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Abstract. We propose a new avalanching model which is
characterized by a) a local threshold in the transition from
passive to active states, b) finite life time of active sites, and
c) is dissipative. This model seems to be more appropriate
for the description of a continuous system where localized
reconnection plays a crucial role. The model allows for an
analytical treatment. We establish the shape of the distribu-
tion of cluster sizes and the relation of the observables to the
model parameters. The results are illustrated with numerical
simulations which support the analytical results.

1 Introduction

Self-organized criticality (SOC) is a relatively new paradigm
(Bak et al., 1987, 1988) that is often expected to explain
the statistical behavior of open dynamical systems, such as
power law spectra of various variables (Bak et al., 1987).
The basic features of such systems are a) random input (driv-
ing), b) two regimes (active and passive) of local activity, c)
threshold-like transition from the passive to active state, and
d) excitation of neighboring sites by the active ones causing
the avalanche-like evolution of activity in the system (Jensen,
1998). Such activity may be completely different from the
physical point of view. Avalanches can be observed in many
systems, like sandpiles (Hwa and Kadar, 1992), earthquakes
(Bak and Tan, 1989), forest fires, magnetospheric activity
(Chapman et al., 1998; Chang, 1999; Takalo et al., 1999;
Consolini and De Michelis, 2001; Valdivia, 2003), solar
flares (Lu and Hamilton, 1991; Boffetta et al., 1999; Hamon
et al., 2002; Krasnoselskikh et al., 2002), biological evolu-
tion (de Boer et al., 1994) etc. Running sandpile models
are most ubiquitous, being based on the slope-controlled re-
distribution rules and immediate passive↔active transitions.
In running sandpiles driving (albeit usually a weak one) per-
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sists during avalanche development too (Hwa and Kadar,
1992; Corral and Paczuski, 1999). Strictly speaking, SOC
occurs only in the limit of infinitely weak driving. In other
words, a complete separation of time scales is necessary: the
duration of the largest avalanche in the systems should be less
than the smallest time interval between subsequent inputs ().
This condition is hardly realized in nature, therefore we will
not stick with SOC but will discuss avalanching systems in
general. This concept is more extended since the behavior
of an avalanching system may appear non-SOC, while the
basic feature− ability to develop avalanches− remains. It
is worth mentioning that it is well-accepted to refer to many
avalanching systems as to SOC systems, even not in the limit
of zero driving, if these systems exhibit power-law distribu-
tions. The latter feature means that the system behavior is
scale-free (apart from the smallest possible scale and the size
of the system as a whole, as it appears in numerical models).
We, nevertheless, will refer to such systems as avalanching,
keeping in mind that in real physical systems driving depends
on external conditions and may change with time to a become
a strong one.

SOC, and sandpile models, in particular, have been widely
applied to plasma systems, especially to those which are
thought to be governed by localized reconnection (Chang,
1999; Chapman et al., 1998; Charbonneau et al., 2001; Bof-
fetta et al., 1999; Consolini and De Michelis, 2001; Klimas
et al., 2004; Krasnoselskikh et al., 2002; Lu and Hamilton,
1991; Takalo et al., 1999; Valdivia, 2003; Uritsky, V., M. Pu-
dovkin, and A. Steen, 2001; Uritsky et al., 2002). The more
sophisticated field reversal model (Takalo et al., 1999; Kli-
mas et al., 2004) is based on the hysteresis behavior of the
resistivity (diffusion). It is unclear whether it can be directly
applied to collisionless localized reconnection. It should be
mentioned, though, that there is no definitive observational
evidence relating SOC models to the localized reconnection
processes in plasma sheet, and there is no general agreement
regarding the dynamical nature of current sheet reconnection.
Multiple reconnection X lines were evidenced, for example,
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(Slavin et al., 2003), while others reported a single, local-
ized and transient reconnection with an impulsive modula-
tion of reconnection rate (Sergeev et al., 1987; Semenov et
al., 1992).

In the present paper we propose and study a new model,
which has a number of features characteristic of the localized
reconnection process in the current sheet (Milovanov et al.,
2001; Milovanov and Zelenyi, 2002; Zelenyi et al., 2002),
and which are not, in our opinion, properly presented in other
models. These features are:

– the transition passive-to-active depends on the local
threshold, resembling what happens in a current layer,
when its width becomes less than some critical value,
or, alternatively, when the current exceeds the critical
current;

– there is a finite life time of an active site, that is, an
active site, which excites its neighbour, does not become
passive immediately but remains active for some time;

– a part of the energy dissipates into “radiation” which
can be observed by a remote observer.

Locality of the threshold can be introduced artificially
even in a simple sandpile model by assigning the property
of variables to slopes. This works, however, only for one-
dimensional directed models (otherwise a local vector field
of “slopes” has to be defined). Dissipative models are rather
ubiquitous (see, e.g. 1995). We, however, propose that the
dissipated energy is the energy which comes to a distant ob-
server directly from the active site, and can be used for iden-
tification of the system state. The finite life time feature is
the most important since it removes the unphysical condition
of immediate energy release by an active site with the tran-
sition to the passive regime. The proposed feature not only
allows to study the behavior of the avalanching system in the
fast driving regime, but also makes possible resolution of the
temporal behavior of active regions.

In the present paper we study the avalanche properties of
the burning model depending on the strength of driving. The
question of whether a distant observer can distinguish be-
tween the burning system and a sandpile system using only
a limited set of measurements is analyzed in the companion
paper.

2 The model

In this paper we restrict ourselves to a one-dimensional
model only (two-dimensional model will be studied else-
where). Let there be a an array of cells (sites) with the
length L. Each sitei, i=1, . . ., L, is characterized by its
temperatureTi . The system is open and there is an exter-
nal random heat input. At each time step each site gets the
amount of heatq with the probabilityp. Thus, the average
heat input into a single site isqp and the total time aver-
age driving into the whole system isqpL. If the temper-
ature of a site exceeds some critical value,Ti≥Tc, burning

starts, during which the site loses energy at the rate (energy
per time step)Ji=kT . In other words, should this site be left
alone, its temperature would change accordingṪ =−kT , or
T =T (0) exp(−kt). Once the temperature drops below an-
other critical value,Ti<T0=sTc, s<1, the burning ceases,
and does not start again untilTi≥Tc. Physically it corre-
sponds to the idea that the energy release at the reconnecting
site, one started, persists until it is exhausted, and can start
again only after sufficient energy is accumulated. Summa-
rizing all this, the energy flux is

Ji=kTi[θ(Ti−Tc)+θ(Tc−Ti)θ(Ti−T0)θ(−Ṫi)], (1)

where the step-functionθ(x)=1 whenx≥0 and zero other-
wise. The last termθ(−Ṫ ) in Eq. 1 introduces the history
(hysteresis) dependence: if the temperature is below the up-
per critical value but above the lower critical value, burning
occurs only if the site was burning at the previous step, that
is, its temperature was decreasing. Note that the description
is imprecise since the random input may occasionally cause
some reheating even during the burning stage. This problem
is easily avoided during the discretization, as we shall see a
little later. It is worth mentioning that the life time of a lonely
burning site,tl , can be estimated astl≈ ln(Tc/T0)/k.

The energy releaseJi is partly dissipated, while the rest
is isotropically distributed among the neighbors. Leta<1
denote the part of the energy which remains in the system.
If the temperature of the sitei at the timet wasTi(t), at the
next step it would be

Ti(t+1)=Ti(t)−Ji(t)+(a/2)(Ji−1(t)+Ji+1(t))+η(i, t). (2)

The last term is the random input with the average〈η〉=pq.
Now it is easy to see that the flux can be properly rewritten
as

Ji(t)=kTi(t)

[θ(Ti(t)−Tc)+θ(Tc−Ti(t))θ(Ti(t)−T0)θ(Ji(t−1))], (3)

The two Eqs.2 and3 completely determine the model. We
only have to add the boundary conditions which will be open
boundaries, orT (1)=T (L)=0 always, and the distribution
of the random variableη. The last one will be usually taken
as uniform if not specified otherwise.

The proposed model has the following features which are
usually absent (or incomplete) in other models: a) the active-
passive transitions depend only on the local conditions, that
is, the temperature of the site and the energy release of the
same site determine whether it is active or passive, b) a site
which becomes active does not fade away immediately once
it transfers energy to neighbors, but lives for some time, and
c) there is some dissipation along with the energy flow in-
side the system. These features make the system resembling
the a current sheet with localized reconnection going on at
different sites.
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3 Field presentation

While discretization is the natural and only way for perform-
ing numerical simulations, in reality there is nothing to break
a continuous system into a number of discrete sites, although
some minimal scale is always present in physical systems,
like, for example, regular MHD cannot be extended to scales
smaller than the ion gyroradius. Thus, a proper analytical
description of continuous physical systems would require its
formulation in terms of differential equations (in case of his-
tory dependence there is no translational symmetry with re-
spect to time and an integro-differentical equation might be
expected, in general).

In this section we transform the model into a field model.
In order to do this we introduce the respective temporal and
spatial reference lengths,τ and l. Thus, t+1→t+τ , and
i±1→x±l. Now Eq.2 is rewritten as

τ
∂T (x)

∂t
=−(1−a)J (x)+

al2

2

∂2J

∂x2
+η(x, t). (4)

Respectively, the equation for the flux is

J (t)=kT [θ(T (t)−Tc)+θ(Tc−T (t))

θ(T (t)−T0)θ(J (t−τ))]. (5)

The last term in5 is non-local. Taking into account that all
variables change continuously forT0<T <Tc, one can Taylor
expand to get

τ J̇=−J+k(T +τ Ṫ )[θ(T +τ Ṫ −Tc)+

θ(Tc−T −τ Ṫ )θ(T +τ Ṫ −T0)θ(J ) (6)

or

J=kT [θ(T −Tc)+θ(Tc−T )θ(T −T0)θ(J−τ J̇ )]. (7)

Since the discontinuousθ -functions can be substituted
with tanh:

θ(x)=
1

2

[
1+ tanh

( x

L

)2n+1
]

whereL is sufficiently small and the integern≥0 is suffi-
ciently large, the derived field equations can be written in an
explicitly smooth way.

4 Analytical treatment

It is easy to estimate the averageNa number of active
sites, at least for the case of weak to moderate driving.
The energy release from each site≈Tc−T0 occurs within
the time tl , so that the average power isPav≈(Tc−T0)/tl .
The total energy loss per unit time (in time step) is
dE/dt≈−(1−a)Nav(Tc−T0)/tl+(dE/dt)b. The last term
describes the energy loss at the boundaries and does not ex-
ceed−2kTc∼Tc/tl . Thus, for a sufficiently large system,
Nav(1−a)&1 the boundary losses can be neglected in all

cases. In the stationary state energy losses should be bal-
anced by the input, which isLpq, so that one has

Nav≈
Lpqtl

(1−a)(Tc−T0)
. (8)

This approximation should be valid forNav�L, so that

pqtl�(1−a)Tc. (9)

Stronger predictions can be made when using the kinetic
equations for the cluster distribution (Gedalin et al., 2005).1

The corresponding equation (simplified) for the number of
clusters,N(w), with the lengthw reads:

dN(w)

dt
=−[P(w→w+1)+P(w→w−1)]N(w)

+P(w−1→w)N(w−1)+P(w+1→w)N(w+1), (10)

whereP(w→w+1) andP (w→w−1) are the probabilities
(per unit time) of growth and shrinking, and1 is the typi-
cal change of length in one step. In our case1=1 or 1=2.
Since we are interested in estimates only and will not solve
the (discretized) kinetic equation10 exactly, we simply put
1≈1. We proceed by Taylor expanding to obtain

dN

dt
=

12

2

d2

dw2 ((P++P−)N)−1
d

dw
((P+−P−)N) , (11)

whereP+ andP− are the growth and shrinking probabilities,
respectively. In the stationary state,(dN/dt)=0, one has

1

2

d

dw
((P++P−)N) = ((P+−P−)N) +C, (12)

whereC=const is the probability of the spontaneous appear-
ance of a cluster. Since only clusters of size one are born
from the passive background, we have to putC=0. Then

N(w)=
A

α
exp(−

∫
βdw), (13)

whereA=const , α=P++P−, andβ=(P−−P+)/α.
Let us now estimate the growth and shrinking probabil-

ity. Let the average temperature beTp. Since we assume
that Nav�L, this is effectively the average temperature of
a passive site. The heat flux from the cluster boundary to
the neighboring passive site isJ=kT during about its life
time. The passive site becomes active if the heat flux ex-
ceeds the difference between the critical temperature and the
site temperature, which can happen during the timetg when
J>(Tc−Tp). Estimating the initial temperature of the active
site as≈Tc we havetg=(1/k)ln[kTc/(Tc−Tp)]. The growth
probability then will beP+≈tg/tl and does not depend on
the cluster size.

The shrinking probability is simply the probability to
find the active site at the boundary in the end of its
life, so that P−∼1/tl . It also does not depend on the

1Gedalin, M., Balikhin, B., Coca, D., Consolini, G., and
Treumann, R. A.: Kinetic descritption for avalaching systems,
http://arxiv.org/pdf/cond-mat/0501567,2005

http://arxiv.org/pdf/cond-mat/0501567, 2005
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Fig. 1. Energy release for various drivings: top p = 0.0005 and bottom p = 0.005.
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Fig. 1. Energy release for various drivings: topp=0.0005 and bot-
tomp=0.005.

cluster size. The condition of stationarity immediately
gives Tp/Tc>1−k exp(k). Respectively,α=(1+tg)/tl and
β=(1−tg)/(1+tg), so that

N(w) ∝ exp[−(1−tg)w/(1+tg)]→ ln N∝−w. (14)

This result appears dependent on the average temperature
Tp which itself should depend on the system dynamics.

In order to establish the relation ofTp to the system pa-
rameters we should consider the smallest size,w=1, clusters.
For such clusters11 is not applicable. Instead, we have

dN1

dt
=−P−N1+γN0, (15)

where the last term describes the spontaneous (driving de-
termined) conversion of passive sites into active ones. Since
the average driving heat flux into a passive site isqp, and
the gapTc−Tp should be exceeded to make the site active,

we can estimate the birth probabilityγ∼qp/(Tc−Tp). In the
stationary state we would then have

qpN0

Tc−Tp

=
N1

tl
. (16)

SinceN(w)∝ exp(−βw), we have

Nav=

∫ L

1
N(w)dw≈N1/β, (17)

Substituting17 into 16, with the use of8 and taking into
account thatN0≈L, we get eventually

Tc−Tp

Tc−T0
=

β

1−a
. (18)

Sinceβ itself depends onTp, the relation18is in fact a (non-
linear) bootstrap equation for the average temperature.

As a by-note, the above analysis allows to predict the max-
imum size of the cluster. Indeed,

N(w)=N(1) exp[−β(w−1)]≈
Nav

β
exp[−β(w−1)]

≈
Lpqtl

β(1−a)(Tc−T0)
exp[−β(w−1)], (19)

and one hasN(wmax)=1, so that

wmax≈
1

β
ln

Lpqtl

β(1−a)(Tc−T0)
. (20)

Of course, this relation (as all previous) is of approximate
character only. It is clear, however, that the average number
of active sites depends on the driving more strongly than the
maximum cluster size.

5 Numerical analysis

The proposed model allows for a pretty good analytical treat-
ment, which nevertheless is based on a number of approx-
imations. Numerical analysis of avalanching models is a
usual tool and we expect it to be useful here, at least at the
illustrative level.

We start with illustrating the avalanching process by pre-
senting avalanche patterns for various drivings. We use the
following parameters: length of the systemL=100, critical
temperatureTc=50, low critical temperatureT0=0.3Tc, frac-
tion of energy release going to neighborsa=0.9, inverse re-
laxation timek=0.3, and heat amount input at each stepq=2.
The driving strength is then determined by the probability of
the inputp.

Figure 1 shows how the energy release pattern changes
with the driving increase by a factor of ten.

Although the difference in the activity level is quite
clearly seen visually from Fig.1, it is instructive to in-
troduce quantitative tools of comparisons. LetJ (t, i)

be the two-dimensional array of intensities. Then
Jav=

∑
i,t J (t, i)/(LNt ), whereNt is the number of time

steps, would have the meaning of the mean site intensity.
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Table 1. Quantitative comparison of activity level.

p=0.0005 p=0.001 p=0.005 p=0.01

qp 0.001 0.002 0.01 0.02
Jav 0.011 0.026 0.12 0.24
nav 0.0013 0.0032 0.0145 0.029
wmax 15 18 21 22
tmax 32 37 37 36
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The mean radiated energy would be(1−a)Jav. Respectively,
nav=

∑
i,t θ(J )/(LNt ) would give the mean fractional num-

ber of active sites. We remind the reader that the mean energy
input per site isqp. In the stationary regime(1−a)Jav≈qp

(the equality cannot be precise because of the losses at the
boundaries - see complete analysis in section4). The results
of this comparison are given in Table1, where we list the fol-
lowing parameters:p is the driving probability,qp is the av-
erage driving input per site,Jav is the average power released
by active sites,nav is the mean fractional number of active
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sites,wmax is the largest cluster size (from all cluster sizes
measured at all times), andtmax is the longest avalanche du-
ration (measured for all sites). The last two are defined as fol-
lows. First we determine the largest cluster size max(w(t))

for each timet and thenwmax= maxt (max(w(t))). The
longest duration max(t (i)), on the other hand, is determined
for each site separately, and thentmax= maxi(max(t (i))).
Thus,wmax corresponds to the time-average spatial pattern
which an observer would see instantaneously, whiletmax cor-
responds to the spatially-average time evolution which an ob-
server, sitting at some site, would see.

Figure 2 provides a close look at the avalanche-cluster dis-
tribution for different drivings. It is seen that, besides much
more frequent bursts of activity, in a number of cases the
avalanches for stronger driving behave in a more compli-
cated way. This can be seen from Fig.3 where individual
avalanches are shown. The stronger driving case exhibits
first indications of avalanche merging. At stronger drivings
such merging would become more important, thus spoiling
our analytical treatment.

For the analysis of the distributionN(w) the size of the
system was increased toL=400, in order to exclude the
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effects of the edges. Figure4 shows the distribution for
various values of the probabilityp. As expected, the max-
imum cluster size depends only weakly on the driving, and
the functional dependence lnN∝−w remains the same.

Figure5 shows the behavior of the mean temperature. The
plots are artificially shifted since the dependence of the tem-
perature on the driving is negligible. It is seen that the system
is in the stationary regime, since the temperature fluctuates
around some constant value. With increase of driving the
fluctuations become more frequent.

We conclude the illustration of the system behavior with
plots of the duration of active and passive phases, which are
distinguished byJt=

∑
i Ji . An active phase corresponds to

Jt>0, that is, there is at least one active site. In the passive
phase there is no activity at all. The statistics is given in
Fig. 6.
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The distribution of the passive phase durations is Poisson
in a wide range, as could be expected. The Poisson nature of
the PDF of passive phases suggests that the evolution of the
burning model as described in this manuscript does not show
any time correlation among the avalanche events. However,
further work is needed in order to investigate the emergence
of time correlation as a function of the driving strength and/or
different updating rules including diffusion effects. The dis-
tribution of the active phase durations deviates from Poisson
toward smaller and larger durations. More detailed compar-
ative analysis of the statistical behavior of avalanches is pro-
vided in the companion paper.

6 Conclusions

In the present paper we proposed a new model which seems
to be more appropriate for phenomenological description
of magnetized plasma systems with localized reconnection
(such as solar flares and reconnection in Earth’s magnetotail),
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than the usually used sandpile models. The features of the
model allow to formulate it in continuous form (as field equa-
tions) and as a discrete mapping model as well. Rather sim-
ple and precise analytical treatment appears to be possible,
so that we can predict a certain shape of the cluster distribu-
tion for the stationary regime. Numerical analysis supports
the results of the analytical study. The statistical properties
of this model are studied in the companion paper, in com-
parison with a similar sandpile model. The two-dimensional
generalization of the model will be published elsewhere.
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