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Abstract. The limits of a recently proposed universal scaling consequence, many recurrence-time distributions for main-
law for the probability distributions of earthquake recurrence shocks have been proposed: exponential (Poisson), lognor-
times are explored. The scaling properties allow to improvemal, Weibull, gamma, etc. (Knopoff and Gardner, 1974;
the statistics of occurrence of large earthquakes over smalldias and Rice, 1975, Smalley et al., 1987; Koyama et
areas by mixing rescaled recurrence times for different aral., 1995; Wang and Lee, 1995; Wang and Kuo, 1998),
eas. In this way, the scaling law still holds for events with see also the reference list by Sornette and Knopoff (1997)
M=>5.5 at scales of about 20km, and fof>7.5 at 600km.  and Ellsworth et al. (1999). Nevertheless, it is widely be-
A Bayesian analysis supports the temporal clustering of seislieved that large events tend to repeat periodically or nearly-
micity against a description based on nearly-periodic eventsperiodically in particular fault segments (Utsu, 1984; Stein,
The results are valid for stationary seismicity as well as for1995; Kagan and Jackson, 1995; Sieh, 1996; Kagan 1997;
the nonstationary case, illustrated by the seismicity of South-Stein 2002; Murray and Segall, 2002; Kerr, 2004). On the
ern California after the Landers earthquake. other hand, for aftershock sequences following the Omori
law it seems clear that the recurrence-time distribution is a
power law, although there is some degree of confusion be-
1 Introduction tween the Omori exponent, that appears in the relation be-
tween the rate of seismic activity and the time since the main-
The statistical properties of seismicity have received consid-shock, and the exponent of the recurrence-time distribution.
erable interest for many years, in particular the Omori lawt turns out that both exponents are different, although close
for aftershocks, which quantifies the temporal decay of theto one (Utsu et al., 1995; Utsu, 2002).
number of aftershocks after a mainshock, and the Gutenberg-
Richter law for the numper of earthq.uakes of a given magni- Fortunately, the picture has changed after the pioneering
tude (Gutenberg and Richter, 1965; Reasenberg and Jones k of Bak. Christensen. Danon. and Scanlon. where ele-
1089: Kagan, 1994: Utsu et al., 1995; Turcotte, 1997: Tur- "0 o Bak, n ’ ’
cotte and Malamud, 2002; Utsu, 2002), see also Knopoffments of scaling anaIyS|_s hgv_e r_evealed fu_ndamental to ex-
(1997). However, less attention has been paid to the statisticgIore the structure O.f seismicity in space, time, and magni-
of the t.ime betwe,en consecutive earthquakes, despite that thUde' and where an integrated perspective was taken, putting
’ Kil events on the same footing (no distinction between main-

gﬁgeg'rilgs?rnzu;hbil;i?'tggrytzg:gtnteXt of risk assessmentshocks and aftershocks), therefore considering seismicity

. . as a unique process (Bak et al., 2002; Christensen et al.,
The outcome of the relatively scarce number of studies Y902 Corral. 2003 2004b). In their original paper, Bak
;h?tdlstt;'blf[it:gn ?)f rethurrnenci t'mefi;/Wh'C?t;]S hO\II(V we %N il rs " etal. (2002) divided Southern California into arbitrary areas
er to the ime between consecutive eartnquakes, nas bee, 1, relation with seismo-tectonic provinces) and per-
miscellaneous. The standard practice consist on studyin

. i f distributi f i f
separately mainshocks and aftershocks (and foreshocks), fo rmed a mixture of distributions of recurrence times from

SR : . ' 'Yitferent zones to obtain their unified scaling law for earth-
which it is necessary an algorithm to unambiguously classify k hat i . i f diff
each event; however, such an algorithm does not exist. | quakes (that is, recurrence times coming from different ar-

'Las were counted together in a single distribution). However,
Correspondence toA. Corral Bak et al. did not study the important issue of the distribution
(alvaro.corral@uab.es) of recurrence times for a single zone.
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2 Scaling law for single-zone recurrence-time distribu-  added together to give a stationary rate. As no sequence

tions predominates over the rest, we might refer to this regime as
background seismicity as well. Nevertheless, the procedure

In this case, a different scaling law has been found if the ratecan be generalized to the case of non-stationary seismicity,

of seismic activity is stationary, or if the time sequence is just transforming the whole time sequence into a stationary

transformed into a stationary process (Corral, 2004a). Let uprocess, as we will see (Corral, 2004a).

consider an arbitrary spatial region, labeled by some coor- it js convenient to remember that the probability density is

dinatesxy; after intensive data analysis for several seismic yefined as usual as

catalogs, we concluded that, in the stationary case, the prob-

ability density of the recurrence times there can be written Proit <7/ < 7 +d]
as Dyy(1) = = : (4)

Diy(t) = Ry f (Ray ), () Wwhich allows an easy estimation Dk, directly from data. In
wheret denotes the time between consecutive earthquakeprinciple, the size of the intervalr should tend to zero, but
above a certain minimum magnitudg. in the regionry un-  in practice it is necessary a compromise to reach some sta-
der consideration (witt/.. larger than the threshold of com- tistical significance for each interval, as the number of data
pleteness of the data considered). The calculation of the reis not infinite. Moreover, when there are multiple scales in-
currence times is straightforward, as each date obtained  volved in the process (in our case recurrence times from sec-
as onds to years) it is much more convenient to consider a vari-
abledz, with the appropriate size for each scale. An easy
prescription is to consider the different intervals (in seconds)
where #; is the time of occurrence of the—th event, growing asi1,c), [c, c?), [c?, ¢®), etc., where the minimum
i=1,2,...N. Letus stress that, following Bak et al. (2002), recurrence time is 1 second and1. This is somehow equiv-
the catalogs were not declustered: all events in the selecte@lent to look at the recurrence times in logarithmic scale, and
space-time-magnitude window were considered, indepenfor this reason sometimes this binning procedure is referred
dently of the fact that they could be considered mainshocks{o as logarithmic binning, although the length of a bin in-
aftershocks, or foreshocks. creases geometrically with respect to the previous one and
The scaling factoR,, is the rate of seismic activity, which depends linearly on the recurrence time.
counts the mean number of earthquakes in the region with As a consequence of Eq. (1), a plot of the dimension-
magnitudeM larger than (or equal ta)/, per unit time. As  less probability densityD,,(t)/R,, versus the dimension-
it is well known, Ry, usually fulfills the Gutenberg-Richter less time6=R,,t for different regions and values d#l.
law (Gutenberg and Richter, 1965; Kagan, 1994; Turcotte makes all the different distributions collapse onto a single
1997), curve, showing very clearly the shape of the scaling function
Rey = A (L)LO~PMe 3) f. Itis worth mentioning that this approach does not involve
Ty ’ the assumption of any model of seismic occurrence, we are
with the b-value close to 1, and,,(L) the rate of events only characterizing the process. Sometimes it is mistakenly
with M>0 in the region of sizd. centered aky (as a re- assumed that the study of the distribution of recurrence times
sult of an extrapolation of the law),, has a very complex implies an underlying renewal model, (where the recurrence
spatial dependence; a simple assumption is to consider thatitmes are independent and identically distributed). On the
follows a fractal distribution (eveh seems to show a depen- contrary, any kind of process may be characterized (but not
dence withxy and the size of the region, though much less fully) by the probability density, which is in any case the
abrupt thanA,,). The fulfillment of the Gutenberg-Richter most fundamental quantity of the process (but, we insist, not
relation for a given catalog is a strong support for its com-the only quantity defining the process).
pleteness. Notice that botty,, andD,,(r) must depend (in The scaling law given by Eqg. (1) is very remarkable, as it
addition to the region coordinates) on M, and on the size reflects the self-similarity of the temporal structure of earth-
of the region; however, these variables do not appear in thguake occurrence and therefore the fractal nature of seismic-
notation just for simplicity, although obviously this depen- ity. Indeed, Eq. (1) states that there is a unique shape for the
dence is important. probability density of the recurrence time, independently of
As we have mentioned, this approach is valid in the simplethe tectonic properties of the region, its size, or the minimum
case of stationary seismicity, in whidky, does not signif- magnitude selected; the only difference is the scale of the
icantly change for a moving time window (more rigorously distribution: highM, or small areas have low ratés, and
we should talk about a stochastic process homogeneous itherefore long recurrence times, which stretches the distribu-
time); this implies that a plot of the accumulated number oftions, whereas for lowM, or large regions the distributions
earthquakes versus time is essentially a straight line. Not@re contracted. The rescaling of these distributions Rith
that such stationarity does not prevent the existence of aftermakes all the corresponding curves collapse onto a single
shock sequences in the data, rather, the seismicity is conene. But the data collapse holds even for distributions com-
posed by many small sequences at different places that aiieg from different catalogs, corresponding to regions with

T =1 — -1, (2)
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disparate tectonic properties, and in this sense we may stateutd>1 for the data for which the fit by the scaling function
that Eq. (1) constitutes a universal scaling law. holds.

It is noticeable that when we consider the seismicity of There are two reasons that explain why Eq. (1) usually
a given area and we raise the magnitude thresiMhlcand  does not hold for small; one is the incompleteness of the
then rescale the recurrence time by a fadtgy, we are per-  catalogs in the short time scale (there is a loss of information
forming a transformation analogous to those of the real-spacafter a big earthquake, due to the saturation of the seismomet-
renormalization group (Corral, 2004c). (A similar thing oc- ric network), whereas the second reason is the breaking of
curs when we change the size of the regibr) There-  stationarity in the short time scale (it may be difficult to find
fore, the scaling functiory constitutes a fixed-point of a a fully stationary process, rather, small aftershock sequences
renormalization-group transformation. A trivial solution to appear). But let us remark that with the consideration of
this transformation is provided by the exponential distribu- 6,,;, > 0 we are not disregarding events witk6,,;,,, rather,
tion, which moreover seems to have a wide basin of attracwe take into account all the events, but due to the change of
tion. In fact, Molchan (2005) has shown, imposing the in- behavior of the distributions at aba#0.05, we restrict the
dependence of the seismicity between any two regions, thdit of the relatively simple scaling function t>6,,;,.
the only possible scaling function is an exponential. Nev- Finally, note that the scaling functigfturns out to be the
ertheless, our analysis of the data demands the existence pfobability density of the dimensionless timgprovided that
other fixed-point attractors for the renormalization transfor-the scaling relation (1) holds. Be aware that, in order to keep
mation, related with the presence of strong correlations bethe notation at minimum, we will refer to two different things
tween events. with the same namg(0); these are the probability density of

In order to model the behavior of the scaling func- ¢ and the scaling function that fits it. If the fit were perfect,
tion f, and only to provide a simple approximation to it, we there would be no distinction between both. We believe this
parametrizef as a (truncated) generalized gamma distribu-leads to no ambiguities in the text.

tion, Using a least-square fit gf(9) to the rescaled probability
Cls N densities obtained from data from the NEIC worldwide earth-
f6) = _cll <—) e~ for > 6,,,>0, (5)  quake catalog as well as from regional catalogs for Southern
al'(y/8) \a California, Japan, Spain, and the British Islands, an estima-

(where I'(y/8) is the gamma function, see below). This tion of the parameters of was accomplished. We stress
parametrization allows a very general shape for the scalinggain that all events in the region aboWe were used, inde-
function, controlled by its two Shape parametaysand S pendently of the hypothetical consideration of them as fore-
(which have to have the same sign). For instancejfarwe  shocks, mainshocks, or aftershocks (Corral, 2004a). It turned
obtain the gamma distribution (which tends to a Gaussian fout to be thas was significantly close to 1, implying that the
y—o00); for y=1, the stretched exponential (or “contracted” gamma distribution is a good model fpx;,. Moreover, as a

if §>1, which yields the semi-Gaussiansi£2); y=s gives  value ofy about 0.7 was obtained, the distribution turned out
the Weibull distribution (fory=§=2 it is the Rayleigh dis- to be monotonously decreasing for all slowly decreasing
tribution); y=3 ands=2 yields the Maxwell distribution; for shorté (power law) and more rapidly for long (expo-
y=—1/2 ands=—1, the random-walk first-return-time dis- nential factor). The corresponding coefficient of variation
tribution, etc. Whery /§— oo the distribution tends to a log- Wascv>~1.2.

normal, and of course;=s=1 leads to the usual exponential ~ This type of behavior shows a tendency of earthquakes
distribution, characteristic of the well-known Poisson pro- to cluster in time, which was well known for aftershock se-
cess. In general, if both parameters are positive we have guences, but not for the stationary case, which is the subject
power law for short times and a stretched (or “contracted”)of our research. In fact, as our data is a mixture of many
exponential decay for long times, whereas if they are negasmall aftershock sequences, it is likely that the power-law
tive, the power law turns out to govern long times. The con-part of Dy, (7) is due to these sequences (although the ex-
stantC is a correction to normalization due to the fact that the ponent, 1y ~0.3, is much smaller than the usual values for
model is not supposed to hold @0, but only for0 >6,,i,, aftershock sequences, which is around 1), whereas the ex-
whereas the parameteis a scale parameter (but dimension- Ponential decay for long times is due to uncorrelated events.
less), and could be obtained by using that the mean value olevertheless, it is highly surprising to obtain such a regular-

6, 6, is enforced by scaling to be 1; for examplegif,, =0, ity in the superposition of the disparate sequences that con-
stitute what we see as stationary seismicity.
B r <1JfT”) A paradoxical consequence of this temporal distribution is
0= am, (6) that the hazard of earthquake occurrence decreases as time
8 since the last one increases, increasing sharply when a new

for y>0 ands=>0, or fory <—1 and§ <0 (outside this range earthquake takes place, whereas the time one has to wait to
of y the mean is infinite). In fact, the fact of beidg-1isnot  the next earthquake does not decrease as time evolves, but
fully exact, asD,, (6) (and alsaR,,) is always calculated for  just the contrary, it increases with time (Corral, 2005). Note
all values of, whereas the scaling function only fits the data that this is trivial for individual aftershock sequences, where
which verify 6>6,,;,. This yieldsd=1 for the whole data set the number of events decreases with time, but it is highly
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nontrivial for stationary seismicity. These properties are inobtained from Eq. (5) witli=1 and using the complement of
sharp contrast with the assumption that background seismicthe incomplete gamma function (unnormalized) to determine

ity is a Poisson process. the value ofC,
The validity of the scaling law for the recurrence time dis- 00
tributions, with the universality of the clustering behavior I'(y, u) :f ' tedz 9
u

represented by the value pfwas later extended to other cat-

alogs: New Zealand, New Madrid (Corral, 2005), and North- with I"(y, 0)=I"(y), the usual (complete) gamma function.
ern California (Corral, 2004b). Overall, the law was found to  |n addition to a good description of the data, the gamma
be valid from regions as small as 20km in linear size, with distribution provides an easy parametrization to test the op-
M=2, to the whole globe, witi/, from 5to 7.5. Itis the  posite concepts of clustering and nearly-periodicity; indeed,
main purpose of this paper to try to push further the limits of y <1 implies an excess of events separated by short times
the scaling law given by Eq. (1), for which we will combine (with respect to a Poisson process with the same mean), and
maximume-likelihood and Bayesian methods with the scalinga consequent deficit for long times, whereas wherl, the
properties of the recurrence time distribution. Also, we will sjtuation is reversed: there is a deficit of events with short
test up to which degree the universal description is valid, Ofrecurrence times, and an excess in the |0ng times.

it is necessary to introduce different descriptions depending The likelihood for the gamma distributio8)(turns out to

on M., the size of the regioi or its coordinatesyy. be (Gross and Clark, 1975), using the dimensionless recur-
rence timesy;.
3 Procedure for the data analysis 0\ N o—Nb/a
loy(y.a) = ( ) — (10)
¥y, Omin/a)

The goodness-of-fit method described above turns out to be

very data consuming (a minimum of about 4 or 5 hundredsdisregarding factors independent on the variableanda,

events are necessary to plot a nice recurrence-time distriwhich are irrelevant, as we will seé.andég are the arith-

bution). In contrast, maximum-likelihood methods perform metic mean and the geometric mean, respectively (and they

better with less number of data, and are more appropriatevould be independent oM., L, andxy, if the scaling law

for seismic occurrence, where statistics of large earthquakegl) were exact). To be concrete,

over small areas is always very poor. N
The likelihood function is simply the probability that a 5 _ 1 29' (11)

given data set corresponds to a particular set of parameters of N "

i=1
a (a priori) given probability distribution, but with the vari-

ables reversed: instead of being a function of the random 1 X
variables (recurrence times in our case), the likelihood is con-log g = N Z log#;, (12)
sidered to depend on the parameters (Mood et al., 1974). In i=1

the case of continuous variables the probability is replace
by the joint probability density, and therefore, we can write
for the likelihood function ofV recurrence times,

dconstituting the only way in which the dataenter into the
likelihood (obviously, the base of the logarithm does not mat-
ter). With this machinery we would be able to estimate the

N parametery anda, just by maximizing the likelihood func-
Ly (Y, a)=Dyy(11, T2, - - -, TN Y, )= l_[ Dyy(zily,a), (7) tion with the help of any numerical routine (Gross and Clark,
i=1 1975). Note also that there is no problem to calculate the in-

where we have made explicit the dependence of the densit?omp@te gamma function by using some numerical recipes

on the parametens anda, wherea®,;, is considered fixed. (Press etal., 1992). _ _
In fact, this result would seem to be valid only if the recur- A refinement that allows to use more information about

rence timesz; are independent of each other (i.e. for a re- the data is to consider the time between the last earthquake

newal process). Nevertheless, if the number of data is mucf@nd the end of the record, =T —zy (the subscripb comes
larger than the typical range of the correlations, the previ-T0m backward I is the time at which the record ends and

ous formula still holds, as we can be sure of having a com+N is_ the time of_ the_ last event in the catalog). The_r_efore, the
plete sampling of the values of the random variable (Cox andikelihood function in Egs. ) and (L0) may be modified by
Oakes, 1984). Caution must be exerted then when the nunf2n extra factor
ber of data is low. (An easy test for this effect is just to com- _ I'(y, Ryywp/a)
pute the likelihood for every, let us say, second or third data,Sxy(Tbh” a) = W
and to compare with the full data set.) ) ) . .
As a model of the recurrence time distribution, we will use Where Sy (z) is theoo survivor - function,  defined as
the truncated gamma distribution, Sey(r)=Prob[z’>7]= [~ Dyy(r")d7'. It may be im-
portant to stress that, may be a continuously changing
1 o\’ 1! /0 g variable in some cases: if we want to evaluate the present
m (") ¢ » foré > Ouin, (8) hazard in a given area, the corresponding catalog is not

(13)

f6) =

a
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“closed”, and T is the present time, which obviously a hyperbolic distribution (power law with exponentl), so

increases linearly as time evolves (Davies et al., 1989)does its inverse, /L. On the other hand, the a priori dis-

Nevertheless, this is not our case, and when the numbetribution of y is always chosen as uniform (notice that if a

of events is large the contribution of this factor can be 1/y —priori were selected, this would favor smaller values of

disregarded. This is what we will do, for simplicity. y and therefore the results might be slightly biased towards
The procedure just described, based on the likelihoodhe clustering case). To put it clear,

function, has a disadvantage: it does not allow to know how 1

accurate the estimated parameters are. Bayesian methods §a(y, a) o« —; a7)

one step forward; the key point is to consider the unknown a

parameters as “random variables”, or more precisely, uncerl€vertheless, the results do not depend strongly on the a pri-

tain quantities, with their own probability distributions, and ©fi distributions. In case that we cannot approximegje,

to use some a priori information to propose the a priori dis-t0 zero the integration over can be done numerically, but

tribution of the parameter§o(y, a) (Loredo, 1990). Then, with care, to avoid overflows. A possible trick is to integrate

the Bayes theorem provides the distribution of the parameP(y. a| data) divided by its maximum value.

ters conditioned to the observational daf&y , a| data), in In addition, the Bayesian approach allows the estimation

the following way, of the probability density of the recurrence time not by sim-
ply substitution of the single values of the parameters which

D(y,a| data) = maximize the likelihood but by using all the information

CDyy(-+-7i -+ ly,a)Do(y, a) = Clyy(y,a)Do(y,a), (14)  aboutthem coming from the a posteriori distribution. Indeed,
we can write

where the probability density that the data take the observed o oo
values conditioned to a particular value of the parameters iQ)xym data):/ / Dyy(tly,a)D(y, a| data) da dy. (18)
given just by the likelihood, and is simply a normalization 0 Jo '
constant. If the a priori distribution is uniform (over the do- Wheng,,;,=0 we get, using the/L—priori and rescaling the
main for which the likelihood is significantly different from distribution,
zero) we can identify the likelihood with the (unnormalized)
a posteriori distribution of the parameters. f(0] data) = Dy, (0| data)/Ryy =

In fact, we are mainly interested in the shape parameter ¢’ [ (ege)y C[(N + Dy]
which determines the clustering properties of the time series;g /0 Y (N6 + 0)N+Dy  TN+1(y)

the scale parameteris much less important, as it only sets ) .

the scale of the dimensionless time [technicadlymay be ~ Nevertheless, ifthe peak @i(y, | data) (or that of the like-

considered as a nuisance or incidental parameter (Loredd!"00d)is sharp enoughh., (z| data) is practically identical
t0 Dyy(tly, a).

1990)]. Therefore, we can integrate the joint distribution s )
D(y, a| data) overa to get the (a posteriori) marginal prob- Finally, we can take advantage that for every region and
ability density ofy, D(y| data), i.e., Mc—vallue 'the'resc_aled recurrence tindeshould foII.ow the
same distribution, if the scaling law (1) holds. As in this pa-
D(y| data) = /OO D(y, a| data)da. (15) per we are mainly inter_ested on extending that scaling _rela-
0 tion to small spatial regions, we may group different regions
of the same size and with the sae into a unique data set.
In other words, we just paste all the rescaled tilam-
ing from different regions of sizé. The size of the region,
T'(Ny £1) [ 66\ L, is measured in degrees, and refers to the span of the re-
TNy <ﬁ> - gion both in_ IatitL_Jde and_ Iongitu_de._ Note thaF, aswe consid_er
TNy £ D) i jaorn square regions in a naive projection in which both coordi-
C FN—()e /6Ny (16)  nates are translated into a rectangular system, the real shape
Y of the regions is not squared and their areas are not equal.
where the normalization constafithas been redefined, and Nevertheless, this has no importance at all in our results, due
different a priori distributions have been used. The terin  to the fact that the size of the regidndoes not enter into the
corresponds to a uniform a priori distribution f@ewhereas  evaluation of the scaling facto,,. Our procedure would
the term+1 holds when what is uniform is the distribution be valid even for regions with disparate valuesi.ofdue to
of the inverse oz, 1/a. In the case of a uniform distribu- the existence of the scaling law (1).
tion for loga, which corresponds to a/a—distribution for With this mixing procedure, the likelihood function can be
a, the+1 term has to be replaced by zero. This constituteswritten as
the Jeffreys priori (Loredo, 1990; Jaynes, 2003), and proba-
bly it is the most reasonable a priori distribution for a scale £(V+ @) = [[tow. o,
parameter, as it is invariant under inversionzifs a scale Yy
parameter, Aa is a scale parameter as well (in the same wayand it is trivial to show that Eqs10), (16), and (9) are still
that time and frequency set each one a scale) aadhiis  perfectly valid. We will restrict this procedure to regians

(19)

This integration can be easily performed for the gamma
distribution if6,,;,=0, yielding

D(y|data) =C

(20)
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cluded). The size of the bins is fixedd@t#=0.4. The straight line

the same system sizds and threshold magnitude®, for each

in the log-linear plot corresponds to an exponential decay, characdistribution. DifferentL and M, are also analyzed to obtain the

teristic of the Gutenberg-Richter relation, witlhavalue 0.99. The
deviations for the smaller values &f are due to the incompleteness
of the catalog.
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different curves. The upper sets of curves correspondfte-5,
whereas the rest of curves have been shifted, for clarity sake, a fac-
tor 073,106,107, and 1012 for M,=55, 6, 6.5, and 75, re-
spectively. The largest system size denoted 8y860° corresponds

to a 360 x18C° region which obviously covers the whole Earth.
The smallest system sizes ate-0.175° for M.=5 and 55, and
L=0.703, 1.406’, 5.625° for M.=6, 6.5, 7.5 respectively. The re-
sults forM.=7.5 are provided by the catalog of Significant World-
wide Earthquakes from NOAA; the rest of the results come from
the USGS/NEIC PDE catalog. The continuous lines represent the
proposed gamma distribution, E@)( with y=0.78 anda=1.38,
obtained as the maximum @ (y, a| data) mixing all the regions

of any size and taking/>6.

rescaled recurrence times should be identically distributed
for any region, this allows to improve the statistics for the
determination off (9).

In the next sections we present the results of this approach
applied to several seismic catalogs, and extended to the case
of nonstationary seismicity.

in the USGS/NEIC PDE catalog as a function of time. The linear
increase shows the stationarity of the process, with a mean rate of
0.35 earthquakes per day. 4 Results for worldwide seismicity

We start our analysis with global seismicity, as it appears
for which there are 10 or more recurrences in the period unas stationary for any time window. Two catalogs will be
der study, to reduce the error in the calculation of the mearused, the USGS/NEIC PDE (Preliminary Determinations of
rate,R,,. Epicenters) and the catalog of Significant Worldwide Earth-

The same can be done for the probability density of thequakes from NOAA. Both are availablelzitp://wwwneic.cr.
rescaled recurrence tirdewhich in any case should be given usgs.gov/neis/epic/epiglobal.html
by f(0), provided that the scaling law (1) holds. This proce- For the USGS/NEIC PDE, we study the period 1973
dure may be considered as an intermediate point between th2002. A plot of the probability density of the earthquake
one described in the previous section (Corral, 2004a) and thenagnitude (defined in the same way as in Egshows an
one of Bak et al. (2002). Summarizing, previously we were exponential behavior for abouf >4.75, see Figl, imply-
studying the recurrence times in a single region, and thering that the Gutenberg-Richter relation is fulfilled above that
comparing different regions after rescaling the distributions;magnitude (an exponential probability density implies an ex-
in contrast, Bak et al. performed a mixture of recurrenceponential survivor function, which is the normalized num-
times for different regions. Now we propose a mixture of ber of earthquakes with magnitude equal or larger than a
recurrence times after rescaling the times, however, as thgiven value). Therefore, the catalog may be considered as


http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html
http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html
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data for the USGS/NEIC PDE catalog witi>6. The probability = data for the Significant Worldwide Earthquake catalog from NOAA

that the process is not describedjby 1 is negligible. with M>7.5. The probability that the process is not described by
y <1 is negligible for large. and very small for smallek.

reasonably complete for events with magnitude larger than 5.

Further, the linear behavior at Fgshows clearly how earth-  sizes the distributions become much broader, due to the de-
guakes take place at an acceptable steady rate, in this case farease in the statistics. For instance, fe£1.406° there are
magnitudes larger than (or equal to) 6. The correspondind7 regions with 10 or more events to give a total number of

mean rate is 3859 earthquakes in 30 yeads35 day * . recurrences of 675; in contrast, fbe=0.351° there are only
First of all, we may calculate the probability densities of 6 of such regions, yielding about 70 recurrence times.
the dimensionless recurrence timeMixing the values of) The analysis of the catalog of Significant Worldwide

from regions with different coordinatas but with the same  Earthquakes from NOAA leads to similar results. The period
L and M, we get the results displayed in Fi§). The spatial  of analysis is 1897-1994, for which events wih-7.5 are
range of validity of the scaling law (1) turns out to be very recorded at a stationary rate (in fact, there is a little change
broad, from the whole globe to very small for instance, for  of the rate at about 1920, but we have not taken it into ac-
M=>5 and 5.5, the smalldt is L=0.17% (about 20km) and count). There are 599 of such earthquakes in the period,
for M>6.5, L=1.406 (150 km) (see the figure caption for which corresponds to a rate of 6.1 per year. The fact that
details). With regard the values 6f the scaling law seems the occurrence appears as stationary for a period of about
to hold very well for>0.01, whereas the form of the scal- 100 years supports the assumption that the catalog can be
ing function proposed in Eq8J is restricted to>0.05 for considered as complete faf >7.5 (if we accept that the last
high M, for which the statistics is poorer. The deviations for years of the record are indeed complete). On the other hand,
smalld are due to the nonstationarity of the process for verythe analysis of the magnitude probability density does not
short times: small aftershock sequences have little effect irprovide clear answers, as the range of magnitudes for which
the linear relation between the accumulated number of earththe Gutenberg-Richer law could hold is short; nevertheless
guakes and time, but they yield an excess of events separatede will take M.=7.5 as the threshold of completeness of the
by short recurrence times. In this case,/adecreases, the catalog.
distributions tend to a decreasing power law with exponent The rescaled recurrence time distributions (mixing dif-
very close to 1. ferentxy) for M>7.5 are shown in Fig3, bottom curve.
The resulting a posteriori probability densities of the pa- The system sizes range from the whole planet165.625
rametery are shown in Fig4 for data withM>6, and dif- (600 km). The flat part of the densities bel6w0.3 could be
ferent values of.. The parametes,,;, has been set to 0.05. an indication of exponential behavior; however, our Bayesian
From the plot, it is clear that it is very unlikely that the data analysis clearly rejects that possibility for the cases where
is generated by a gamma distribution witls-1, as the ar- more data are available (large regiofs;45°). Indeed, the
eas below the curves are negligible for1; therefore, we a posteriori distributions for the parameteffor 6,,;,,=0.05
may rule out a nearly-periodic behavior. In general, the mostappear in Figh, where for largel the worst situation cor-
probabley is in between 0.75 and 0.82 for all system sizesresponds ta.=360C, which yields a probability ofs <1 of
except for the two smallest ones (practically the same val-about 98%. For the smallest system sizes less data are avail-
ues are obtained from the mean valuey9f Nevertheless, able: from 20 to 10 regions with a maximum number of
the most probable is not the only one possible, as its value events from about 40 to about 10 (the minimum is kept not
can be scattered from 0.65 to 0.9 for the sharpest distribubelow 10). In all these cases the probability of clustering is
tions (for which there are more data). For smaller systemalways above 80%.
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Fig. 6. Accumulated number of earthquakes in Southern CaliforniaFig. 7. Top curves: Probability densities of the rescaled recurrence
with M>2 during the period 1984-2001, using the SCSN catalog.times from the SCSN catalog, mixing data for different stationary
The seismicity consists on stationary periods “punctuated” by sud-time periods and different areas of the same size. In this case the
den increases of the activity, provoked by large earthquakes. Thacaling law (1) does not hold, as the stationarity of the process is
vertical line marks the occurrence of the Landers earthquake. not maintained at smaller length scales. Bottom curves: Probability
densities of9, shifted a factor 102, now for single regions with
stationary seismicity (no mixing). For eadh the regions are la-

5 Results for regional seismicity: Southern California beled by the discrete coordinates, ky, which take values from
0 to 10/L—1, and increase with longitude and latitude, respec-

As an illustration of the validity of the scaling law (1) for tively. For both sets of curves, the continuous lines represent the
regional catalogs, we analyze the Southern California Seissame function as in Fig, with the same parameters.

mic Network (SCSN) catalog, available fattp://www.data.

scec.org/catalagearch/index.html/We will concentrate on

the period 1984-2001, and on a spatial window of sizg 10 the problem is that we are mixing regions that the majority of
located at—123, —113) x (30°, 40°); further, fromthe ful-  them are nonstationary. It would be necessary to look at each
fillment of the Gutenberg-Richter relation, the catalog can besmall region in detail to separate the stationary behavior from
considered practically complete fdf>2, all this yields ato-  the nonstationary. However, although stationary regions are
tal of 84 772 events. Figu@shows the accumulated number difficult to find, some of them appear in Fig.(bottom set).

of earthquakes versus time, being apparent that the behavn this case, the agreement with the scaling law (1) is total.

ior consists of linear increases alternated with more abrupt The a posteriori probability densities pffor the station-
changes. These sudden changes correspond to aftershock ggy regions, which are shown in Fig,. support these conclu-
quences generated by large earthquakes, and they seem to §igns, as the maximum of the distributions range from 0.63
present at all scales, from very large bursts to much smallefo 0.72, and the probability of >1 is practically 0. So, we
disturbances of the constant rate. The largest of these burstgsnclude that the scaling law (1) works very well for station-
corresponds to the Landers earthquake, analyzed in detail igry seismicity, and in the incoming section we will see how

the next section and marked by a vertical line in the figure. to overcome the difficulty of a nonstationary seismic rate.
The most important periods of stationarity in the whole

area of Southern California are, roughly, 1984—-1985, 1988—

1991, 1994-1999, and 2001. Calculating the rescaled recur-

rence times for these periods, for regions of different coordi-6 Results for nonstationary seismic rate: seismicity af-

natesxy, and defining one single distribution for eattand ter the Landers earthquake

M. (that is, we mix data not only for differemty but also for

different time periods, but not for differeitandM,), we get  The Landers earthquake, with magnitude=7.3 at the

the results of Fig7 (upper set of curves), where the values of SCSN catalog, is the largest event in Southern California for

L range fromL=10° (1100 km) toL=0.009 (10km). Un-  several decades. It took place on 28 June 1992 42234,

fortunately, from the figure we see that the scaling law (1) is116.26° W. We will analyze the seismicity in Southern Cal-

not verified for larges. ifornia after the Landers earthquake, which shows the usual
At least we know the reason of this failure, which is that behavior of seismicity after large shallow events: a sudden

stationarity does not hold when we decredseat variance  enormous increase in the number of earthquakes and a con-

with the worldwide case studied in the previous section. In-sequent slow decay with time. In our procedure, as in previ-

deed, although the rate appears as stationary in the wholeus sections, we will not distinguish mainshocks from after-

region of sizeL=10°, at smaller scales the fluctuations of shocks, onthe contrary, we will look at the complete seismic-

the rate become important and invalidate our approach. Saty in the region under study after the Landers “mainshock”.


http://www.data.scec.org/catalog_search/index.html/
http://www.data.scec.org/catalog_search/index.html/
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SN REChi Landers earthquake took placesgl,gers ~199249. The continu-
102 10° o7 109 100 107 108 10° ous line is the integral of the power-law rate corresponding to the

At = time since Landers earthquake (seconds)

modified Omori law, withp=0.91, K,,=842 91 (see previous
_ o _ figure) and an integration constaat-32519. (b) Same data as in
Fig. 9. Seismic rate, (1) after the Landers earthquake for differ- previous case, but transforming the-axis to obtain a stationary

ent regions of sizé including that event, using the SCSN catalog. process. The straight line is a linear relation with unity slope.
Only events withM>2 are considered. The straight lines corre-

spond to power-law decays, compatible with the modified Omori

formula. The values op and Ky, (in s”~%) appear in the legend; et 1., 1995). Clearly, in this case the seismicity is not station-

in all cases the exponeptis around 1. ary; nevertheless, the approach explained in previous sec-
tions (Corral, 2004a) can be easily generalized. We only need

Figure9 shows the temporal decay of the “in:~:'tantane0us”to rescale the recurrence time as

seismic ratey,, (1), defined as the number of earthquakes 5_ =1y ()T, (22)

per unit time for relatively short time windows. Regions of

different sizeL are considered, all of them including the Lan- with ., (z) given by the previous power law, in order to ob-
ders earthquake; therefore, in this section we study a uniquéain the rescaled, dimensionless recurrence time

region for each system size, and in this way no mixing of data The accumulated number of earthquakes, which is just the
between regions of different coordinates is performed. Wherintegral ofr,,(¢), is shown if Fig.10a, only for the time

the logarithm of the rate versus the logarithm of the elapsederiod of power-law decay of the rate. The nonstationarity
time since the mainshock: is plotted, a straight line appears of the process is apparent; in contrast, Hifb shows the

for a certain period, corresponding to a power-law decay: accumulated number of earthquakes versus the accumulated
K rescaled recurrence tint, defined a®;=01+0>+ - - - +6;.

LAl (21)  The clear straight line shows how we have accomplished the
Arp transformation of the process into a stationary one. The anal-
With At=t—tranders, tLanders~199249 years. This power ysis of these data is now identical to the previous stationary
law is of course the essence of the modified Omori law (Utsucases. Moreover, the fact the we consider only the period of

ny(l) =
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Fig. 11. Probapility densitiegf.(e) of the resca!ed recurrence time Fig. 13. A posteriori probability density of the parameterfor
O=rxy(1)7, for different areas in Southern California after the Lan- ¢ historic seismicity around Tokyo (Utsu, 1984). The clustering
ders earthquake, using several magnitude threshigjdsThe data  gption is clearly the more likely (78% in front of 22% for nearly-
comes from.the.SCSN catalog. The contmupus curve is thg SaMBeriodicity).
function as in Figs3 and7. The results are in agreement with a
secondary clustering structure inside the primary clustering.
in this case there are relatively important sequences of after-
shocks, which our homogenization (performed by a simple
power-law decay of the rate) has not taken into account.

The a posteriori distribution of the paramejerlso sup-
ports this conclusion, see Fifj2. As a consequence of this,
the assumption about the validity of the modified Omori law
(in the limiting case of a power law) leads to the fact that
aftershock sequences cannot be described as a nonhomoge-
neous Poisson process, as in that case one should obtain an

exponential distribution for ().
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7 Results for historical earthquakes in the Tokyo area

In this last section of results, as a corollary, we work with a
different kind of data. We use the list of strong earthquakes
Fig. 12. A posteriori probability densities of the paramegefor ~ in the Tokyo area provided by Utsu (1984), consisting on 11
the same rescaled data after the Landers event as in the previo@ents, from 1615 to 1923. Our analysis differs from the one
figure. The fact thay is clearly distributed below 1 is unveils the by Utsu in that, following our approach, we will consider the
secondary clustering structure inside the primary clustering. full data set. (Utsu considered that 3 events occurring within
about 2 years constituted a correlated sequence, represented
only by the largest event. Remember that from our point of
power-law decay of the rate guarantees reasonably the comAew the correlations between events extend beyond the usual
pleteness of the data; indeed, the deviations from the powesftershock range.)
law at small time intervalg\r are believed to be caused by  The a posteriori distribution foy is shown in Fig.13,
the incompleteness of the record short after the mainshock.where we have take@,,;,=0. It is clear that the parame-
The probability densities of the rescaled recurrence timeger y may take any value in a broad range, but the proba-
appear in Fig11 in surprising agreement with the results bility of y <1, representing clustering, is significantly larger
for stationary seismicity. Therefore, note that this implies than the probability of,>1, which would be the signature
the existence of a secondary clustering structure inside thef a nearly-periodic process (78% versus 22%). Of course,
main sequence, due to the fact that any large aftershock maiy is obvious that the inclusion of two recurrence times much
generate its own aftershocks (Ogata, 1999; Helmstetter andmaller then the rest makesdecrease, but it is remarkable
Sornette, 2002). What is remarkable is that this structurethat it decreases (in the most likely situation) below the lim-
seems to be identical to the one corresponding to stationariting valuey =1, while the uncertainty of is not extremely
seismicity (studied in the previous sections). The deviationdarge. The maximum value of the probability density, which
from the scaling law at short rescaled times are a manifestawould correspond with the maximume-likelihood estimation
tion of the same phenomenon but on a different scale: als@f y if the priori were uniform, isy=0.68; for comparison,
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the mean value of turns out to bg’=0.79; this difference is in this line will clarify the relation between seismology and

due to the asymmetry @b(y | data), in fact, we observe that statistical physics, phase transitions, and critical phenomena.

the shape oD(y| data) is much more asymmetric than the Indeed, the seminal research of Bak et al. (2002) has led, di-

shape obtained in the previous sections. In any case, the estiectly or indirectly, to a renewed interest in the statistics of

mated value of is in surprising agreement with the previous time between earthquakes, which we hope will shed light on

cases. the complexity of this problem (Corral, 2003, 2004a, 2004b,
2004c, 2005; Mega et al., 2003; Baiesi and Paczuski, 2004;
Baiesi, 2004; Helmstetter and Sornette, 2004; Molchan,

8 Conclusions 2005; Molchan and Kronrod, 2004; Scafetta and West, 2004;
Davidsen and Goltz, 2004).
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