters for this run were:h=0.145
m (the interface lies exactly in the middle between surface
and bottom) andη=0.1305 m. The dimensionless values are
h/H=0.5,η/h=0.9.

Two bores are generated at the very beginning of the mo-
tion near the left and right walls. These bores move to the
centre of the tank. During their propagation an intensification
(“compression”) of the motion in the central part of the tank
leads to an increase of the horizontal velocity shear. When
t=0.3T is reached, the Richardson number falls below the
critical value, and the process of generation of billows due to
the Kelvin-Helmholtz instability is initiated.

The value of the local Richardson number (Eq.3) in the
central part of the tank (point A, see Fig.1) for different time
slices is shown in Fig.4. Whent=0.2T the Richardson num-
berRi reaches its “critical” value 0.25, but the water motion
is still stable. The development of rolls of fluid due to in-
stability begins att=0.3T whenRi has dropped to the value
0.125.

The more detailed structure of the density field with bil-
lows (zoom panel att=0.3T ) is shown in Fig.5. The bil-
lows grow in amplitude and lose their regular structure as the
bores continue their propagation to the centre of the basin.
Gradually, the wave motions transform from the laminar to
the turbulent form. Manifestation of this process can be
seen by a comparison of the density field at the time inter-
val t=0.3−0.4T (Fig. 3). This process of pycnocline ero-
sion continues as long as essential turbulent pulsations exist
within the interface area. The turbulence gradually attenuates
with time and, finally, the density field takes a form similar
to that presented in Fig.3e. Instead of the initial sharp inter-
face, the vertical density profile has been washed out. The
light and heavy waters are mixed and the pycnocline thick-
ness becomes ten times larger att=1.5T than it was at the
very beginning of the seiche oscillations.

Fig. 5. Enlarged part of the density field presented in Fig.3b with
eddies(t=0.3T ).

The correct numerical modelling of the Kelvin-Helmholtz
instability and successive transformation of the initially gen-
erated billows into homogeneous turbulence and its final at-
tenuation is possible only with the use of a very fine grid. To
check the performance of the numerical grid used in calcula-
tions let us consider some remarks on this topic based on the
ideas of Kolmogorov’s theory of turbulence (Kolmogorov,
1941).

The turbulent density field can be thought of as being made
of many eddies of different sizes. Energy must be fed at
some rateε per unit mass per unit time at the largest eddies
of sizeL and velocityU , for which the Reynolds number is
Re=LU/ν�1. The energy then cascades to smaller eddies
until it reaches eddies with sizels and velocityus for which
Re∼1, and the energy in these eddies is lost to viscous dissi-
pation.

Energy is not built up at any smaller scale; the intermediate
eddies transmit energyε to the smaller eddies. Kolmogorov
postulated that it must be possible to expressε in terms of
scalesl andu, inherent to the smallest eddies, and on dimen-
sional grounds the only way of writingε in terms ofl andu
is ε∼u3/l. Now it is easy to find thatL/ls∼Re3/4; in other
words, the Reynolds number associated with the largest ed-
dies determines how small the smallest eddies will be com-
pared to them.

In the two-dimensional case considered here the num-
ber of degrees of freedom which are necessary to describe
the motion is reduced fromRe9/4 to order ofRe, and thus
we haveL/ls∼Re1/2 (Lesieur, 1987). According to Fig.4
the first eddies with vertical scaleL∼0.05 m appear when
t=0.3T . Taking into account that the value of the particle
velocity in the eddies isU∼8·10−2 m s−1 the corresponding
Reynolds numberRe attains the value 4×103. This implies
that the smallest scale of expected eddies will be no greater
than ls∼10−4 m and, thus, the spatial step of the numeri-
cal scheme should not be more than 10−4 m. Exactly this
value of the spatial grid step was used in our numerical ex-
periments.

3.2 Regime (ii): solitons

The “soliton”-scenario covers a substantial part of the pa-
rameter space in Fig.2. Thus, nonlinear internal waves are
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Fig. 6. Time series of photographs showing the steepening of an
initial basin-scale wave to form a packet of solitary waves. The
widening of the pycnocline is presented by dotted ellipses. Letters
A, B and C mark bore, solitary wave and packet of solitary waves
(from Horn et al.(2001): reproduced by permission of Cambridge
University Press).

expected to be “ordinary” phenomena in the energy cascad-
ing from large to small scales.

The time series of one of the experiments presented by
Horn et al. (2001) withh/H=0.3 andη/h=0.9 is shown in
Fig. 6 (Fig. 4 in Horn et al., 2001). The degeneration of a
basin scale internal wave into packets of solitary waves is
presented against fractions of the periodT . Results of Fig.6
fall into regime (ii), solitary waves and development of in-
ternal bores and solitary waves are clearly seen. However,
Fig. 6 additionally shows a very interesting phenomenon
which were not described and explained by the laboratory
experiment. This is the widening of the density interface
behind the moving bore to more than double its upstream
thickness. The widening has nothing to do with diffusion
and mixing because it originates from the beginning of the
experiment. Taking into account that the pycnocline widen-
ing accompanies the generation of bores and solitary waves,
the whole processes of degeneration of internal seiches into
short waves deserves investigation.

A time series of numerical modelling withh/H=0.3,
η/h=0.9, as used in the laboratory experiment, is presented
in Fig. 7. The good agreement between numerical and lab-
oratory results is obvious (compare Figs.6 and 7). Being
initially inclined, the interface begins to return to its equi-
librium position. During this stage the horizontal motion of
the fluid is accompanied by the vertical motion at the end of
the tank. Upwelling of the water at the end of the tank leads
to the formation of the internal bore which is clearly seen
at the time momentt=0.25T . The solitary wave appears at
the instantt=0.5T . Convergence between the position of
the solitary wave and the centre of the tank indicates that,
very likely, it was formed due to nonlinear processes from

Fig. 7. Time series of case 2 (Fig. 2), the numerical calculations of
the density fields for the same time slices as the prototype laboratory
tank experiment given in Fig.6. The widening of the pycnocline is
presented by dotted ellipses. Letters A, B and C mark bore, solitary
wave and packet of solitary waves.

Fig. 8. Snap shots of the density fields (isolines are shown by solid
lines), velocity (the magnitude and the direction are given by ar-
rows) and zero isopleth (dashed) near the left wall whenη/h=0.9,
h/H=0.3 (Figs.6 and7).

the bore evolution. The system of solitary waves is also seen
at t=0.75T .

The results of the laboratory investigation given in Fig.6
and the numerical simulation shown in Fig.7 put forward
the question: what is the reason of the pycnocline widening
which follows the bore and solitary waves to the opposite
side of the tank? The non-hydrostatic model of the continu-
ously stratified fluid takes into account the vertical fluid mo-
tion which can be sufficiently large in some parts of the basin
and thus give new unexpected results.



N. Stashchuk et al.: Modelling of disintegration of internal waves 961

Fig. 9. Isolines of (a) horizontal and(b) vertical velocity fields
(η/h=0.9, h/H=0.3) at t=0.5T . Grey and white colors corre-
spond to motions in different directions. The position of the isopyc-
nals 1000 and 1020 kg m−3 are shown by thick dotted lines. Thick
arrows indicate the main direction of the flow.

The formation of the baroclinic wave with the form of a
bore, outlined in Figs.6 and7, is shown in Fig.8 in more
detail (η/h=0.9, h/H=0.3). Here, the velocity fields are
superimposed over the density fields. The position of the
zero isopleth is given by the dashed line. The basic conclu-
sion, which can be drawn from inspection of Fig.8, is that
the thickness of the density interface close to the wall be-
comes increased by a factor of two during a very short time
(from 0 to 0.2T , which equals only 12 s). This increase of
the thickness of the interface can be explained in terms of the
kinematics of a strong wave-wall interaction.

It is obvious that the vanishing of horizontal velocities of
the seiche motion can be expected atT/2, T , 3T/2... Thus
the velocities of the generated short internal waves will be
predominant in the velocity field in the tank att=0.5T . Fig-
ure 9 showsu andw patterns where opposite currents are
shown with a grey-white palette. Isopycnals of 1000 and
1020 kg m−3 are given by dashed thick lines.

Further scrutiny of the structure of the solitary waves in the
middle of the tank shows that with good accuracy they belong
to the first baroclinic mode. The co-phase vertical motions
of the pycnocline are here quite evident in the horizontal and
vertical velocity fields.

To see these, let us compare the structure of the horizontal
velocity field in the front of the leading solitary wave (sec-
tion AA), and behind the wave train (section BB), where the
widening of the pycnocline takes place. Figure10a displays
the vertical structure ofu(z) in section AA, and Fig.10b
represents the analogous distribution of the horizontal veloc-
ity for section BB. The conclusion to be drawn from these
graphs is more than evident. The motion in the front of the
wave packet reveals the characteristics of the first baroclinic
mode: the surface and bottom layers move in opposite direc-
tions, whereas the maximum velocity shear is located in the
pycnocline. In addition, the profilew(z) almost ideally fits
the profile of the first eigen-function of the standard bound-
ary value problem.

From a first glance one can also conclude that a second
mode disturbance (the above mentioned widening of the pyc-
nocline) is moving behind the wave packet. Actually, Fig.10

Fig. 10.Dependence with depth of the horizontal(a), (b) and verti-
cal (c), (d) velocity fields obtained for sections AA (a, c) and BB (b,
d) from Fig.9. The dashed profile in (c) shows the first eigenfunc-
tion for verical velocity of the standard boundary value problem for
vertical density distribution in AA.

shows that the horizontal velocityu possesses a local ex-
tremum at the depth of pycnocline which normally corre-
spond to the second baroclinic mode. However, two discrep-
ancies do not support this widening as a propagating second-
mode internal wave. The first is that the horizontal motion
in the upper and bottom layers must be in phase, whereas
Fig. 10 says that this is not the case. Second, the profile
of the vertical velocityw(z) in section BB is very different
from the structure of the second eigen-function of the stan-
dard boundary value problem. The profilew(z) of the sec-
ond mode should change its sign within the pycnocline layer,
whereas in our case it has a maximum value here (Fig.10d).
Thus, the widening of the pycnocline is inconsistent with the
assumption that it can be treated as a wave of second baro-
clinic mode propagating in the tail of the wave packet. More
realistically, it is the consequence of advective processes de-
scribed above and occurring during a strong wave-boundary
interaction.

3.3 Regime (iii): supercritical flow

If the initial amplitude of the layer inclinationη is sufficiently
large, it may lead to supercritical conditions. Such a case will
occur in the tank forh/H=0.2 andη/h=1.25. The super-
critical regime applies when the local Froude number (Eq.5)
becomes larger than unity. At the beginning of the motion a
turbulent baroclinic bore is formed on the left side of the tank
(Fig. 11). This is due to the collision with the faster velocity
of denser fluid with the wall than when a typical internal bore
in the “solitons” regime (see Fig.8) is generated.
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Fig. 11. Time series of density and velocity fields showing the for-
mation of a turbulent bore for case 3 (Fig. 2) in the regime “super-
critical flow”.

Figure 12b shows the initial stage of the baroclinic tur-
bulent bore formation, whereas panel c represents the well
developed supercritical flow. The turbulent baroclinic bore
generates vortices which mix water near the interface. When
t=T/4, standing seiche oscillations have maximum veloci-
ties in the centre of the basin and zero at the ends due to
supercritical conditions (F>1) in the middle of the basin but
subcritical ones (F<1) at the ends where the standing wave
has the maximum vertical displacements. Eventually, as the
propagating bore loses its energy due to the generation of
turbulence at the interface (including strong interaction with
the wall, see, panel d), it evolves into a series of solitary in-
ternal waves (Fig.12e). An example of a rapid change of
the background stratification presented in Fig.3 implies ex-
istence of strong water mixing in the interface region. The
mixing process in the considered case was also provided by
the development of numerous billows, which accompany the
water motion.

3.4 Regime (v): supercritical flow and billows

The regime “supercritical flow and billows” is a combined ef-
fect of supercritical flow with large shear in the middle of the
basin during the first quarter of the seiche period. This makes
the process of wave evolution presented in Fig.13more com-
plicated. The difference between these runs and those pre-
sented in Fig.12 is that the ratio of the upper layer thick-
ness to the tank depth is nowh/H=0.3 instead of 0.2. Com-
parison of the upper three panels in Figs.12 and13 clearly
demonstrates a certain similarity: supercritical flow in the
centre of the basin does not allow solitary waves to evolve,
as was the case in the “soliton” regime (see also Fig.7). The
only difference between the considered cases is that the am-
plitude of the initial wave in regime (v) is larger. It suffices
to produce strong shear at the interface, which is triggering
the generation of billows. They are seen in the middle part
of the basin in Fig.13d behind the leading wave of elevation.
These billows provide strong water mixing, seen on the right-
hand side of the tank in Fig.13e. Note also that in addition to
the enhanced mixing, fast attenuation and energy dissipation
takes place in the turbulent area. This circumstance eventu-
ally leads to the “soliton” scenario of the flow evolution. As a
confirmation, two irregular waves of elevation in Fig.12e in
the middle of the basin can be considered as an initial stage
of soliton formation. Generation of billows by strong vertical
shear in the central part of the tank is seen even more clearly
for yet larger initial amplitudes. Figure13f shows the same
instant as Fig.13b, but for the case 5 withh/H=0.4 and
η/h=1.25. Evidently, in the last case the flow becomes un-
stable even earlier, in fact at aboutt=0.3T . While the growth
rate of the Kelvin-Helmholtz instability in case 4 such that
it develops with the bore or behind it, Fig.13f shows that
the Kelvin-Helmholtz instability develops much faster at the
larger height ratio such that the Kelvin-Helmholtz rolls have
grown in advance of the passing of the billow.

4 Discussion and conclusions

Energy is supplied to lakes by wind: it drives the surface wa-
ter and generates internal waves in the form of long-periodic
basin-scale standing waves (Mortimer, 1952; Farmer, 1978;
Hutter, 1986, 1991). This implies that the internal wave en-
ergy in lakes is concentrated in a low-frequency band. At the
same time, field experiments indicate that the internal wave
field has a continuous spectrum, ranging from these basin-
scale waves to waves with frequencies approaching the buoy-
ancy frequency maximum (e.g.Thorpe, 1977; Thorpe et al.,
1996; Saggio and Imberger, 1998). Thus, the mechanisms
that maintain the observedσ−2 slope of the internal wave
spectra in most lakes remain to be identified (hereσ is the
wave frequency).

After storms, internal waves in lakes may take the form
of an internal bore or packets of solitons, generated by the
nonlinear steepening of a basin-scale finite-amplitude wave
(Hunkins and Fliegel, 1973; Thorpe et al., 1972; Thorpe,
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Fig. 12. Time series of density fields for “supercritical flow” regime whenh/H=0.2, η/h=1.25, case 3 (Fig. 2).

Fig. 13.Regime “supercritical flow and billows”:(a)–(e)density field evolution for case 4 (Fig. 2) ath/H=0.3,η/h=1.25 ,(f) density field
for case 5 (Fig. 2) att=0.3T for h/H=0.4, η/h=1.25.
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1977; Farmer, 1978; Wiegand and Carmack, 1986). Since
these solitons are much shorter in length than the wind-
induced initial large-scale thermocline displacements, their
generation results in a transfer of energy within the inter-
nal wave field from large to small scales. As a confirmation
of such an energy sink, field observations show that wind-
forced basin-scale waves decay at a rate far greater than can
be accounted for simply by internal dissipation (Imberger,
1994; Stevens et al., 1996).

An additional evidence of this route for energy transfers
from large to small scales was reported byHorn et al.(2001).
In this paper, on the basis of field data taken from measure-
ments in long and narrow lakes (viz. Loch Ness, Thorpe et
al., 1972and Babine Lake, Farmer,1978) it was shown that
most of these lakes fall within regime (ii), in which nonlin-
ear steepening predominates, and the disintegration of an ini-
tial basin-scale wave occurs as in the example presented in
Figs.6 and7. Such motion usually originates at conditions
of relatively weak wind (with speed 3–4 m s−1). An impor-
tant stage of this energy cascading is the formation of solitary
waves, which furthermore inevitably encounter lake bound-
aries, where they are destroyed according to the mechanism
of solitary wave breaking described byVlasenko and Hutter
(2002). They showed that the bathymetric structure in the
vicinity of lake boundaries strongly affect the structure of
the water stratification. In the present study the pycnocline
widening is attributed to the interaction with the vertical wall.
This effect will become softer when the shore is inclided.

Another scenario of disintegration of a basin-scale wave
takes place at larger external impacts. Strong wind increases
the amplitude of baroclinic seiches so that the latter generates
seiche-induced hydrodynamic instabilities (see as an exam-
ple Figs.3, 12 and13). Further evolution is characterised by
formation of billows, their successive disintegration into tur-
bulent patches, which, finally, attenuate and form new back-
ground stratification. This process was reported, for instance,
in the laboratory experiments byThorpe(1971, 1973). For
such regimes we can expect considerable mixing and remark-
able changes of the pycnocline structure for the entire basin.
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