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Abstract. Empirical determination of the scaling properties by attempts to understand the driven magnetospheric system
and exponents of time series presents a formidable challengieom the perspective of scaling due to intrinsic processes (see
in testing, and developing, a theoretical understanding of ture.g.Chapman and Watkin2001, and references therein) and
bulence and other out-of-equilibrium phenomena. We dis-their relationship to that of the turbulent solar wind driver.
cuss the special case of self affine time series in the contexthis necessitates quantitative “comparative” studies of scal-
of a stochastic process. We highlight two complementary aping in time series (e.glakalo and Timonenl998 Freeman
proaches to the differenced variable of the data: i) attemptet al, 2000 Uritsky et al, 2001 Voros et al, 2002 Hnat

ing a scaling collapse of the Probability Density Functions et al, 20033. Such studies can to some extent fruitfully con-
which should then be well described by the solution of thesider the low order moments, whereas a particular difficulty
corresponding Fokker-Planck equation and ii) using structurdor comparison of observations with models of turbulence is
functions to determine the scaling properties of the higherthat the intermittency parameter in turbuleng®) is deter-
order moments. We consider a method of conditioning thatmined by the 6th order structure functiderisch 1995.

recovers the underlying self affine scaling in a finite length More recently, studies have focussed on the scaling prop-
time series, and illustrate it using &y flight. erties and functional form of the PDFs of the differenced time
series (see e.gConsolini and De Michelis1998 Sorriso-
Valvo et al, 2001, Weigel and Baker2003a Stepanova et al.
2003. This leads to a Fokker-Planck model in the case of
self-similarity (Hnat et al, 2003k 2005.

In this paper we describe an approach to modelling such

1 Introduction

Theories of turbulence as applied to single point measure-

ments in a flow concern the scaling properties, in astatisticaECallng data which exploits the data's self-affine property

sense, of differenced time series, where the Taylor hypothe-y applying the idea of coarse graining the dekl_mlsson,
S . 1979 Sornette2000, here in the time domain. This coarse-
sis is invoked so that the difference between measurements

at some time and a later time+rt acts as a proxy for the graiping can be achieved empirically, from the data, by a
difference between measurements made at two points in th caling collapse procedure (ejgnat et al, 2003h 2009

fluid separated by length scale Studies of scaling in so- ect. 2), and, then having experimentally determined the

; écaling exponent, we can take the approach one stage further
lar wind turbulence have focused on the power spectra an and seek to describe the data by means of a particular case of
the structure functions (see e and Marsch1995 Hor- y P

bury and Balogh1997 and, more recently, the Probability a generalised Fokker-Planck equation (GFPE, Sect. 5). We

Density Function (PDF) (seinat et al, 2002 20038, stress here that the GFPE is here, as elsewhereS@rgette

- . : . : . 2000, applied to a much more general class of problem than
The statistical scaling properties of time series can in gen- . S . : -
. ) L . the strictly equilibrium physics for which the original FPE
eral, however, be considered in a similar manner. There is . .
) . . S . “was obtained. The GFPE represents an alternative to the frac-

a considerable literature concerning scaling in auroral regio

magnetometers and in geomagnetic indices (sucFsasu- Yional Fokker-Planck equation (e.gaslavsky 1995 which

tani et al, 199Q Takalo et al. 1993 Consolini et al, 1996 Is also applicable in such non-equilibrium cases.

Vot o a, 1998 Unsky and Pudovin 1988 Watks 1% 1% 6B 1 e pocese st en ) st
et al, 2002, Kovacs et al.200]). This is motivated in part

the scaling exponent. We highlight two important issues that
Correspondence tdS. C. Chapman arise in the analysis of physical datasets here.
(sandrac@astro.warwick.ac.uk)
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The first of these is that SDE (Stochastic Differential so that a time series of arbitrarily large length is considered.
Equations) models for the data, and indeed, coarse graininglhis procedure can apply to a finite sized physical system
deal with the properties of an arbitrarily large dataset. Weof interest provided that that system supports a large range
use a well understood example of a self affine time seriespf spatio-temporal scales (the smallest beingthe largest,
that of ordinary lévy motion (Sect. 3), to show how condi- 2"A, n large), an example of this is the inertial range in fluid
tioning of the data is needed to recover the known scalingturbulence.
of an arbitrarily large time series from one finite length. We = We now consider a “self affine” scaling with exponent
then use an example of a naturally occurring time series, that, " ,
of the AE geomagnetic index, shown previously to exhibit ¥ = 2y, T=2r, ©)
self affine scaling over a range of timescales, to highlight thegq that
effectiveness, and the limitations, of this technique.

The second of these is that knowledge of the scaling propy™ = 2%y, ©=2"A. (7
erties of (in principle all) the non zero moments is needed . . .
to capture the scaling properties of a time series. We agairE or arbitraryr we can normalizer(= z/A) and write

use theAE time serie_s to illugtrate this_point by construct- 'z, t) = t%y(r, A) . (8)
ing a fractional Brownian motion fBm with the same second
moment, but with a very different PDF. Now if the y is a stochastic variable with self affine scaling

in 7, there exists a “self similar” PDF which is unchanged
under the transformation given by E&)(

POY'T™) T = P(y). ©)

Importantly, they’s are not necessarily Gaussian distributed
stochastic variables, but do possess self similarity as embod-
ied by Eq. 0).
y(t,t) =x(t+1)—x() (1) This property is shared by thex{stable) levy flights
(Shlesinger et 311995 for N—oco. The special case where
the y’s are both independent, identically distributed (iid) and
x(t+1)=x()+y(, 7). 2 have finite variance corresponds to a Brownian random walk.
) ) ) ) One can show directly from the above renormalization (see
If we considerN successive values determined at intervals Offor exampleSornette 2000 that the Brownian case is just

A, thatis,y(t1, A)...y (i, A)...y(ty, A), their sum gives: the Central Limit Theorem witk=1/2 and Gaussia® (y).

2 Self affine time series: concepts

From a time series(r) sampled at timeg,, that is at evenly
spaced interval&\=¢, —1;,_1 we can construct a differenced
time series with respect to the time incremests A:

so that

N Here, we consider time series which possess the properties
x(t) = Z y(te, A) + xo, 3) (Egs.8 and9), which may havex#1/2 and which are time

1 stationary solutions of a Fokker-Planck equation.
wherexo=x(t—NA). As N—oo the sum (Eq3) of the y An important corollary of Eq.9) is of the scaling of the
tends to the original time seriast). structure functions (and moments). Th#h moment can be

We will make two assumptions: i) that ther, 7) is a  Written as:
stochastic variable so that E@)(can be read as a random
walk and ii) that they are scaling withr (to be defined next). mp=<yp>=/
By summing adjacent pairs in the sequence, for example:

@ so that
Yy, 2A8) = y(t1, A) + y(t2, A) (4)

. . . . . mp ~ P (11)
one can coarsegrain (or decimate) the time series ihhis
operation gives the(r) as a random walk ofV/2 values via Eq. @). The scaling of any of the non zero moments
of y determined at intervals af=2A. We can successively of a self affine time series is thus sufficient to determine the
coarsegrain the sequence an arbitrary number of times: exponent. Importantly, all the non zero moments will share
this same scaling. This can also be appreciated directly by
x(1) =y, A) +y(12, A) + -+ ¥t A)+y (1. AYB) - \yriting the PDF as an expansion in the moments. If we define

o0 o0
P(y)yPdy = T”“/ P(y")y'Pdy" (10)

—00 —00

+--+yln, A) the Fourier transform of the PDF(z) of a given time series
=yD(11,28) + -+ + yD (1, 2A) 2(1) by:
(€]
+- ¥y (g2, 20) 5 <
Loy e Plk) = / %P (2)dz (12)
oy My, 2'0), then it is readily shown that theth moment is given by:
where this procedure is understood in the renormalization dr P k)

sense in that bottv andn can be taken arbitrarily large, mp = (—i)” Tip k=0 (13)
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whered? /dkP denotes thepth derivative with respect té.

From this it follows that the PDF can be expressed as an ex-

pansion in the moments:

Ply=3" %(ik)”.

p=0

(14)

Hence the PDF is defined by knowledge of “all” the non zero
moments.

3 Testing for self affine scaling

3.1 Extracting the scaling of a surrogate, a finite length
Lévy flight

We now discuss methods for testing for the property @gq.
and measuring the exponanfor a given finite length time
series. For the purpose of illustration we consideréant
flight of index ©=1.8 which is generated from iid random
deviates by the following algorithm for the increments (the
y's, seeSiegert and Friedrigl2004 for details):

sin( ) A=

ur

fu =

o )"
(cos(r)

wherer is a uniformly distributed random variable in the
range[—m /2, 7 /2] andv is an exponentially distributed ran-
dom variable with mean 1 which is independentrofThe
scaling exponent from Egs. 8) and Q) is then related to
the Lévy index,u, by a=1/u.

One can first consider directly attempting a scaling col-
lapse in the sense of E()( of the PDF of differences ob-
tained over a wide range af (seeMantegna and Stanley
1995 Hnat et al, 2003ab, for example). This corresponds to

cod(1— wrl
v

(15)
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Fig. 1. Scaling collapse of the PDF of an= 1.8 Lévy flight.

As discussed above, the scaling exponeihat success-
fully collapses the PDF of differentshould emerge from the
scaling of the moments. This is often obtained via the gen-
eralized structure functions (see elgt and Marsch1995
Horbury and Balogh1997 Hnat et al, 20033 2005 for ex-
amples)

S,(7) =< |y, 0)|P > 5P (16)
)4

where for self affiney(¢), we have¢(p)=pa (for a multi-
fractal,¢ (p) is approximately quadratic ip). From Eq. (1)

the moments will in principle share this scaling provided that
the moment is both finite and non- zero (however in a noisy
signals a moment that should vanish will be dominated by
the noise). In principle we can obtainfrom the slopes of
log- log plots of theS,, versusr for any p; in practice this is

a renormalization of the data as discussed above. We first deseverely limited by the finite length of the dataset.

termine the scaling exponestfrom one or more of the mo-
ments via Eq.11) or an estimate thereof. In a finite length

The ¢(p) for the above Evy flight obtained via Eq.16)
are shown plotted versys in Fig. 2. On such a plot we

time series, one would ideally use the scaling of the peakvould expect from Fig. 1 a straight ling(p)~pa but we

P(y=0, 7) (thatis, thep=—1 moment) withr as this is bet-

see here the well known result (see for exampleechkin

ter resolved statistically than the higher order moments. Inand Gonchar200Q Nakaqg 2000 that for the surrogate, the

practice however the time serig&, t), formed from the dif-
ferences of a measured quantity, caryas0 be dominated
by observational uncertainties.

Figure 1 shows the scaling collapse (Bpapplied to a nu-
merically generated &vy flight (Eq.15) of 10° increments.
The curves correspond to differences at valuegefn A

Lévy time series of finite length, there is a turnover in scaling
above p=u which is spurious in the sense that it does not
reflect the exponent of the infinite length time series.

One way to resolve this apparent bifractal scaling is to note
that in a finite length time series the PDF does not have suffi-
cient statistical resolution in the tails. Infrequently occurring

with m=[6, 10, 16, 26, 42]. Error bars denote an estimate large events in the tails will tend to dominate the higher or-
of the expected fluctuation per bin of this histogram basedder moments. We now eliminate those large events that are
on Gaussian statistics (a more sophisticated method for estoorly represented statistically without distorting the scaling
mating these for the &vy case may be found Biegert and properties of the time series. For a self affine time series an
Friedrich 2004. We see that scaling collapse can be verified €stimate of the structure functions is:
to the precision with which the PDF is locally determined sta- A

tistically. The exponent=0.544 used to achieve the scaling S5 = / IyIPP(y, 1)dy ~< |y|’ >
collapse in Fig. 1 was determined empirically directly from —A
an analysis of this finite length time series based on the strucwhere the limit on the integral is proportional to the standard
ture functions discussed below. deviationo so thatA=Qo (t), with someQ constant. Now

(17)
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Fig. 4. Structure functions of thd E index estimated for orders
o ‘ p=[1, 6] by Eq. (L6) (a) and by Eq. {7) (b).
0 1 2 3 4
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flight (Eq. 15). Similar results for a surrogateelry dataset

Fig. 2. The effect of conditioning a &vy flight. 4 are thez(p) have been obtained by M. Parkinson (private communication,
obtained from the raw time series, all other symbols refer to condi-2004)_

tioned time series for different values ¢f (see text). The condi-
tioned results yield a scaling expones:0.544 which corresponds
to a Lévy index ofu=1.84.

An analogous procedure to E4.7 can also be realized
by means of a truncated wavelet expansion of the data (see
for exampleKovacs et al.2001; Mangeney et al 2007).

In Eq. (17) we assumed self affine scaling in choosing the

% functional form of the limits of the integral. In a given time
2.5[ % ynconditioned i series the scaling may not be known a priori. If for example
4 5¢ x % the time series were multifractad (p) quadratic inp) we
2f © 100 s i would obtain from Eq.17) a ¢(p) which varied systemati-
© 150 x cally with Q. In practice, several other factors may also be
.15 = 200 : i present in a time series which may additionally reduce the
% % I % accuracy of the approximation of E&j7).
*
1 % * 3.2 Extracting the scaling of a “natural” example, th&
time series
0.5r & ]
To illustrate the above, we consider an interval of #¥ in-
of ¢ | | B dex shown previously to exhibit weakly multifractal scaling
0 2 4 6 (Hnat et al, 2005. The scaling index is not within theévy
Moment p range and thus it has been modelled with a GFPE rather than
a Lévy walk Hnat et al, 2005.
Fig. 3. Scaling exponents(p) versusp for the AE index, shown The PDF of differencedi £ is asymmetric Kinat et al,
in the same format as Fig. 2. 20033, and the scaling irt is broken as we approach the

characteristic substorm timescale of 1-2h. Remnants of

the substorm signature will be present in the time series on
o (t)~+/ <y?>~1% shares the same self affine scaling with timescales shorter than this. The behaviour of the peak of the
7 as the original time serieg(r, 7), so that ifS,~t”* under ~ PDF (P(y—0)) will also be dominated by uncertainties in
Eq. ©) then, importantlysgwrl’“ also. Provided thaP can  the determination of the signal rather than its scaling proper-
be chosen sufficiently large to capture the dynamic range ofies.

v, and provided thaP (y) is symmetric, Eq.17) will provide Figure 3 shows a plot of (p) versusp for the AE time
a good estimate af. This is demonstrated in Fig. 2 where series in the same format as Fig. 2 for the interval January
we also show the(p) obtained from Eq.X7). 1978 to July 1979 comprising.5x10° samples. Plots of

One can thus see that once a conditioning threshold is apthe structure functions used to construct Fig. 3 are shown in
plied, the self affine scaling of theély flight is recovered Fig. 4. The error bars on Fig. 3 are those of the best fit straight
and the value of the scaling exponent is insensitive to thdines to Fig. 4 rather than the possible range of straight line
value of O chosen (forQ sufficiently large). We obtain the fits and as such are a minimal error estimate.
value ofa=0.544 used for the scaling collapse in Fig. 1 once  We plot in Fig. 4a the raw result, that is EQ.6] and in
conditioning is applied, giving an estimate @£1.84, con-  Fig. 4b the conditioned approximation (Eki7) with 0=20,
sistent with the index used to generate the synthefieyL  the latter corresponding to the removal of less than 1% of
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Fig. 5. A ~1.5 year interval ofAE data (upper trace) is shown Fig. 6. Standard deviation of the time series differenced on

alongside a surrogate fBm time series (lower trace) with the sameimescaler plotted versug for an interval of AE index data (see

second moment. The traces have been displaced for clarity. text) and an fBm time series constructed with the same second mo-
ment. The traces have been displaced for clarity.

the data. From Fig. 4 we see that no clear scaling emerges
beyond the third ordep=3 until approximation (Eql7) is . o ) i
mgde. Clearly, if scaI{;g is prese?’ﬁ, thep) obtagncgd ?rom walk. The resulting time series is comprised &710° in-
the raw structure functions (Fig. 4a) are not a good estimateS€Ments.
Once the data is conditioned, we find that[10, 20] give Figure 5 shows the two time series, (i) the intervaldd?
almost identical estimates ¢f p) which are weakly multi-  analyzed above, and (ii) the fBm surrogate. The standard de-
fractal. ForQ=5 the ¢(p) are shifted slightly toward self viation versusr for the two time series is shown in Fig. 6.
similar scaling. The closeness of the conditioned results fofThe power spectrum ofAE (the raw, rather than the dif-
the rangeQ =[5, 20], and their clear separation from the raw ferenced variable)(c.fTsurutani et aJ.199Q Takalo et al.
result, suggests that these are a reasonable approximate md#93, along with thes (r) and the structure functions, show
sure of the scaling properties of the time series. This procea characteristic break on timescales corresponding to 1-2 h.
dure can be used to make quantitative comparisons betwee@n times shorter than this, we can obtain a scaling collapse of
time series to this precision. Given the caveats above howthe PDF (se&lnat et al, 20033 2005. Fluctuations on these
ever, we cannot use this procedure to distinguish whether thémescales share the same second moment as the fBm. In
time series is self affine or weakly multifractal, but can dis- Fig. 7 we compare the PDF of these fluctuations and we see
tinguish strong multifractality. that these are very distinct; fBm is defined as having Gaus-
sian incrementshMandelbrot 2002 and this is revealed by

_ _ the PDF whereas th&éE increments are non-Gaussian.
4 Low order moments and non uniqueness: comparison

with a fractional Brownian surrogate. This is an illustration of the fact that the scaling A&

over this region is not necessarily due to time correlation,

Equation (4) expresses the PDF as an expansion in the mothe “Joseph effect” for which Mandelbrot constructed frac-

ments to all orders. It follows that distinct time series can tional Brownian motion as a model. Indegd” has almost
share the first few moments and therefore if scaling, may.uncorrelated dlﬁgrencgs at high frequencies, as ||jd|cated by
also share the same Hurst exponent and corresponding expliS Néarly Brownianf™= power spectrumTsurutani et al.
nent of the power law power spectrum. Having estimated the-990- Rather the scaILng is synonymous with the heavy
scaling exponent of tha E index as above we can construct (@iled PDF (“Noah effect”) for whiclMandelbroi2002 ear-
a time series with the same second moment from a fractionaf€" introduced a Bvy model in economics.
Brownian motion to illustrate this. Finally, we plot in Fig. 8 the: (p) versusp obtained from
The fractional Brownian walk was generated using thethe structure function estimate (Etjz) with Q=10 for both
method described in Appendix 3 dP¢ters1996. The al-  time series. We see from the plot that both time series are
gorithm takes a series of Gaussian random numbers and agelf affine and to within the uncertainty of the finite length
proximates a finite correlation time by weighting past valuestime series, both share valuesafp) for the lowest orders
according to a power law function. In our case 1024 Gaus-in p. However the higher order structure functions reveal the
sian samples were used to create each increment of fractiondistinct scaling of the two time series.
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5 Fokker-Planck model

For completeness we now outline how the exponreof a
self affine time series leads to the functional formRxfy)
via a Fokker- Planck model of the stochastic procegs.
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aé(me):0.46510.007
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Moment p

Fig. 8. Structure functions obtained by conditioning atd @or an
interval of theAE index, and for a fBm constructed to share the
same second moment.

two measurements(z), y(t, T)=x(+1)—x(¢) will be dom-
inated by the uncertainties in those measurements.
Written in this form Eq. {9) immediately allows us to
identity B(y)xy? | y |"Y* andA(y)xy | y |~¥2. Solu-
tions to Eq. 19) exist which are functions of;=y7~* only

Here we will consider an approach where scaling is achievedvhich correspond to stationary solutions with respect.to

via transport coefficients that are functions of the differ-
enced variabley(r). An alternative approach is via frac-
tional derivatives for the dependent)(coordinate (see e.g.
Schertzer et 812001, Shlesinger et al1995. These are in
principle equivalent (see e.yannacopoulos and Rowlands
1997).

We begin with a general form of the Fokker-Planck equa-

tion which can be writtenGardiner 1986:

0 v aP BRIV P,
where P=P(y, ) is a PDF for the differenced quantity
that varies with timer, A(y) is the friction coefficient and
B(y) is related to a diffusion coefficient which we allow to
vary with y. If we now impose the condition that solutions of
Eq. (18) are invariant under the scaling given by E9), then

it is found that bothA(y) and B(y) must have the form of
power law dependence gn Then as shown inHnat et al,
2003h, Eqg. (18) takes the form:

9 3P
y Iy 7Y (agP + boy— ) |,
~ay ay

whereag and by are constantsy is the scaling index de-
rived from the data an@®(y), y are unscaled PDF and fluc-

(18)

P

ar (19)

tuations respectively, and where here we have explicitly in-

sisted that the diffusion coefficied®(y)>0. Importantly, in

a physical system the scaling behaviour (Egis expected
to be strongly modified ags— 0, that is, at the peak of the
PDF P(y) since for a sufficiently small difference between

We obtain these by the change of variablBsY, t— Py, y;)
of Eq. 19):

bo

ao

1
d Py C @
F Pty le P _Clnl
dyA Vs
This differential Eq. 20) can be solved analytically with a
general solution of the form:

2
a C o
Ps(ys) = ||T/bo eXp(_b_o | ys |1/a>

v 5 1 exp(%5 1 v, 14%)
<[ :
0 |y 127

wherekg is a constant andf (y,) is the homogeneous solu-
tion:

1 a? 1
- = _ /o
Hox) = oo exp( 5o | )

Power law scaling for arbitrary leads to singular behaviour
of this solution aty—0. We do not however expect this to
describe a physical system a&s>0 as discussed above. For
Eq. (21) to describe a PDF we require that its integral is finite.
We can discuss this by considering the behaviour close to the
singularity:

(20)

d(y,) +koH(ys), (21)

(22)

a C

m

Y5 | yy [P0 dy;

lim P(ys) >~ P % f . o1 5+
O ys [P0 s ¢

ko

a0

—0 72
. | ys [P0
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ko = (23) of the stochastic variable(z, ) or the time variable of ()
| ys %0 since from Eq. %) t=2"A and with the choicev=2" we

. o havex (r)=y"(t, 1), =t (n, N large). Thus24) can be seen

The mtegra! of £3) is finite for OSa.O/.bO<.1 and &“51./2 either as a prescription for generating a self-affine time series
(a subdiffusive process) so that within this range the mtegralwith scaling exponent, or as describing the renormalization
of (21) will be finite also as required. Outside of this range it flow '
can only be considered as an asymptotic solution. However,
we can consider the generalizatign>y+¢ in the above,
wheree is a constant of magnitude that is small compared to
say, the values of () for the physical system under study.
This eliminates the singular behaviour and corresponds (for gmpirical determination of the scaling properties and expo-
small) to the addition of low amplitude Gaussian noise as Carhents of time series(r) presents a formidable challenge in
be seen from the form of the corresponding Langevin equatesting, and developing, a theoretical understanding of turbu-
tion (Eq.24) below. Physically this corresponds to a simple |gnce and other out-of-equilibrium phenomena. In this paper
model for the statistical behaviour of the observational un-\ye have discussed the special case of self affine time series
certainties in the data which may dominate as the differenceqi)y treating the differenced variable(z, 7)=x (+7)—x(r)
quantityy—0. as increments of a stochastic process (a generalized random

ExpressionZ1) is then a family of solutions for the PDF of walk). We have highlighted two complementary approaches
self affine time series. This provides a method to test for selfg the gata.

affinity that does not directly rely on determining the scaling  tne first of these is PDF rescaling: using a low order

expone_nts to high order from the structgre functions. Havingmoment to determine a scaling exponent and then verifying
determined the exponentfrom the scaling of a low order nether this exponent collapses the PDFs of the differenced
moment (say, the standard deviation) one can then performa iapie y (1, 1) over the full range of accessible from the

a scaling collapse on the PDF; this should then also be degaia  As a corollary this collapsed PDF should also be well
scribed by the corresponding solution of EL{(seeHnat  jescrined by the solution of a Fokker-Planck equation which
et al_, 2003h 2005 for example). S has power law transport coefficients.

It is well known that a Fokker Planck equanon is simply The second of these is using structure functions to deter-
relatgd toa Langgvm eqqaﬂon (see dgrdiner 1989. A mine the scaling properties of the higher order moments. In
nonlinear Langevin equation of the form a finite length time series the higher order structure functions
dy can be distorted by isolated, extreme events which are not
77 = B Y (E®), @4 el represented statistically. Using the example of a finite
length Lévy flight, we have demonstrated a method for con-
ditioning the time series that can in principle recover the un-
derlying self affine scaling.

Finally, to highlight how both these methods are comple-
mentary in quantifying the scaling properties of the time se-
ries a fractional Brownian walk was constructed to share the
<EWE@E+1T) >= 023(1). (25) same second moment as an interval of the differentéd
index time series. The two time series were demonstrated to
possess very different PDF of the differenced variable, and
distinct structure functions.

Both of these approaches could in principle be generalized
to multifractal time series (see e gchertzer et al2001).

C+

'6 Conclusions

where 8(y) is a y-dependent force term and(y) is a y-
dependent noise strength, can be shomat et al, 20038

to correspond to Eq.1@) and in that sense to describe the
time series. In Eq.24) the random variablé(z) is assumed
to bes-correlated, i.e.

Consistency with Eq.5) is achieved in the data analysis by
forming each time seriesg(z, ) with non-overlapping time
intervalst. Defining Dg=<&2(1)> /2 we then obtain:

bo 1
v =[5y, (26)
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walk with Eq. @8) reduced to a diffusion equation with con-
stant diffusion coefficient.
Interestingly,Beck (2001 has independently proposed a
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