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Abstract. A sequential time dependent data assimilation data for updating the wave spectrum (Thomas, 1988; Esteva,
scheme based on the Kalman filter is applied to a spec1988; Janssen etal., 1989, Lionello etal., 1992, 1995). These
tral wave model. Usually, the first guess covariance matri-are computational efficient methods and consequently they
ces used in optimal interpolation schemes are exponentidhave been tested in operational forecasting, using mainly al-
spreading functions, which remain constant. In the presentimeter data. However, the fact that forecast errors may be
work the first guess correlation errors evolve in time accord-non-uniformly distributed over the wave spectrum restricts
ing to the dynamic constraints of the wave model. A systemthe enhancement achieved by wave height assimilation alone.
error noise is deduced and used to balance numerical errorsSome authors have made an effort to overcome this limita-

The assimilation procedure is tested in a standard situation by merging altimeter and synthetic aperture radar (SAR)
tion of swell propagation, where the Kalman filter is used data (Hasselmann et al., 1997). In particular, a generalisa-
to assimilate the significant wave height. The evolution oftion of the simple Ol scheme was developed by applying a
the wave field is described by a linear two-dimensional ad-technique of spectral partitioning that allows to decompose
vection equation and the propagation of the error covariancéhe spectrum into a relatively small number of wave systems,
matrix is derived according to Kalman'’s linear theory. each characterized by three integral spectral parameters (Ger-

Model simulations were performed in a 2-dimensional do-ling, 1992; Voorrips et al., 1997). The optimal interpolation
main with deep-water conditions, a relatively small surfaceschemes fit in the group of time independent assimilation
area and without wind forcing or dissipation. A true state methods. They simply update the model first guess by adding
simulation and a first guess simulation were used to illustratdo it a weighted linear combination of the errors between the
the assimilation outcome, showing a reasonable performanceodel and the observations. The covariance matrix of the
of the Kalman filter. observational and model errors determines the interpolation
weights. Being time independent, the model correlation er-
rors do not take into account the dynamic constraints of the
model, which is a major disadvantage of this method.

In what concerns time dependent methods two main

The availability of third-generation wave models and the in- classes can be considered: sequential data assimilation meth-
creasingly capacity of oceanographic satellites to provide acpdS and'varlatlonal method.s. Th.e'latter haye been imple-
curate measurements of altimeter data and, more recentlrf1ented in wave models using adjoint techniques (De Valk
valuable directional information on the two-dimensional and Calkoen, 1989; de las Heras et al., 1992, 1994) or a

wave spectrum, have contributed substantially to the devel-(.3 reeln funrc]:ugn rr]nethor(]j (E auefr etfal., '1d996).h Thesgl vanaf—
opment of wave data assimilation. It is now clear that the as-t'ona. 'T‘et % S aveh_t € efne |tho av0|||n.gt € pro G;mho
similation methodologies can improve the sea state descrip§pec'fylng the time '|story or the corre gtlon errors o t €

odel and observation data. But if the intent is to achieve

tion both analysed and wave model forecasts, especially i ) .
swell dominated systems an operational mode, several runs of the model are required

The early schemes developed for wave data assimilatiorﬁ Iperform the tvetl_rlatul)nal procedure, Ieadm% tto the neet(_j |
were based on optimal interpolation (Ol) methods, that com ' 1rg€ computational resources, as opposed to sequentia

bined significant wave height, mean period and directionalmethoqs' o o
In this paper, a sequential time dependent data assimilation

Correspondence tavl. C. Bernardino scheme based on the Kalman filter is applied to a spectral
(mariana.bernardino@hidrografico.pt) wave model. This assimilation method should be a natural

1 Introduction
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step forward from the optimal interpolation scheme. TheA detailed presentation of the theory can be found in Whit-
main innovation is the introduction of time dependent cor- man (1974) and Komen et al. (1994), along with explicit ex-
relation errors, which evolve according to the dynamic con-pressions for the velocities.

straints of the model. The assimilation procedure is tested in Specifying an equation for the significant wave height cor-
a standard situation of swell propagation and the Kalman fil-relations errors is essential to understand how this wave prop-
ter is used to assimilate the significant wave height, or moreerty evolves in time. This can be accomplished by integrating
precisely the surface elevation variance. In the present cas&q. ) in frequency and direction space, obtaining

the evolution of the wave field is described by a linear two- 4, 3 5

dimensional advection equation and the propagation of theg + P (cx V) + F™ (cyv) = 16/ S(F)dodf (6)
error covariance matrix is derived according to Kalman’s lin- Y

ear theory. wherew=H? is the surface elevation variance, which is pro-
portional to the wave energy (hereafter referred to as energy
or wave energy). The velocity components fieldsc, are

2 The wave model given by

Stochastic or spectral models describe the propagation, [ ciFdodo _ 7
growth and dissipation of wind gravity waves in large scales.! = [ Fdodo P=X5y 7

The sea state is characterised by the spectral density action . . . .
The non-linear wave interactions are an internal energy

N (1, x, y;0, 0), afunction of time, surface coordinates, rela- ‘ hani ; the whol
tive frequency and direction. The associated spectral balanciansfer mechanism, conserving energy over the whole spec-

equation is given by trum. The integration of this term in Ecg)(is therefore zero.
The remaining source terms are assumed to be reasonably

IN 0 9 0 0 well described by their first order approximation, resulting in
——+— (exN) +— (cyN) +— (coN) +— (coN) = SC '
ot +ax (c )+8y (Cy )+89 (e )+aa (co ) a quasi-linear dependence fn
S (N
ET ) 1) SE)=a(F)F (8)

where the first term represents local time variations, the sec-—rh? proportionality factow is a functional ofF” depend_mg .
ond and third term space propagation, the fourth the refrac® n.mtegra}ls over the spectra an_d on frequency and d|r-ect|on.
tion essentially induced by bottom variations in space andT.hIS aglplu_es tt? thi st*rjor:tg no;ljh?ear prgc'aglses O.f \(/jvhltecap—
the fifth term the Doppler shift induced by the presence ofPNY: ;'ssma 'o?l y 0o 8”:, riction and viles wind wave
currents. The quantities,, ¢y, cg andc, represent the ve- generation mechanism. Detining

locities in geographic space, direction space and frequency [« (F) Fdodf 9
space, respectively. The functionsif{ N) describes all the ¢ = [ Fdod6 ©)
relevant energy transfer processes, and is generally decom- T ,

posed into four terms and taking into account Eg8), one can rewrite Eq6j as

ow J0 _ a ,_ _
S = Swg + Sdiss + Sni + Spor ) E + a (cxV) + 5 (quj) =aV¥ (10)
namely, the wind wave growth, the white capping and wave s qyasi-linear two-dimensional advection equation, with
breaking dissipation, non-linear wave interactions and bot-grce terms, describes the evolution of the wave energy. It

tom dissipation. has a decisive importance to the Kalman filter application, as

The wave parameters, such as the significant wave heighly nrescribes a way to derive the time history of the energy
the mean period and the mean direction are obtained from,ye|ation errors. The sea state evolution is still given by

spectral averaging. In particular, the significant wave heighty f spectral calculation and in particular the velocity field
(Hy) is defined as and the coefficien, which are essential to solve Ed.0},
1/2 always require the computation of the spectral Bj. (
Hy =4 </ Fdad@) 3) Although in the setting up of Eq1() no explicit assump-
tions have been made about the form of the spectra, this
whereF (¢, x, y;o, ) is the wave spectral energy, related to scheme for handling energy correlation errors should only

the spectral density action according to be totally valid for one-peaked spectra, corresponding to one
F wave system. If the sea state is characterized by a multi-
N = P (4) peaked spectra (e.g. crossing of two separate swell systems

or a swell propagation over a local wind sea system) EQ). (
*would certainly fail to reproduce the correct time behaviour
of the correlation errors since these different wave systems
spectral energy. It can be shown that are uncorrelated. The complete specification of the covari-
oF 9 ance matrix would bear an impossible cost in practical ap-
o T @+ 3y (eyF) + 39 (c0F) =5 (F) (5)  plications. Yet, in real seas the coexistence of more than one

If currents (tidal or others origins) are not considered
Eq. (1) can be written in a simpler form in terms of the wave
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wave system is not unusual. A way to circumvent this restric- The operatord is derived from Eq. 10) and depends on
tion is to split the spectra accordingly and assuming that eaclthe numerical method used. Since the present work only
wave system evolves independently with no correlation. Ne-takes into account the propagation terms, a first order up-
glecting non-linear interactions between different wave sys-winding scheme was chosen. Although first order schemes
tems would then permit Eq10) to be applied to each parti- have a larger numerical diffusion, compared to second or-
tion. Naturally, the integrals in Eqs7)Xand @) would also  der schemes, they are simpler to implement and require less
have to be taken over each patrtition, defining a velocity and acomputer resources. Considering this is an explicit integra-
source coefficient for each wave system. However, this gention and to fulfil numerical stability, the time step has to sat-
eralisation is only effective if the assimilated measurementdsfy the inequalityc<1, wherec is the CFL number given

identify and capture each wave system. Clearly this is not thegyy A; (EX/AX + E),/Ay)_ As explained before, Eg5) has

case when one uses altimeter data. to lead the computation suite in order to provide the velocity
field and the factow, used in the iteration rule of Eql4).

3 The assimilation scheme For the energy correlation error, the assimilation time step
is larger than the computation time step. Therefore, between

The sequential assimilation methods are usually called sinassimilation points several iterations of Eq4) could be

gle time level schemes. Depending on the availability of made. In that case superscripshould be replaced by.

measurements, the corrections to the model are made in At the assimilation time, the measurements available at some

series of time frames centred at a certain timeContrary ~ points and can be related to the true state through the equa-

to variational methods, the field evolution is not entirely con- tion

sistent with the model dynamics because a discontinuity is;

introduced at each assimilation time. Also the success of se-

quential data assimilation depends strongly on the reliabilitywhere theN,;, dimensional vectow; represents the obser-

of the model first guess. On the other hand, sequential assimsation state &, is the number of assimilation points) and

ilation has a clear advantage for operational implementatiors, is the measurement error term. TNgp, x N matrix Ly

since the model only has to run once. projects the model space into the observational space. The

The Kalman filter has been used extensively in oceanoganalysed estimate field is obtained according to

raphy (Ghil and Malanotte-Rizzoli, 1991; Evensen, 1992,

1993) and a complete derivation can be found in Jazwinski¥; = ‘If{ + Kj (‘If;f - Lk‘I‘,{) (16)

(1970). Here the focus is the application of the Kalman filter ) L

to a spectral wave model. Assuming that the energy field isV1€"e theV > Nops Kalman gain matrix is given by

represented at each given timeby the N-dimensional vec-

tor W, with N=N, Ny, whereN, andN, are the number of

grid points in thex andy direction, respectively, its evolution

in time can be formulated as

= Lk\IJ;; + 8k (15)

-1
Ky = P/ LT (Lep{ LT + %) (17)

and Ox=(8s8]) is the observation error covariance
Nops X Nops matrix. The Kalman matrix is able to scatter the
v/ = Aw (11)  assimilation improvement to all grid points, a process domi-
nated by the spatial scales inherent to the model correlation
where A is a linear operator advancing the state veckor  errors and by a compromise between model errors and obser-

in time.  The superscripty’ anda stand for forecast and  vation errors. These scales evolve dynamically according to
analysed estimate, respectively. The real system evolutiofhe model constraints.

is given by The observation error matri® must be specified at each
W AU 1A, (12)  assimilation time. Assuming uncorrelated measuring instru-
k k=1 ments

Whel’e\I';( is the true state vector gt, and Ay is the system
error originating from numerical approximations, unsatisfac-
tory boundary conditions and deficient theoretical assumpwheres;; is the Kronecker symbol anf; is the observation

Oij = 8ijRii, j =1, ..., Nobs (18)

tions. The model correlation errorsratare defined as error variance associated with assimilation point
T When the filter is applied to obtain an analysed estimate,
Pk“’f = <<\Il,f’f - w,ﬁ) (\IJ,‘:f - w,@) > (13)  the model error is reduced and updated according to
Plf = Pkf — KkLkPkf (19)

where() stands for the expected value apd for the trans-
pose. The equation for the propagation of the model correlaHowever, as noted by Evensen (1992), this expression may

tion errors is then obtained from Eqklj—(12) as become negative due to numerical errors in regions of low
7 . variance. To overcome this problem the equivalent equation
Pl = AP{_ AT + Ok (14)  isused

whereQ;=(A¢A]) is the system error covariance. Pl = (I — KrLy) Pkf (I — KkLp)" + Ky Ok, (20)
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which is given by the sum of two positive defined matrices. (Zang and Malanotte-Rizzoli, 2003), have to be made. In
Before running Eq.5) for the next time step, the wave order to balance numerical diffusion analysis, an expression

spectra has to be updated and a correction is introduced ifor the system noise error is deduced (see Appendix A),

the model through Eq.16). The simplest way for the new

spectra to match the analysed energy is to consider the folp, = (exp(f) _ 1) Dg (AFk_lAT) (27)
lowing equation D

a 7 pd whereP is the off-diagonal part of the model covariance er-

F'(0.0)=TF (0.0) T= wr (21) rors covarianceDyg () stands for the diagonal part and for
) _ grid point spacing. According to EqRQ) only the variance

at each grid point, wherE“ andF/ are the analysed and the fig|q i affected directly by this correction. At each grid point
forecast spectra, respectively. The consistency of this choicg g given by the correlation error times:@—c), summed
is discussed in Janssen et al. (1989) and Lionello et al. (19929yer the closest upwind grid points. The exponential factor
anditis clear that this solution is only suitable when no majorjncjydes both the spatial resolution and the correlation scale
feature of the true spectrum is absent in the model estimate g thatQx—0 when As—0 or D—+oco. The expression

For the test case studied in this article, the initial and the(27), deduced to match numerical diffusion, has only two pa-
incoming boundary conditions of the correlation errors arergmeters. One is the CFL numherwhich depends on the

defined according to time step, the grid spacing and the velocity and should always
dii be close to one for numerical stability. The other is the scal-
P,-? = Uif(f]f exp (-%) i,j=1..,N (22)  ing paramete from expressiond?). As there is no sound
rule for prescribing the system noise matrix, the reliability of
where expressionZ7) can only be validated by its results.
2\1/2
G"f - <(\yif B q;f) > (23) 4 Results

is the root-mean-square model error at grid peiandd;; A 2-dimensional domain, with deep-water conditions but a
is the distance between the grid pointandj. The param-  re|atively small surface area (400 kr600 km), was adopted.
eter D is a constant correlation length scale. The outgoingThe corresponding number of grid points is>821. At
boundary is treated as an open bpundary. _ this stage, the main goal is to understand and analyse the
The root-mean-square (E@3) is expressed with a pa-  model correlation errors evolution and the filter performance
rameterisation obtained from a statistical analysis of com-j; 5 simple case of swell propagation. For this reason, the
parisons between model predictions and observations off thging forcing and the dissipation mechanisms were not in-

Portuguese coast, namely cluded in Egs.%) and (L4). In that case, the wave model
1 has to be solved as a boundary value problem and wave con-

of = R (0.096+ 0.124H;) . (24)  ditions (significant wave height, peak period and wave di-
rection) must be specified along the incoming boundaries.
¢ is an adjustable parameter defined as The incoming significant wave height is also used to define
v the boundary conditions for the energy correlation errors, ac-

12 — G_f (25)  cording to Egs.22) and @4). In Table 1 the wave parameters

o

defining the boundary conditions for the true state and the
The deduction of Eq.24) follows Voorrips et al. (1997) model state at the left top corner of the computation domain
where it was assumed that the model estimate errors and thare presented. They replicate the arrival of two comparable
observation errors are uncorrelated. In particular, 2§) ( wave systems each having a swell event around day 4. Fi-

implies that the observation error variance is given by nally, the free paramete® ande were fixed for the whole
) set of simulations with the valug3=60 km ands=0.2.
Ri=¢ (o’if) (26) A stationary run of Eq.J) is needed to estimate an initial

condition field. At each time step, the velocities are calcu-
This equation is used throughout the assimilation procedurdated using Eq.q) and subsequently the operator A is deter-
with the purpose of evaluating the observation error matrixmined. The model correlation errors are then solved for the
0. next time step according to EdL4). As soon as the process

The time iteration for correlation matriRimplies at each  of assimilation is done, energy observatioln%:HS2 (taken

step the knowledge of the system noise covarigdcerhich from the true state simulation) are used to obtain the analysed
depends on several inherent errors. In the Kalman frameenergy field following Eq. 16). The correlation errors and
work, the calculation of the system noigkis initiated from  the wave spectra field are also corrected through Exf8. (
some random distribution with zero average. Neverthelessand @1), respectively.
to explicitly evaluate th€ matrix some assumptions, which ~ To test the behaviour of the correlation errors time itera-
depend on the type of model errors one tries to minimisetion, Eq. (L4) two simulations without assimilation have been
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Table 1. Boundary conditions for the true state and the model state. = T S A

Time True state Model state
Hy T, D,  Hy T, D, .

00.00 2.61 883 3017 328 761 2972 T
00.06 245 871 3002 3.01 759 303.3 1 i
00.12 221 877 3047 255 7.34 3056
00.18 2.07 863 3091 217 7.14 306.7 i~ -3
01.00 198 771 3116 192 7.09 3005 B , o
01.06 1.78 7.63 3063 191 7.33 3002 il e :
01.12 158 7.81 3088 203 7.81 2996 TRNNS . i
01.18 142 7.79 3030 198 806 2982 &N ¢
02.00 1.44 800 3047 189 6.15 2993 RSt e WS Oy
02.06 154 837 3060 201 568 3025 oS w e e B
0212 156 722 3051 194 584 2976 - - et
0218 155 6.17 3057 176 581 2923 “ AN
03.00 158 620 3034 182 6.19 2879 6 o

03.06 154 6.59 306.0 3.66 1051 289.9
03.12 155 781 299.7 534 1181 2887
03.18 3.01 1321 297.2 556 11.64 288.1

04.00 4.29 13.77 2958 536 11.20 289.8 TRV B e
04.06 4.48 1346 2959 505 10.07 287.8 IR N
04.12 431 1320 2965 509 896 290.3 B INEIW e e N

04.18 3.89 12.02 297.0 511 873 2895
05.00 3.63 1094 297.7 477 852 2930
05.06 3.53 10.07 298.3 4.13 817 2932
05.12 3.38 9.76 300.1 3.47 7.96 2931 t=12 t=15

05.18 3.12 9.42 3022 286 7.73 293.2 (P T
06.00 2.78 9.04 303.1 239 7.47 2948 it N

06.06 2.39 824 3055 218 7.09 296.4
06.12 2.08 7.69 3006 235 7.04 280.0
06.18 2.36 6.35 3019 298 7.81 2719
07.00 370 7.34 3215 291 7.72 2711
07.06 4.12 7.85 3401 253 7.35 273.8
07.12 3.63 7.48 3007 215 7.35 2819
07.18 3.01 6.91 2968 1.88 7.34 2795
08.00 253 6.43 2923 167 7.34 2749
08.06 2.19 6.11 2964 152 6.98 268.8
08.12 1.88 569 280.7 152 6.45 2742
08.18 1.60 556 2855 194 7.35 2789
09.00 1.37 5.96 2819 267 882 2823

Fig. 1. Model error variancer42) and group velocity field (m/s) at
different time levels, excluding the system noise error. The param-
eters’ valueD=60 km andc=0.2 were used in this simulation.

fast increase in the variance field at the boundary, leading

to an enhanced numerical diffusion that generates a growing
selected. The results obtained for the evolution of the modepeak inside the domain. As shown in Fig. 2, the introduction
errors variance P over one day are presented in Figs. 1 andf the system noise given by EQ®7) balances this extrane-
2, with and without the system noise error, respectively, asous effect. As a consequence, a smoother and more satis-
defined in Eq. 27). Both simulations start at the beginning factory propagation of the variance errors is achieved. The
of the swell event and each run shares the same boundagomparison shows that numerical errors could be reasonably
condition. In general, the computation time step for evalu-large, creating discrepancies in the order of 20%. Evensen
ating Egs. ) and (4) is less than one hour, satisfying the (1992) had already pointed out that the numerical diffusion
conditionc~1. associated with the advection scheme can cause a significant

In the absence of a dynamical forcing, the variance errorglecrease of the variance field in regions of high velocity. The

should propagate without any significant change. Except fouse of a less diffusive scheme and higher resolution could
the small decrease expected to occur as the area occupied pyovide better results for the correlation error propagation but
the waves is increasing (in this particular, variance errors bethis would increase excessively the computation time. Wider
have like the energy). The time frames in Fig. 1 indicate, covariance functions (large valuesj would also decrease
however, a completely different behaviour of the variance er-the diffusion but at the expense of introducing unrealistic and
rors propagation. The incoming swell causes a sudden andon-physical correlation scales.
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. . . - . Fig. 3. Time history for the significant wave height at the assimi-
N G S lation points. The solid line and the dashed line represent the true
o -y L . state and the model state, respectively. The dot dash line represents
- LT % the analysed state obtained in the course of the assimilation process
’ o = LB . based on the Kalman filter and in the following 6 h forecast.
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Fig. 2. Same as Fig. 1, but including the system noise error.

0 1 2 3 4 5 6 T 8 9
The three simulations presented hereafter aim to assess the Time(dyz)
filter performance. The first one will be regarded as the true . .
state. The second one reproduces the model estimate with n'f)'g' 4. Energy root mean square difference between the true state
L . ) ... and the model state (solid line), the true state and the Kalman filter
aSSImIIatlon and the thlrd_one Irjcorporates th? ass'r_n”at'_or%imulation with no noise (dashed line), the true state and the Kalman
procedure in the second simulation. All these simulations in-gyer simulation with noise (dash dot line) and the true state and the
clude the system noise error. Since this example is solved agptimal interpolation assimilation scheme (dots).
a boundary value problem, the simulations were performed
with two close boundary conditions (see Table 1), one for
the true state and another for the model state. this tendency is quickly inverted by the model boundary con-
The assimilation is carried out by inserting at two points ditions influence during the time interval between successive
the respective true state values, taken here as the observatioassimilations. The swift hops between the analysis and the
values. The justification for this procedure lies in the fact thatforecast are more significant when the difference among the
“the true state” is merely a device for assessing the filter'strue state and the model state increases, which is a typical be-
performance. haviour of sequential methods whenever the conditions that
The assimilation effect on the observation points is de-control the model evolution are kept unchanged after the as-
picted in Fig. 3. The top figure shows results obtained atsimilation.
coordinates (50, 400) (km) and the bottom figure the results To have a global evaluation of the filter's performance,
obtained at coordinates (150, 500) (km). The assimilationthe root mean square (hereafter RMS) differences between

time step is 6 h. The analysis converges to the true state, buhe true state and the model predictions (with and without
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assimilation) are computed at each time step and shown in The comparison between a first order scheme, considering
Fig. 4. It can be seen that there is a generalized reduction ofioise error, and a less diffusive scheme without noise error
the RMS differences when the Kalman filter is used and thatis an interesting point to be addressed in future investiga-
this reduction is stronger when the mismatch is higher. Buttions. This would emphasize how the system noise, given
large RMS values during important events are still observedby Eq. 7) and designed to balance the model discrepan-
These facts suggest that some features of the true state speates, would perform. Naturally, the analysis of a wind-driven
tra cannot be reproduced by the model only by an energy reease is the real judgement of this assimilation method. The
normalisation. Further improvements should require also thenclusion of the wind forcing would show the Kalman filter
assimilation of the mean period and the subsequent spectiaandling the correlation scaling induced by the dynamics.
reconstruction.

The overall filter's performance is not sensitive to the in-
clusion of the system noise error. This could be explainedAppendix A System noise error
by the location of the assimilation points, which were chosen
close to the incoming boundary, where the smoothness introFor simplicity, let us consider 1D propagation along three
duced by the noise error is not substantial. Figures 1 and ®rid points, where grid point 1 is the incoming boundary. In
show that the diffusion effect is more pronounced downward that case, the advection operator A for the upwinding scheme
hardly affecting the assimilation. is a 3x3 matrix given by

A simulation using the Ol assimilation scheme is included
additionally in order to compare its results with the Kalman 10 0
filter. The optimal interpolation technique is also based on al=|cl-c O (A1)
sequential correction by combining the model estimate with 0 ¢ 1-c

its observed counterpart through the update B6).( The where c=c, At/Ax is the CFL number, depending on the

weighting coeflicients are given by _the Kalman gain B)( velocity ¢, the time stepAr and the grid space. According
too. However, the model correlation errors, computed ac-

cording to Eq. 22), remain fixed at all times. The compari- torrgrq.th(ls.\43/aarin;ncEeq.er(r?):)a? nrcii dneog::ic;r;gt:] titrkr‘:; lseysé::m noise
son between the Kalman filter and the Ol scheme shows that " gnap
the former exhibits a better overall behaviour, especially in & 2 pk—1 k—1 2 pk—1

' Py = c“P 2c(1—c¢)P 1—0¢)°P A2
events where the deviations from the true state are important. 2 =Pl -l A -0h (A2)

where P! and PA~* are the variance error at time level
k — 1in grid point 1 and 2, respectively, amf, * is the cor-
relation error between grid point 1 and grid point 2 at time

A Kalman filter assimilation scheme has been implemented€Vvel k—1. If c=1 Eq. (A2) states thaPkZP_f_l’ ‘which
in an ocean wave model. A simple case of linear advection if"€ans that the variance propagates from grid point 1 to grid
a two-dimensional space, particularly suitable for the simula-P0int 2, as expected. And yet, the Eq. (A2) does not produce
tion of a well-developed swell, was tested. The wind-drivenin 9eneral a correct advection fog1. In fact, the propaga-
forcing and the dissipations mechanisms were ignored, im{ion should follow the iteration rule

ﬁz?.g that the correlation matrix depends just on the velocity Pé‘ _ cPf‘l Ld—o Pf‘l (A3)

It was found that the numerical errors of the energy corre-
lation errors time iteration could be large. To minimize the
model covariance errors propagation to an acceptable leve
an expression for the system noise was introduced. This cor-
rection is responsible for offsetting most of the numerical APl 2c(1— o) P+ 1 —0)2PF 1 4+ 08
diffusion originated by the advection scheme, keeping the
solution stable over the nine days during which the simula-=
tion took place. This way, the use of higher order numericalfrom which results
methods seems to be avoidable, simplifying considerably the
computational approagh. . . _ Qlé —c(l—0c) (Pf—l _ 2Pf‘1 + sz—l) (A5)

A true state simulation and a first guess simulation were
used to illustrate the assimilation results and the improve-

ment brought by the Kalman filter.  Another finding that g, a5y is to be considered as a system noise error for
comes out of the experiment is the insufficiency of assimilat-yo 5 jing with the numerical diffusion present in the iteration

ing only the Hs. The mean period and the average direCtio%cheme of the Eqg. (A2). Defining the correlation error as
should be included in the assimilation structure as well. This,k-1_ k-1 k-1

. . . . , . CPp,T=01" "0, a’ﬁl and noting that the variances errors
inclusion would increase extensively the numerical handling L N2 L N2
of the Kalman filter. are given byP; 1= (af‘ ) and Py '= (05_ ) , Where

5 Conclusions

To get the right equation for the error variance propaga-
ﬂ;)n a quantity is added to the second member of Eq. (A2) to
atch the expected result, so

Pyt @a-opst (A4)

From this viewpoint, the diagonal matrix Q defined in
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