
Nonlinear Processes in Geophysics, 12, 799–806, 2005
SRef-ID: 1607-7946/npg/2005-12-799
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Prediction of magnetic storm events using theDst index

V. V. Anh1,2, Z. G. Yu1, J. A. Wanliss3, and S. M. Watson2

1Program in Statistics and Operations Research, Queensland University of Technology , GPO Box 2434, Brisbane, Q4001,
Australia
2Florida Space Institute, University of Central Florida, Orlando, Florida 32816-2370, USA
3Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, Florida, 32114, USA

Received: 15 April 2005 – Revised: 1 August 2005 – Accepted: 8 August 2005 – Published: 11 August 2005

Part of Special Issue “Nonlinear and multiscale phenomena in space plasmas”

Abstract. This paper provides a method to predict magnetic
storm events based on the time series of theDst index over
the period 1981–2002. This method is based on the mul-
tiple scaling of the measure representation of theDst time
series. This measure is modeled as a recurrent iterated func-
tion system, which leads to a method to predict storm pat-
terns included in its attractor. Numerical results are provided
to evaluate the performance of the method in outside-sample
forecasts.

1 Introduction

A measure of the strength of a magnetic storm is theDst in-
dex, which is supposed to reflect variations in the intensity
of the symmetric part of the ring current at altitudes ranging
from about 3-8 earth radii (Greenspan and Hamilton, 2000).
The situation is more involved because a substantial portion
of Dst may be a result of electromagnetic induction effects
or other magnetospheric currents and may be asymmetric
(Burton et al., 1975; Langel and Estes, 1985; Turner et al.,
2001). TheDst index is calculated at hourly intervals from
the horizontal magnetic field component at four observato-
ries, namely, Hermanus (33.3◦ S 80.3◦) in magnetic dipole
latitude and longitude), Kakioka (26.0◦ N, 206.0◦), Honolulu
(21.0◦ N, 266.4◦), and San Juan (29.9◦ N, 3.2◦). These four
observatories were chosen because they are close to the mag-
netic equator and thus are not strongly influenced by auroral
current systems. They are therefore more likely to be an ac-
curate gauge of the strength of the ring current perturbation.

Recent research (Wanliss, 2004, 2005) has found thatDst

exhibits a power-law spectrum with the Hurst index varying
over different stretches of the time series. This behavior in-
dicates thatDst is a multifractional process. An important
example of such processes is multifractional Brownian mo-
tion (Ayache and Ĺevy Véhel, 2000; Benassi et al., 2000).

Correspondence to:V. V. Anh
(v.anh@qut.edu.au)

Heavy-tailed Ĺevy-type behaviour, particularly that of sta-
ble distributions, has also been observed in the interplane-
tary magnetic field and the magnetosphere (Burlaga, 1991,
2001; Burlaga et al., 2003; Kabin and Papitashvili, 1998;
Lui et al., 2000, 2003). It is known that, apart from Brown-
ian motion and Poisson processes, all other Lévy processes
display a form of multifractal scaling (Jaffard, 1999). Frac-
tal and multifractal approaches have been quite successful in
extracting salient features of physical processes responsible
for the near-Earth magnetospheric phenomena (Lui, 2002).
But it should be noted that these approaches, while charac-
terizing the fractal/multifractal behavior of the process under
study, do not yield a direct method for its prediction.

In this paper, we look at the multiple scaling ofDst from
a different angle, namely from an iterated function system of
its measure representation. This measure is a histogram-type
probability measure of the patterns of the events extracted
from theDst time series (to be defined below). The mea-
sure has the characteristic of a multifractal measure, and will
be modeled via a recurrent iterated function system (RIFS),
which is considered as a dynamical system. The attractor of
this dynamical system is in fact the support of the probabil-
ity measure. A great advantage of this approach is that the
probabilities of patterns of future events can be determined
from the RIFS. Hence the method provides a mechanism for
prediction of future events. It should be emphasized that this
prediction is based on the multiple scaling inherent in the
Dst , rather than its autocorrelation structure as in usual meth-
ods for prediction of stationary processes.

The next section will outline the concepts of measure rep-
resentation, multifractal measures and RIFS. Section 3 de-
velops RIFS models for the measure representations of the
Dst time series at hourly and daily scales. Section 4 will
look at the prediction of storm events via these models and
evaluate the performance of this method through a number
of accuracy indicators. Some concluding comments on the
approach will be provided in Sect. 5.
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Fig. 1. TheDst series, measured in hourly intervals, from 1981 to
2002.

2 Iterated function systems for multifractal measures

In this section, we outline the concept of multifractal mea-
sure and present a class of models, namely recurrent iterated
function systems, which will be used in this paper to repre-
sent a multifractal measure. These RIFS lead to an algorithm
for prediction of the probability of patterns of storm events.

2.1 Multifractal measures

Magnetic storms are highly dynamic over many time scales.
TheDst time series is apparently intermittent. This behavior
is characterized by the generalized dimension of its measure,
which is then known as a multifractal measure. The stan-
dard method to test for multifractality consists of calculating
the moments of orderq of a measureµ with supportS⊂R
(commonly normalized to have massµ (S)=1):

Ml (q) =

∑
µ(B)6=0

(µ (B))q , q ∈ R , (1)

where the summation runs over all different non-empty in-
tervalsB=[kl, (k+1) l] of a given lengthl which cover the
supportS.

Multiple scaling holds if the moments of orderq scale as

Ml (q) ∼ l(q−1)Dq asl → 0 , (2)

which defines the generalized dimensionsDq as

Dq =

{
liml→0

logMl(q)
(q−1) log l

, q 6= 1,

liml→0
M1,l

log l
, q = 1 ,

(3)

where M1,l=
∑

µ(B) 6=0 µ (B) logµ (B) (Falconer, 1997).
The valueD0 is known as the capacity dimension,D1 the
information dimension andD2 the correlation dimension of
the measureµ. A monofractal has all its dimensions iden-
tical: Dq=α andMl (q) ∼l(q−1)α. It is seen that the sample
values of the generalized dimensionsDq , denotedDq , can be

obtained through the linear regression of(q−1)−1 logMl (q)

against logl for q 6=1, and through the linear regression of
M1,l against logl for q=1.

2.2 Measure representation

In this paper, we concentrate on developing models for the
probability of occurrence of storm events. The proposed
method examines the multiple scaling of a process via their
measure representation. We first outline the method of Yu,
Anh and Lau (2001) in deriving the measure representation
of a time series. We assume that the time series can be
grouped into a number of different categories. For example,
each data point is classified according toDst ≤−50 nT or
Dst>−50 nT, which corresponds to the active or quiet cat-
egory, respectively. Small storms, withDst values above
−50 nT, are placed in the quiet category since these are
actually regarded to be substorms (Gonzalez et al., 1994,
Wanliss et al., 2005). We then use the valuess=0, 1 to
indicate each category. We call any string made up of
k numbers from the set{0, 1} a k-string. For a givenk
there are in total 2k different k-strings, and 2k counters are
needed to count the number ofk-strings in a given time se-
ries. We divide the interval[0, 1) into 2k disjoint subinter-
vals, and use each subinterval to represent a counter. Let-
ting s=s1 · · · sk, si∈{0, 1}, i=1, · · · , k, be a substring with
lengthk, we define

xl(s) =

k∑
i=1

si

2i
, xr(s) = xl(s) +

1

2k
.

We then use the subinterval[xl(s), xr(s)) to represent the
substrings. Let N(s) be the number of times a substring
s appears in the time series. If the time series has length
L, we defineF(s)=N(s)/(L−k+1) to be the frequency of
substrings. It follows that

∑
{s} F(s)=1. We can now view

F(s) as a function ofx and define a measureµ on [0, 1)

by µ (x) =Y (x) dx, whereY (x)=2kF(s), x∈[xl(s), xr(s)).
We callµ the “measure representation” of the given time se-
ries. It is noted that this histogram-type representation will
have a different shape according to the order of thek-strings
on the interval [0,1), but it is unique for each time series once
this order is fixed (usually the dictionary order is used). This
concept is an extension of that of the usual histogram, where
each substring consists of a single value.

As an example, we consider theDst index, plotted in Fig. 1
in hourly resolution over the period 1981–2002 (further de-
tail on this index is provided in Sect. 3.1). The measure rep-
resentation ofDst for k=12 is given in Fig. 2, which has 212

subintervals. Here, theDst time series is clustered into two
categories:Dst≤−50 andDst>−50 as noted above. Self-
similarity is apparent in theDst series via its measure repre-
sentation.
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2.3 Recurrent iterated function system for a multifractal
measure

In this paper, we model the measureµ as constructed
above by a recurrent iterated function system (Barns-
ley and Demko, 1985; Falconer, 1997). This technique
has been applied successfully to fractal image construc-
tion (Barnsley and Demko, 1985; Vrscay, 1991) and ge-
nomics (Anh et al., 2001, 2002, Yu et al., 2001, 2003),
for example. Consider a system ofN contractive maps
S={S1, S2, · · · , SN } and the associated matrix of probabil-
ities P=(pij ) such that

∑N
j=1 pij=1, i=1, 2, · · · , N . We

consider a random sequence generated by the dynamical sys-
tem S:xt+1=Sσt (xt ), t=0, 1, 2, · · ·, where x0 is any start-
ing point and σt is chosen among the set{1, 2, ..., N}

with a probability that depends on the previous index
σt−1:P (σt+1=i)=pσt ,i . Then(S, P) is called a “ recurrent
iterated function system”. The coefficients in the contractive
maps and the probabilities in the RIFS are the parameters to
be estimated for the measure that we want to simulate.

We now describe the method of moments to perform
this estimation (Vrscay, 1991). Ifµ is the invariant mea-
sure andE the attractor of the RIFS inR, the mo-
ments of orderν of µ are gν=

∫
E

xνdµ, g0=
∫
E

dµ=1.

If Si(x)=cix+di, i=1, · · · , N , thengν=
∑N

j=1 g
(j)
ν , where

g
(j)
ν , j=1, · · · , N , are given by the solution of the following

system of linear equations:

N∑
j=1

(pjic
ν
i − δij )g

(j)
ν = −

ν−1∑
k=0

(
ν

k

)[
N∑

j=1

ck
i d

ν−k
i pjig

(j)
k

]
,

i = 1, · · · , N, ν ≥ 1.

Forν=0, we setg(i)
0 =mi , wheremi are given by the solution

of the linear equations

N∑
j=1

pjimj = mi, i = 1, 2, · · · , N, and g0 =

N∑
i=1

mi = 1.

If we denote byGν the moments obtained directly from a
given measure, andgν the formal expression of the moments
obtained from the above formulas, then solving the optimiza-
tion problem

min
ci ,di ,pji

m∑
ν=1

(gν − Gν)
2

for some chosenm will provide the estimates of the parame-
ters of the RIFS.

Once the RIFS
(
Si(x), pji, i, j=1, ..., N

)
has been esti-

mated, its invariant measure can be simulated in the follow-
ing way (Anh, Lau and Yu, 2002): Generate the attractorE

of the RIFS via the dynamic system described above. LetχB

be the indicator function of a subsetB of the attractorE:

χB(x) =

{
1, if x ∈ B,

0, if x 6∈ B.
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Fig. 2. The measure representation, constructed fork=12 with two
levels, of theDst time series of Fig. 1.

From the ergodic theorem for RIFS, the invariant measure is
then given by

µ(B) = lim
n→∞

[
1

n + 1

n∑
k=0

χB(xk)

]
.

By definition, an RIFS describes the scale invariance of a
measure. Hence a comparison of the given measure with
the invariant measure simulated from the RIFS will confirm
whether the given measure has this scaling behavior. This
comparison can be undertaken by computing the cumulative
walk of a measure, represented in the form of its histogram
of k-strings, asFj=

∑j

i=1

(
fi−f

)
, j = 1, ..., 2k, wherefi

is the frequency of thei-th substring andf is the average
value of the histogram.

Returning to theDst example of Sect. 2.2, an RIFS with

2 contractive maps
{
S1 (x) =

1
2x, S2 (x) =

1
2x+

1
2

}
is fitted to

the measure representation using the method of moments.
Here, the interval[0, 1) is divided into two non-overlapping
subintervals[0, 1

2) and [
1
2, 1), hence it is natural to select

ci=
1
2 and di=0 or 1

2 for the two maps. The optimization
problem is run for moments up to orderm=15, which is suf-
ficiently large for the objective function to have negligible
changes, hence for the estimates to converge. The estimates
for the probabilities are

P =

(
0.992068 0.007932
0.090440 0.909560

)
.

The resulting invariant measure is plotted in Fig. 3. The cu-
mulative walks of these two measures are reported in Fig. 4.
It is seen that the fitted RIFS provides an excellent model of
the scaling behavior of thisDst time series.

In order the check that the estimates of the parameters,
hence the RIFS models, do not change over different solar
cycles, we re-estimate the probabilities for two cycles inher-
ent in the data:
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Fig. 3. Simulation of the fitted RIFS of the measure representation
of Fig. 2.
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Fig. 4. The cumulative walks of the measure representation (Fig. 2)
and its RIFS simulation (Fig. 3). The simulated model traces out
closely the given measure.

For cycle 1 (1981–1991):

P =

(
0.990986 0.009014
0.082972 0.917028

)

and for cycle 2 (1992–2002):

P =

(
0.993075 0.006925
0.102738 0.897262

)
.

It is seen that the estimates agree with each other over the
two cycles and also over the entire period.
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Fig. 5. The measure representation, constructed fork=12 with two
levels, of the dailyDst time series over the period 1981–1996.

3 Prediction of storm events

3.1 Data analysis

The raw data set used in this work comes from the World
Data Center (WDC-Kyoto) where an uninterrupted hourly
time series is available from 1963 to the present time. We
use the period 1981–2002 in this work. Such period pro-
vides sufficient information on intermittency of storm data
for multifractal analyses. The hourlyDst time series from
1981 through 2002 is shown in Fig. 1. The time series ap-
pears stationary at this scale and a striking feature is its bursty
negative excursions corresponding to intense storm events.
In fact, zooming in on shorter time intervals shows the same
pattern. This apparent scaling and intermittency ofDst sug-
gests that multifractal techniques would be suitable for its
analysis and prediction, which is what we follow in this pa-
per.

In the next illustration, we construct a daily time series for
the period 1981–1999 by taking the minimum value for each
day of the originalDst series. We use the period 1981–1996
for modeling, leaving the last three years 1997–1999 for eval-
uation of our prediction method in the next subsection. Here,
the Dst is clustered into two categories:Dst>−30 (corre-
sponding to a no-storm event) andDst≤−30 (corresponding
to a storm event). The measure obtained for 2 categories and
k=12 is plotted in Fig. 5. Note that the self-similarity pat-
tern of this measure is quite different from that presented in
Fig. 2. An RIFS with 2 contractive maps{S1, S2} is fitted
to this measure using the method of moments. The result-
ing invariant measure is plotted in Fig. 6. The cumulative
walks of these two measures are reported in Fig. 7. It is seen
again that the fitted RIFS provides an excellent model of the
scaling behavior of this daily time series.
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Fig. 6. Simulation of the fitted RIFS model of the measure repre-
sentation of Fig. 5.

3.2 Prediction

In using measure representations, storm events are com-
pounded into the patterns of thek-strings, and a probability
is computed for eachk-string. An RIFS is then fitted to this
measure representation using the method of moments. The
attractor of this RIFS is in fact a fractal set which describes
the fractal behavior inherent in the measure representation.
As described in Sect. 2.3, the contractive maps of the fitted
RIFS can be used to simulate a measure, which is the invari-
ant measure of the originalDst time series. This invariant
measure gives the probability for each event in the attractor.

The fitted RIFS can also be used to predict future events
according to their patterns and generated probabilities. For
example, assume that we have observed 11 storm events in
the past 11 days and we want to predict the occurrence of the
next event. All the patterns, for exampleDst<−30 nT for 11
consecutive days, of the 12-strings are known, together with
their probabilities given by the fitted RIFS. We then select the
12-string (the first 11 symbols of which are known) with the
highest probability. The last symbol/event of this 12-string
will give us the desired prediction. To be concrete, assume
that we use the map

f1 =

{
0, if Dst > −30,
1, if Dst ≤ −30

to convert theDst time series into a symbolic sequence of
0 (no-storm) and 1 (storm). Assume that the fitted RIFS
gives the probabilities of 0.012 and 0.035 to the 12-strings
011011101111 and 011011101110, respectively. If it has
been observed that the event 01101110111 occurred in the
previous 11 days, then our method suggests to predict that
there would be no storm in the next day as this event corre-
sponds to a higher probability of 0.035 for the pattern to oc-
cur. It should be noted that this method of prediction is based
on the invariant measure obtained from the model, which rep-
resents the scaling behavior of the underlying process.
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Fig. 7. The cumulative walks of the measure representation (Fig. 5)
and its RIFS simulation (Fig. 6).

To evaluate the above method of prediction, we use three
symbolic maps:f1 as defined above with 1 meaning storm
and 0 meaning no storm,

f2 =

{
0, if Dst > −80,
1, if Dst ≤ −80,

with 1 meaning big storm and 0 meaning no big storm, and

f3 =

0 , if Dst > −30,
1 , if −100< Dst ≤ −30,
2 , if Dst ≤ −100,

with 2 meaning big storm, 1 meaning storm and 0 meaning
no storm.

We will evaluate the prediction based on both the daily and
hourlyDst data series over the period 1981–1996. Note that
we will make true predictions as we attempt to predictDst

during 1997–1999, the data of which was not used in the esti-
mation of the RIFS. After converting the daily or hourly data
to symbolic sequences, the fitted RIFS are used to simulate
their measure representations (we takek=12 for 2-symbol
representations andk=8 for 3-symbol representations). We
found from the cumulative walks that, for daily data, RIFS
works well for both 2-symbol and 3-symbol representations;
while for hourly data, RIFS works well only for the 2-symbol
representations.

We obtain the predicted events for up to eight hours ahead,
or up to three days ahead. This prediction is performed for
each time point and repeated recursively over the full three
years 1997–1999. For example, fors-hours ahead predic-
tions based onf1 and 12-strings, we start with the first 12−s

known events in the time series (i.e. starting with the symbols
from 1 to 12−s), then predict the nexts events according to
the 12-string with the highest probability (there are 2s such
12-strings). The next prediction is then based on the known
symbols from 2 to 13−s for the nexts events. The prediction
is repeated until the last time point, which isT −s, whereT

is the number of points of the time series.
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Table 1. Prediction of hourly data using mapf1 with k=12.

Hours r1 r2 r3
ahead

1 25094/26269=95.53% 3811/4540=83.94% 3811/4540=83.94%
2 24328/26269=92.61% 3484/5047=69.03% 3942/5047=78.24%
3 23711/26269=90.26% 3229/5464=59.10% 4048/5464=74.08%
4 23186/26269=88.26% 3052/5814=52.03% 4110/5814=70.69%
5 22709/26269=86.45% 2840/6131=46.32% 4155/6131=67.77%
6 22268/26269=84.77% 2674/6418=41.66% 4218/6418=65.72%
7 21877/26269=83.28% 2530/6680=37.87% 4284/6680=64.13%
8 21506/26269=81.87% 2393/6923=34.57% 4307/6923=62.21%

Table 2. Prediction of hourly data using mapf2 with k=12.

Hours r1 r2 r3
ahead

1 26130/26269=99.47% 310/401=77.31% 310/401=77.31%
2 26039/26269=99.12% 271/457=59.30% 319/457=69.80%
3 25957/26269=98.80% 236/508=46.46% 328/508=64.57%
4 25890/26269=98.56% 213/555=38.38% 339/555=61.08%
5 25823/26269=98.30% 193/599=32.22% 347/599=57.93%
6 25763/26269=98.07% 175/642=27.26% 357/642=55.61%
7 25705/26269=97.85% 157/682=23.02% 360/682=52.79%
8 25648/26269=97.64% 140/722=19.39% 357/722=49.45%

Table 3. Prediction of daily data using mapf1 with k=12.

Days r1 r2 r3
ahead

1 822/1084=75.83% 273/406=67.24% 273/406=67.24%
2 630/1084=58.12% 187/536=34.89% 299/536=55.78%
3 474/1084=43.73% 125/642=19.47% 311/642=48.44%

We then compare with real events as known from the data,
and determine the accuracy of the prediction according to the
following three indicators:

r1 =
number of correct predictions

total number of predictions
;

r2 =
Num1

Num2
,

whereNum1 denotes the number of correct predictions on
strings whose lasts events contain a storm event, andNum2
the total number of strings whose lasts events contain a
storm event; and

r3 =
Num3

Num4
.

whereNum3 denotes the number of predictions of storm
events on strings whose lasts events contain a storm event
andNum4 the total number of strings whose lasts events
contain a storm event. In these indicators,s is the number of
hours or days ahead. Inr3, the predicted string is not required

Table 4. Prediction of daily data using mapf3 with k=8.

Days r1 r2 r3
ahead

1 780/1088=71.69% 230/406=56.65% 230/406=56.65
2 593/1088=54.50% 150/536=27.99% 270/536=50.37%
3 449/1088=41.27% 98/642=15.26% 282/642=43.93%

Table 5. s-hours ahead prediction of hourly data using mapf1 with
k = 12 based on a prefix 00... 01 of length 12−s.

Hours r1 r2 r3
ahead

1 170/212=80.19% 170/170=100% 170/170=100%
2 124/223=55.60% 124/185=67.03% 124/124=100%
3 110/233=47.21% 110/200=55.00% 110/110=100%
4 100/243=41.15% 100/213=46.95% 213/213=100%

Table 6. s-days ahead prediction of daily data using mapf1 with
k=12 based on a prefix 00... 01 of length 12−s.

Days r1 r2 r3
ahead

1 14/21=66.67% 14/14=100% 14/14=100%
2 11/27=40.74% 11/18=61.11% 18/18=100%
3 11/32=34.38% 11/24=45.83% 24/24=100%
4 9/36=25.00% 9/28=32.14% 28/28=100%

to be the same as the observed string. Hence it is expected
that r3>r2. Also, since most of the values of the time series
are larger than−30 nT (corresponding to a no-storm event),
it is more difficult to predict a storm event than a no-storm
event. And sincer1 includes the predictions on those strings
whose lasts events contain a no-storm event, it is expected
thatr1>r3>r2. The results are reported in Tables 1–4.

3.3 Remark

The method of this paper is not suitable to predict a new
storm onset given that there was no storm in the previ-
ous k−1 periods in ak-string setting, for example, the
event 000000000001 in a 12-string. This situation arises
because the probability of the event 000000000000 is al-
ways larger than that of 000000000001, hence the method al-
ways predicts the occurrence of 000000000000 even though
000000000001 would occur. A system for prediction of
storm onsets such as 000000000001 would normally require
incorporation of an internal magnetospheric mechanism in-
volving solar wind as a driver. Our method requires the oc-
currence of at least one storm event in the previousk−s peri-
ods to be able to predict the pattern in the nexts periods. To
confirm this point, we provide the following examples using
the mapf1 on 12-strings of both hourly and dailyDst data.
These are reported in Tables 5 and 6.
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4 Conclusions

In this paper, we pay attention to the prediction of storm pat-
terns up to three days ahead using daily data, or up to eight
hours ahead using hourly data. Based on the values recorded,
theDst is clustered into events such as{storm, no storm} or {

intense storm, moderate storm, small storm, no storm}. Some
previous works have suggested the values to distinguish these
events. For example, storms withDst<−50 nT are classi-
fied as moderate or intense, and those in the range−50 nT
≤Dst<−30 nT classified as small storms (Gonzalez et al.,
1994; Wanliss et al., 2005). In this way, theDst time series
is converted into a sequence of symbols{0, 1}, or {0, 1, 2, 3}

accordingly. The events are then grouped into strings ofk

symbols, yieldingk-strings. Going through the symbolic se-
quence, the probabilities of thesek-strings can be obtained,
yielding a probabilty measure for all possiblek-strings. We
call each of these measures a measure representation of the
Dst time series.

The work of this paper indicates that each of the above
probability measures is in fact a multifractal measure and can
be modeled by a set of contractive maps known as a recurrent
iterated function system. The excellent fit of this RIFS to
data suggests that the attractor/fractal set of the RIFS is the
set ofk-strings started out. The fitted RIFS represents the
multifractal scaling of storm events. This scaling is the key
element in our method for prediction of storm events.

It should be noted that these are outside-sample fore-
casts, hence are quite meaningful. The method works rea-
sonably well in predicting storm patterns for hourly data
when we only pay attention to 2-symbol scenarios such as
{storm, no storm}, or {big storm, no big storm}. A further
point to note is that this perfomance is achieved from the
scaling behavior of theDst series captured in its measure rep-
resentation. This distinguishes our approach from the usual
approach based on the correlation structure ofDst . As the
method does not rely on additional information such as a so-
lar wind driver, it is simple to implement and its prediction
can be used as a benchmark to evaluate more elaborate sys-
tems.
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