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Abstract. Empirical determination of the scaling properties
and exponents of time series presents a formidable challenge
in testing, and developing, a theoretical understanding of tur-
bulence and other out-of-equilibrium phenomena. We dis-
cuss the special case of self affine time series in the context
of a stochastic process. We highlight two complementary ap-
proaches to the differenced variable of the data: i) attempt-
ing a scaling collapse of the Probability Density Functions
which should then be well described by the solution of the
corresponding Fokker-Planck equation and ii) using structure
functions to determine the scaling properties of the higher
order moments. We consider a method of conditioning that
recovers the underlying self affine scaling in a finite length
time series, and illustrate it using a Lévy flight.

1 Introduction

Theories of turbulence as applied to single point measure-
ments in a flow concern the scaling properties, in a statistical
sense, of differenced time series, where the Taylor hypothe-
sis is invoked so that the difference between measurements
at some timet and a later timet+τ acts as a proxy for the
difference between measurements made at two points in the
fluid separated by length scaleL. Studies of scaling in so-
lar wind turbulence have focused on the power spectra and
the structure functions (see e.g.Tu and Marsch, 1995; Hor-
bury and Balogh, 1997) and, more recently, the Probability
Density Function (PDF) (seeHnat et al., 2002, 2003b).

The statistical scaling properties of time series can in gen-
eral, however, be considered in a similar manner. There is
a considerable literature concerning scaling in auroral region
magnetometers and in geomagnetic indices (such asTsuru-
tani et al., 1990; Takalo et al., 1993; Consolini et al., 1996;
Vörös et al., 1998; Uritsky and Pudovkin, 1998; Watkins
et al., 2001; Kovács et al., 2001). This is motivated in part
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by attempts to understand the driven magnetospheric system
from the perspective of scaling due to intrinsic processes (see
e.g.Chapman and Watkins, 2001, and references therein) and
their relationship to that of the turbulent solar wind driver.
This necessitates quantitative “comparative” studies of scal-
ing in time series (e.g.Takalo and Timonen, 1998; Freeman
et al., 2000; Uritsky et al., 2001; Vörös et al., 2002; Hnat
et al., 2003a). Such studies can to some extent fruitfully con-
sider the low order moments, whereas a particular difficulty
for comparison of observations with models of turbulence is
that the intermittency parameter in turbulenceτ(2) is deter-
mined by the 6th order structure function (Frisch, 1995).

More recently, studies have focussed on the scaling prop-
erties and functional form of the PDFs of the differenced time
series (see e.g.Consolini and De Michelis, 1998; Sorriso-
Valvo et al., 2001; Weigel and Baker, 2003a; Stepanova et al.,
2003). This leads to a Fokker-Planck model in the case of
self-similarity (Hnat et al., 2003b, 2005).

In this paper we describe an approach to modelling such
scaling data which exploits the data’s self-affine property
by applying the idea of coarse graining the data (Wilson,
1979; Sornette, 2000), here in the time domain. This coarse-
graining can be achieved empirically, from the data, by a
scaling collapse procedure (e.g.Hnat et al., 2003b, 2005)
(Sect. 2), and, then having experimentally determined the
scaling exponent, we can take the approach one stage further
and seek to describe the data by means of a particular case of
a generalised Fokker-Planck equation (GFPE, Sect. 5). We
stress here that the GFPE is here, as elsewhere (e.g.Sornette,
2000), applied to a much more general class of problem than
the strictly equilibrium physics for which the original FPE
was obtained. The GFPE represents an alternative to the frac-
tional Fokker-Planck equation (e.g.Zaslavsky, 1995) which
is also applicable in such non-equilibrium cases.

The critical steps in this process are then (i) establishing
whether a given dataset is self affine and (ii) determining
the scaling exponent. We highlight two important issues that
arise in the analysis of physical datasets here.
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The first of these is that SDE (Stochastic Differential
Equations) models for the data, and indeed, coarse graining,
deal with the properties of an arbitrarily large dataset. We
use a well understood example of a self affine time series,
that of ordinary Ĺevy motion (Sect. 3), to show how condi-
tioning of the data is needed to recover the known scaling
of an arbitrarily large time series from one finite length. We
then use an example of a naturally occurring time series, that
of the AE geomagnetic index, shown previously to exhibit
self affine scaling over a range of timescales, to highlight the
effectiveness, and the limitations, of this technique.

The second of these is that knowledge of the scaling prop-
erties of (in principle all) the non zero moments is needed
to capture the scaling properties of a time series. We again
use theAE time series to illustrate this point by construct-
ing a fractional Brownian motion fBm with the same second
moment, but with a very different PDF.

2 Self affine time series: concepts

From a time seriesx(t) sampled at timestk, that is at evenly
spaced intervals1=tk−tk−1 we can construct a differenced
time series with respect to the time incrementτ=s1:

y(t, τ ) = x(t + τ) − x(t) (1)

so that

x(t + τ) = x(t) + y(t, τ ) . (2)

If we considerN successive values determined at intervals of
1, that is,y(t1, 1)...y(tk, 1)...y(tN , 1), their sum gives:

x(t) =

N∑
1

y(tk, 1) + x0 , (3)

wherex0=x(t−N1). As N→∞ the sum (Eq.3) of the y

tends to the original time seriesx(t).
We will make two assumptions: i) that they(t, τ ) is a

stochastic variable so that Eq. (2) can be read as a random
walk and ii) that they are scaling withτ (to be defined next).

By summing adjacent pairs in the sequence, for example:

y(1)(t1, 21) = y(t1, 1) + y(t2, 1) (4)

one can coarsegrain (or decimate) the time series inτ . This
operation gives thex(t) as a random walk ofN/2 values
of y determined at intervals ofτ=21. We can successively
coarsegrain the sequence an arbitrary number of times:

x(t) = y(t1, 1) + y(t2,1) + · · · + y(tk,1)+y(tk+1, 1) (5)

+ · · · + y(tN , 1)

= y(1)(t1, 21) + · · · + y(1)(tk, 21)

+ · · · + y(1)(tN/2, 21)

= y(n)(t1, 2n1) + · · · + y(n)(tk, 2n1)

+ · · · + y(n)(tN/2n , 2n1) ,

where this procedure is understood in the renormalization
sense in that bothN and n can be taken arbitrarily large,

so that a time series of arbitrarily large length is considered.
This procedure can apply to a finite sized physical system
of interest provided that that system supports a large range
of spatio-temporal scales (the smallest being1, the largest,
2n1, n large), an example of this is the inertial range in fluid
turbulence.

We now consider a “self affine” scaling with exponentα:

y′
= 2αy, τ ′

= 2τ , (6)

so that

y(n)
= 2nαy, τ = 2n1 . (7)

For arbitraryτ we can normalize (τ ≡ τ/1) and write

y′(t, τ ) = ταy(t,1) . (8)

Now if the y is a stochastic variable with self affine scaling
in τ , there exists a “self similar” PDF which is unchanged
under the transformation given by Eq. (8):

P(y′τ−α)τ−α
= P (y) . (9)

Importantly, they′s are not necessarily Gaussian distributed
stochastic variables, but do possess self similarity as embod-
ied by Eq. (9).

This property is shared by the (α-stable) Ĺevy flights
(Shlesinger et al., 1995) for N→∞. The special case where
they′s are both independent, identically distributed (iid) and
have finite variance corresponds to a Brownian random walk.
One can show directly from the above renormalization (see
for exampleSornette, 2000) that the Brownian case is just
the Central Limit Theorem withα=1/2 and GaussianP(y).
Here, we consider time series which possess the properties
(Eqs.8 and9), which may haveα 6=1/2 and which are time
stationary solutions of a Fokker-Planck equation.

An important corollary of Eq. (9) is of the scaling of the
structure functions (and moments). Thepth moment can be
written as:

mp=<yp>=

∫
∞

−∞

P (y)ypdy = τpα

∫
∞

−∞

P(y′)y′pdy′ (10)

so that

mp ∼ τpα (11)

via Eq. (9). The scaling of any of the non zero moments
of a self affine time series is thus sufficient to determine the
exponent. Importantly, all the non zero moments will share
this same scaling. This can also be appreciated directly by
writing the PDF as an expansion in the moments. If we define
the Fourier transform of the PDFP(z) of a given time series
z(t) by:

P̂ (k) =

∫
∞

−∞

eikzP(z)dz (12)

then it is readily shown that thepth moment is given by:

mp = (−i)p
dpP̂ (k)

dkp
|k=0 (13)
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wheredp/dkp denotes thepth derivative with respect tok.
From this it follows that the PDF can be expressed as an ex-
pansion in the moments:

P̂ (k) =

∞∑
p=0

mp

p!
(ik)p . (14)

Hence the PDF is defined by knowledge of “all” the non zero
moments.

3 Testing for self affine scaling

3.1 Extracting the scaling of a surrogate, a finite length
Lévy flight

We now discuss methods for testing for the property (Eq.9)
and measuring the exponentα for a given finite length time
series. For the purpose of illustration we consider a Lévy
flight of index µ=1.8 which is generated from iid random
deviates by the following algorithm for the increments (the
y′s, seeSiegert and Friedrich, 2004, for details):

fµ =
sin(µr)

(cos(r))
1
µ

(
cos[(1 − µ)r]

v

) (1−µ)
µ

, (15)

where r is a uniformly distributed random variable in the
range[−π/2, π/2] andv is an exponentially distributed ran-
dom variable with mean 1 which is independent ofr. The
scaling exponentα from Eqs. (8) and (9) is then related to
the Lévy index,µ, by α=1/µ.

One can first consider directly attempting a scaling col-
lapse in the sense of Eq. (9), of the PDF of differences ob-
tained over a wide range ofτ (seeMantegna and Stanley,
1995; Hnat et al., 2003a,b, for example). This corresponds to
a renormalization of the data as discussed above. We first de-
termine the scaling exponentα from one or more of the mo-
ments via Eq. (11) or an estimate thereof. In a finite length
time series, one would ideally use the scaling of the peak
P(y=0, τ ) (that is, thep=−1 moment) withτ as this is bet-
ter resolved statistically than the higher order moments. In
practice however the time seriesy(t, τ ), formed from the dif-
ferences of a measured quantity, can asy→0 be dominated
by observational uncertainties.

Figure 1 shows the scaling collapse (Eq.9) applied to a nu-
merically generated Ĺevy flight (Eq.15) of 106 increments.
The curves correspond to differences at values ofτ=m1

with m=[6, 10, 16, 26, 42]. Error bars denote an estimate
of the expected fluctuation per bin of this histogram based
on Gaussian statistics (a more sophisticated method for esti-
mating these for the Ĺevy case may be found inSiegert and
Friedrich, 2004). We see that scaling collapse can be verified
to the precision with which the PDF is locally determined sta-
tistically. The exponentα=0.544 used to achieve the scaling
collapse in Fig. 1 was determined empirically directly from
an analysis of this finite length time series based on the struc-
ture functions discussed below.
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Fig. 1. Scaling collapse of the PDF of anµ = 1.8 Lévy flight.

As discussed above, the scaling exponentα that success-
fully collapses the PDF of differentτ should emerge from the
scaling of the moments. This is often obtained via the gen-
eralized structure functions (see e.g.Tu and Marsch, 1995;
Horbury and Balogh, 1997; Hnat et al., 2003a, 2005, for ex-
amples)

Sp(τ ) =< |y(t, τ )|p >∝ τ ζ(p) , (16)

where for self affiney(t), we haveζ(p)=pα (for a multi-
fractal,ζ(p) is approximately quadratic inp). From Eq. (11)
the moments will in principle share this scaling provided that
the moment is both finite and non- zero (however in a noisy
signals a moment that should vanish will be dominated by
the noise). In principle we can obtainα from the slopes of
log- log plots of theSp versusτ for anyp; in practice this is
severely limited by the finite length of the dataset.

The ζ(p) for the above Ĺevy flight obtained via Eq. (16)
are shown plotted versusp in Fig. 2. On such a plot we
would expect from Fig. 1 a straight lineζ(p)∼pα but we
see here the well known result (see for exampleChechkin
and Gonchar, 2000; Nakao, 2000) that for the surrogate, the
Lévy time series of finite length, there is a turnover in scaling
abovep=µ which is spurious in the sense that it does not
reflect the exponentµ of the infinite length time series.

One way to resolve this apparent bifractal scaling is to note
that in a finite length time series the PDF does not have suffi-
cient statistical resolution in the tails. Infrequently occurring
large events in the tails will tend to dominate the higher or-
der moments. We now eliminate those large events that are
poorly represented statistically without distorting the scaling
properties of the time series. For a self affine time series an
estimate of the structure functions is:

SC
p =

∫ A

−A

|y|
pP (y, τ )dy ≈< |y|

p > (17)

where the limit on the integral is proportional to the standard
deviationσ so thatA=Qσ(τ), with someQ constant. Now
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Fig. 2. The effect of conditioning a Ĺevy flight. F are theζ(p)

obtained from the raw time series, all other symbols refer to condi-
tioned time series for different values ofQ (see text). The condi-
tioned results yield a scaling exponentα=0.544 which corresponds
to a Lévy index ofµ=1.84.
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Fig. 3. Scaling exponentsζ(p) versusp for theAE index, shown
in the same format as Fig. 2.

σ(τ)∼
√

<y2>∼τα shares the same self affine scaling with
τ as the original time seriesy(t, τ ), so that ifSp∼τpα under
Eq. (9) then, importantly,SC

p ∼τpα also. Provided thatQ can
be chosen sufficiently large to capture the dynamic range of
y, and provided thatP(y) is symmetric, Eq. (17) will provide
a good estimate ofα. This is demonstrated in Fig. 2 where
we also show theζ(p) obtained from Eq. (17).

One can thus see that once a conditioning threshold is ap-
plied, the self affine scaling of the Lévy flight is recovered
and the value of the scaling exponent is insensitive to the
value ofQ chosen (forQ sufficiently large). We obtain the
value ofα=0.544 used for the scaling collapse in Fig. 1 once
conditioning is applied, giving an estimate ofµ=1.84, con-
sistent with the index used to generate the synthetic Lévy
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Fig. 4. Structure functions of theAE index estimated for orders
p=[1, 6] by Eq. (16) (a) and by Eq. (17) (b).

flight (Eq. 15). Similar results for a surrogate Lévy dataset
have been obtained by M. Parkinson (private communication,
2004).

An analogous procedure to Eq. (17) can also be realized
by means of a truncated wavelet expansion of the data (see
for exampleKovács et al., 2001; Mangeney et al., 2001).

In Eq. (17) we assumed self affine scaling in choosing the
functional form of the limits of the integral. In a given time
series the scaling may not be known a priori. If for example
the time series were multifractal (ζ(p) quadratic inp) we
would obtain from Eq. (17) a ζ(p) which varied systemati-
cally with Q. In practice, several other factors may also be
present in a time series which may additionally reduce the
accuracy of the approximation of Eq.17).

3.2 Extracting the scaling of a “natural” example, theAE

time series

To illustrate the above, we consider an interval of theAE in-
dex shown previously to exhibit weakly multifractal scaling
(Hnat et al., 2005). The scaling index is not within the Lévy
range and thus it has been modelled with a GFPE rather than
a Lévy walk (Hnat et al., 2005).

The PDF of differencedAE is asymmetric (Hnat et al.,
2003a), and the scaling inτ is broken as we approach the
characteristic substorm timescale of 1–2 h. Remnants of
the substorm signature will be present in the time series on
timescales shorter than this. The behaviour of the peak of the
PDF (P (y→0)) will also be dominated by uncertainties in
the determination of the signal rather than its scaling proper-
ties.

Figure 3 shows a plot ofζ(p) versusp for the AE time
series in the same format as Fig. 2 for the interval January
1978 to July 1979 comprising 7.5×105 samples. Plots of
the structure functions used to construct Fig. 3 are shown in
Fig. 4. The error bars on Fig. 3 are those of the best fit straight
lines to Fig. 4 rather than the possible range of straight line
fits and as such are a minimal error estimate.

We plot in Fig. 4a the raw result, that is Eq. (16) and in
Fig. 4b the conditioned approximation (Eq.17) with Q=20,
the latter corresponding to the removal of less than 1% of
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Fig. 5. A ∼1.5 year interval ofAE data (upper trace) is shown
alongside a surrogate fBm time series (lower trace) with the same
second moment. The traces have been displaced for clarity.

the data. From Fig. 4 we see that no clear scaling emerges
beyond the third orderp=3 until approximation (Eq.17) is
made. Clearly, if scaling is present, theζ(p) obtained from
the raw structure functions (Fig. 4a) are not a good estimate.
Once the data is conditioned, we find thatQ=[10, 20] give
almost identical estimates ofζ(p) which are weakly multi-
fractal. ForQ=5 the ζ(p) are shifted slightly toward self
similar scaling. The closeness of the conditioned results for
the rangeQ=[5, 20], and their clear separation from the raw
result, suggests that these are a reasonable approximate mea-
sure of the scaling properties of the time series. This proce-
dure can be used to make quantitative comparisons between
time series to this precision. Given the caveats above how-
ever, we cannot use this procedure to distinguish whether the
time series is self affine or weakly multifractal, but can dis-
tinguish strong multifractality.

4 Low order moments and non uniqueness: comparison
with a fractional Brownian surrogate.

Equation (14) expresses the PDF as an expansion in the mo-
ments to all orders. It follows that distinct time series can
share the first few moments and therefore if scaling, may
also share the same Hurst exponent and corresponding expo-
nent of the power law power spectrum. Having estimated the
scaling exponent of theAE index as above we can construct
a time series with the same second moment from a fractional
Brownian motion to illustrate this.

The fractional Brownian walk was generated using the
method described in Appendix 3 of (Peters, 1996). The al-
gorithm takes a series of Gaussian random numbers and ap-
proximates a finite correlation time by weighting past values
according to a power law function. In our case 1024 Gaus-
sian samples were used to create each increment of fractional
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Fig. 6. Standard deviation of the time series differenced on
timescaleτ plotted versusτ for an interval ofAE index data (see
text) and an fBm time series constructed with the same second mo-
ment. The traces have been displaced for clarity.

walk. The resulting time series is comprised of 7.5×105 in-
crements.

Figure 5 shows the two time series, (i) the interval ofAE

analyzed above, and (ii) the fBm surrogate. The standard de-
viation versusτ for the two time series is shown in Fig. 6.
The power spectrum ofAE (the raw, rather than the dif-
ferenced variable)(c.f.Tsurutani et al., 1990; Takalo et al.,
1993), along with theσ(τ) and the structure functions, show
a characteristic break on timescales corresponding to 1–2 h.
On times shorter than this, we can obtain a scaling collapse of
the PDF (seeHnat et al., 2003a, 2005). Fluctuations on these
timescales share the same second moment as the fBm. In
Fig. 7 we compare the PDF of these fluctuations and we see
that these are very distinct; fBm is defined as having Gaus-
sian increments (Mandelbrot, 2002) and this is revealed by
the PDF whereas theAE increments are non-Gaussian.

This is an illustration of the fact that the scaling inAE

over this region is not necessarily due to time correlation,
the “Joseph effect” for which Mandelbrot constructed frac-
tional Brownian motion as a model. IndeedAE has almost
uncorrelated differences at high frequencies, as indicated by
its nearly Brownianf −2 power spectrum (Tsurutani et al.,
1990). Rather the scaling is synonymous with the heavy
tailed PDF (“Noah effect”) for whichMandelbrot(2002) ear-
lier introduced a Ĺevy model in economics.

Finally, we plot in Fig. 8 theζ(p) versusp obtained from
the structure function estimate (Eq.17) with Q=10 for both
time series. We see from the plot that both time series are
self affine and to within the uncertainty of the finite length
time series, both share values ofζ(p) for the lowest orders
in p. However the higher order structure functions reveal the
distinct scaling of the two time series.
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Fig. 7. PDF of the time series ofAE, differenced on timescales
less than one hour (�). The PDF of an fBm with the same second
moment is shown for comparison (◦).

5 Fokker-Planck model

For completeness we now outline how the exponentα of a
self affine time series leads to the functional form ofP(y)

via a Fokker- Planck model of the stochastic processx(t).
Here we will consider an approach where scaling is achieved
via transport coefficients that are functions of the differ-
enced variabley(t). An alternative approach is via frac-
tional derivatives for the dependent (y) coordinate (see e.g.
Schertzer et al., 2001; Shlesinger et al., 1995). These are in
principle equivalent (see e.g.Yannacopoulos and Rowlands,
1997).

We begin with a general form of the Fokker-Planck equa-
tion which can be written (Gardiner, 1986):

∂P

∂τ
= ∇y(A(y)P + B(y)∇yP ), (18)

whereP≡P(y, τ ) is a PDF for the differenced quantityy
that varies with timeτ , A(y) is the friction coefficient and
B(y) is related to a diffusion coefficient which we allow to
vary withy. If we now impose the condition that solutions of
Eq. (18) are invariant under the scaling given by Eq. (9), then
it is found that bothA(y) andB(y) must have the form of
power law dependence ony. Then as shown in (Hnat et al.,
2003b), Eq. (18) takes the form:

∂P

∂τ
=

∂

∂y

[
y | y |

−1/α

(
a0P + b0y

∂P

∂y

)]
, (19)

wherea0 and b0 are constants,α is the scaling index de-
rived from the data andP (y), y are unscaled PDF and fluc-
tuations respectively, and where here we have explicitly in-
sisted that the diffusion coefficientB(y)>0. Importantly, in
a physical system the scaling behaviour (Eq.9) is expected
to be strongly modified asy→0, that is, at the peak of the
PDF P (y) since for a sufficiently small difference between
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Fig. 8. Structure functions obtained by conditioning at 10σ for an
interval of theAE index, and for a fBm constructed to share the
same second moment.

two measurementsx(t), y(t, τ )=x(t+τ)−x(t) will be dom-
inated by the uncertainties in those measurements.

Written in this form Eq. (19) immediately allows us to
identity B(y)∝y2

| y |
−1/α andA(y)∝y | y |

−1/α. Solu-
tions to Eq. (19) exist which are functions ofys=yτ−α only
which correspond to stationary solutions with respect toτ .
We obtain these by the change of variables (P, y, τ→Ps, ys)
of Eq. (19):

b0

a0
ys

dPs

dys

+ Ps +
α

a0
| ys |

1
α Ps =

C | ys |
1
α

ys

. (20)

This differential Eq. (20) can be solved analytically with a
general solution of the form:

Ps(ys) =
a0

b0

C

|ys |
a0/b0

exp

(
−

α2

b0
| ys |

1/α

)

×

∫ ys

0

| y′
s |

a0
b0 exp

(
α2

b0
| y′

s |
1/α
)

| y′
s |

2−
1
α

d(y′
s) + k0H(ys) , (21)

wherek0 is a constant andH(ys) is the homogeneous solu-
tion:

H(δxs) =
1

| ys |a0/b0
exp

(
−

α2

b0
| ys |

1/α

)
. (22)

Power law scaling for arbitraryy leads to singular behaviour
of this solution aty→0. We do not however expect this to
describe a physical system asy→0 as discussed above. For
Eq. (21) to describe a PDF we require that its integral is finite.
We can discuss this by considering the behaviour close to the
singularity:

lim
ys→0

P(ys) '
a0

b0

C

| ys |

a0
b0

∫ ys

0

| y′
s |

a0
b0 dy′

s

y
′2−

1
α

s

+
k0

| ys |

a0
b0

=
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C +
k0

| ys |

a0
b0

. (23)

The integral of (23) is finite for 0≤a0/b0<1 and 0<α≤1/2
(a subdiffusive process) so that within this range the integral
of (21) will be finite also as required. Outside of this range it
can only be considered as an asymptotic solution. However,
we can consider the generalizationy→y+ε in the above,
whereε is a constant of magnitude that is small compared to,
say, the values ofσ(τ) for the physical system under study.
This eliminates the singular behaviour and corresponds (fory

small) to the addition of low amplitude Gaussian noise as can
be seen from the form of the corresponding Langevin equa-
tion (Eq.24) below. Physically this corresponds to a simple
model for the statistical behaviour of the observational un-
certainties in the data which may dominate as the differenced
quantityy→0.

Expression (21) is then a family of solutions for the PDF of
self affine time series. This provides a method to test for self
affinity that does not directly rely on determining the scaling
exponents to high order from the structure functions. Having
determined the exponentα from the scaling of a low order
moment (say, the standard deviation) one can then perform
a scaling collapse on the PDF; this should then also be de-
scribed by the corresponding solution of Eq. (21) (seeHnat
et al., 2003b, 2005, for example).

It is well known that a Fokker Planck equation is simply
related to a Langevin equation (see e.g.Gardiner, 1986). A
nonlinear Langevin equation of the form

dy

dt
= β(y) + γ (y)ξ(t), (24)

whereβ(y) is a y-dependent force term andγ (y) is a y-
dependent noise strength, can be shown (Hnat et al., 2003b)
to correspond to Eq. (18) and in that sense to describe the
time series. In Eq. (24) the random variableξ(t) is assumed
to beδ-correlated, i.e.

< ξ(t)ξ(t + τ) >= σ 2δ(τ ). (25)

Consistency with Eq. (5) is achieved in the data analysis by
forming each time seriesy(t, τ ) with non-overlapping time
intervalsτ . DefiningD0=<ξ2(t)>/2 we then obtain:

γ (y) =

√
b0

D0
y|y|

−
1

2α , (26)

and

β(y) =

[
b0(1 −

1

2α
) − a0

]
y|y|

−
1
α . (27)

With α=1/2 anda0=0 one recovers the Brownian random
walk with Eq. (18) reduced to a diffusion equation with con-
stant diffusion coefficient.

Interestingly,Beck (2001) has independently proposed a
nonlinear Langevin equation whereβ but notγ varies withy.
This yields leptokurtic PDFs of the Tsallis functional form.

Finally the variableτ in Eq. (18), and t in Eq. (24) can
be read in two ways: either as the renormalization variable

of the stochastic variabley(t, τ ) or the time variable ofx(t)

since from Eq. (5) τ=2n1 and with the choiceN=2n we
havex(t)≡yn(t, τ ), τ≡t (n, N large). Thus (24) can be seen
either as a prescription for generating a self-affine time series
with scaling exponentα, or as describing the renormalization
flow.

6 Conclusions

Empirical determination of the scaling properties and expo-
nents of time seriesx(t) presents a formidable challenge in
testing, and developing, a theoretical understanding of turbu-
lence and other out-of-equilibrium phenomena. In this paper
we have discussed the special case of self affine time series
by treating the differenced variabley(t, τ )=x(t+τ)−x(t)

as increments of a stochastic process (a generalized random
walk). We have highlighted two complementary approaches
to the data.

The first of these is PDF rescaling; using a low order
moment to determine a scaling exponent and then verifying
whether this exponent collapses the PDFs of the differenced
variabley(t, τ ) over the full range ofy accessible from the
data. As a corollary this collapsed PDF should also be well
described by the solution of a Fokker-Planck equation which
has power law transport coefficients.

The second of these is using structure functions to deter-
mine the scaling properties of the higher order moments. In
a finite length time series the higher order structure functions
can be distorted by isolated, extreme events which are not
well represented statistically. Using the example of a finite
length Ĺevy flight, we have demonstrated a method for con-
ditioning the time series that can in principle recover the un-
derlying self affine scaling.

Finally, to highlight how both these methods are comple-
mentary in quantifying the scaling properties of the time se-
ries a fractional Brownian walk was constructed to share the
same second moment as an interval of the differencedAE

index time series. The two time series were demonstrated to
possess very different PDF of the differenced variable, and
distinct structure functions.

Both of these approaches could in principle be generalized
to multifractal time series (see e.g.Schertzer et al., 2001).
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