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Abstract. Local and global bifurcation structure of the
forced Lorenz model in ther−F plane is investigated. The
forced Lorenz model is a conceptual model for understanding
the influence of the slowly varying boundary forcing like Sea
Surface Temperature (SST) on the Indian summer monsoon
rainfall variability. Shift in the probability density function
between the two branches of the Lorenz attractor as a func-
tion of SST forcing is calculated. It is found that the one-
dimensional return map (cusp map) splits into two cusps on
introduction of forcing.

1 Introduction

Rainfall over India varies both in space and time during the
Summer monsoon season and the large-scale rainfall oscil-
lates aperiodically between active spells with good rainfall
and weak spells with little rainfall. Typically the transition
time between active and weak spells is shorter than the res-
idence time (few weeks) of the spells themselves. Rama-
murthy (1969) and Sikka and Gadgil (1980) conducted an
exhaustive analysis of the daily rainfall over India and re-
lated the active/break periods to location of monsoon trough.
Although rainfall is one of the most highly variable quanti-
ties, both in observations and in model simulations, seasonal
mean rainfall anomalies are largely determined by the sea
surface temperature (SST) (Shukla, 1998). The influence of
the slowly varying boundary forcing like SST is to bias the
system towards more active/break regimes thus altering the
shape of the probability density function.

Because of the interaction between atmosphere and ocean,
the SST of the Indian and Pacific Oceans may influence the
variability of the Indian monsoon and in turn, the monsoon
winds and rainfall may affect the variability of the SST of
the referred oceans. This mutual interaction introduces the
possibility that the monsoon and the oceans form a coupled

Correspondence to:S. Dwivedi
(suneetdwivedi@yahoo.co.in)

climatic system (Webster and Yang, 1992). However, the In-
dian monsoon rainfall is understood to have a stronger rela-
tion with the Pacific Ocean SST than with the Indian Ocean
SST.

The lower boundary conditions like SST are less chaotic
and therefore can lend partial predictability to the atmo-
sphere. Charney and Shukla (1981) proposed that the sea-
sonal monsoon rainfall over India although being one of the
most highly variable quantities, has potential predictability,
because it is forced by the slowly varying boundary condi-
tions such as sea surface temperature (SST), soil moisture,
sea ice and snow. There are several studies, both observa-
tional and modelling indicating that the interannual variabil-
ity of Indian summer monsoon (JJAS) rainfall is linked to the
SST variation in Pacific (Rasmusson and Carpender, 1983;
Mooley and Parthasarathy, 1983; Ju and Slingo, 1995; So-
man and Slingo, 1997). The SST has a strong influence on
atmospheric dynamics, while it itself remains coherent over
large spatial scales. It varies slowly on time-scales of individ-
ual weather events, but it is not constant from year to year. In
particular, it is known that year-to-year variations in tropical
Pacific SST associated with the El Nino/Southern oscillation
event have a strong influence on the inter-annual variations
in the monsoon.

The monsoon region has a dominant intraseasonal fluctua-
tion with periodicity of 30–50 days (Sikka and Gadgil, 1980;
Yasunari, 1980; Krishnamurthy and Sybramaniyam, 1982).
Large-scale rainfall over the Indian region is associated with
the so-called “Inter-tropical convergence zone” (ITCZ), a re-
gion where lower tropospheric winds are convergent. For In-
dian longitudes, ITCZ may be located over the heated conti-
nent, leading to active monsoon phase, or over the equatorial
Indian Ocean, leading to break phase.

The Lorenz model (Lorenz, 1963) has been widely used
as a conceptual model for predictability studies in meteorol-
ogy (Palmer, 1993a, 1993b, 1994, 1998; Corti et al., 1999;
Sparrow 1982; Tsonis, 1992; Evans et al., 2004; Yadav et al.,
2005).
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It has been shown by Sikka and Gadgil (1980) that the
probability distribution function of the ITCZ is bimodal. To
be specific, one may assume that the positive x-y regime in
the Lorenz attractor corresponds to the oceanic ITCZ with
reduced monsoon rainfall, and that the negative x-y regime
corresponds to the continental ITCZ with the enhanced mon-
soon rainfall.

Motivated by the above observations, Palmer (1994) intro-
duced constant “forcing” terms in the Lorenz (1963) equa-
tions to put forward a paradigmatic model for discussing
long-range monsoon predictability. In this model, the “forc-
ing” terms correspond to the tropical Pacific SST anomaly.
The two branches of the forced Lorenz attractor correspond
to the two regimes of active and weak spells of the monsoon.

In the absence of forcing, both the branches are equally
likely. When forcing is introduced, the probability of the
state lying in one of the branches is greater than that in the
other branch. Palmer (1994) has hypothesised that slowly
varying boundary conditions change only the nature of the
intraseasonal variability. He suggested that Summer mon-
soon evolves nonperiodically between the regimes of active
and the break phases. The seasonal mean rainfall is deter-
mined by the bimodal probability distribution function (PDF)
of rainfall, depending on the frequency and length of active
and break periods. The spatial patterns of the interannual
variability of the monsoon rainfall, for example, should cor-
respond to those of intraseasonal active and break periods.
In an evaluation of NCEP-NCAR reanalysis circulation data,
Goswami and Ajaya Mohan (2001) lend support to Palmer’s
hypothesis by identifying a mode of variability common to
both intraseasonal and interannual time scales and an asym-
metric bimodal PDF of active and break conditions.

The forced Lorenz model has been the subject of various
studies (Pal, 1996; Pal and Shah, 1999; Mehta et al., 2003;
Mittal et al., 2003).

In recent years bifurcation analysis has proven to be an
important tool for mathematical analysis and better under-
standing of the internal dynamics and physics of low order
ocean atmospheric models. There are several parameters in
the atmosphere and ocean which, when changing beyond a
critical value, lead to entire changes of the nature of the sys-
tem. The need therefore is to identify such parameters and
to see how they are affecting the atmosphere when they pass
beyond a critical value.

Regular and chaotic behaviour in the Lorenz-84 model,
which is a low order general circulation model of the atmo-
sphere (Lorenz, 1984, 1987, 1990) has been studied exten-
sively using bifurcation theory by Masoller et al. (1992) and
Sicardi Schifino and Masoller (1996). Masoller et al. (1995)
have investigated the dynamics of the Lorenz-84 model of
general circulation of the atmosphere by full characterisation
of chaotic strange attractors found. A comprehensive bifur-
cation and predictability analysis of the Lorenz-84 model has
been done by Shil’nikov, Nicolis and Nicolis (1995). Roeb-
ber (1995) has investigated the dynamical behaviour of the
climate system using a low order coupled atmosphere-ocean
general circulation model, in order to gain some qualitative

understanding of how nonlinear interactions between the in-
dividual system components may affect the climate. Van
Veen (2001) has done a detailed study of the baroclinic flow
and the Lorenz-84 model.

These studies motivated us to present a mathematical anal-
ysis of the forced Lorenz model. We have done the analysis
first by varying the forcing along two particular lines in the
Fx−Fy plane and then by also varyingr along with the forc-
ing F . We have investigated the local and global bifurca-
tion structure of the forced Lorenz model in ther−F plane,
whereF parameterises a particular line in theFx−Fy plane.
We also study the shift in the probability density function be-
tween the two branches of the Lorenz attractor as the forcing
(anomalous SST) is changed. We found that by introducing
the forcing term, the one-dimensional return map (cusp map)
produced by the maximumz values splits into two cusps.

2 Bifurcation analysis of the forced Lorenz model

The system of equations for the forced Lorenz model is:

dx

dt
= −ax + ay + cFx

dy

dt
= −xz + rx − y + cFy

dz

dt
= xy − bz + cFz , (1)

wherea=10,b=8/3 andr=28.
The (x, y, z)→(−x, −y, z) symmetry of the original

Lorenz equations (Lorenz, 1963) is lost in the forced Lorenz
system.

The transformationz=z′
+
(

c
b

)
Fz; r=r ′

+
(

c
b

)
Fz clearly

tells us that the forcingFz is equivalent to a shift in the pa-
rameterr. Therefore, without loss of generality we study the
system

dx

dt
= −ax + ay + Fx

dy

dt
= −xz + rx − y + Fy

dz

dt
= xy − bz . (2)

To make the analysis simpler we study here two particularly
simple cases:

Case I:Fx=aF, Fy=−F and case II:Fx=aF, Fy=−rF .
In case I, ifF 2<4b(1-r) there is only one fixed pointO

(0, −F , 0). ForF 2>4b(1-r) there are two more fixed points
P±(x±, y±, r−1), where

x±=
1

2

{
F±

√{
F 2+4b(r−1)

}}
and

y± =
1

2

{
−F±

√{
F 2+4b(r−1)

} }
. (3)
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Fig. 1. Fixed pointsP+ andP− for a=10, b=8/3,r=28 (a) F=0,
P+=(8.4853,8.4853,27) andP−=(−8.4853,−8.4853,27);(b) case
I, Fx=aF , Fy=−F , P+=(8, 9, 27) andP−=(−9, −8, 27); and
(c) case II,Fx=aF , Fy=−rF , P+=(8.4853, 8.6353, 27.4773) and
P−=(−8.4853,−8.3353, 26.5227).

The fixed pointsP+/P− represent a state of continuous
rainfall/complete absence of rainfall. They are shown in
Fig. 1a for no forcing i.e.F=0, in Fig. 1b for the case I with
F=−1, and in Fig. 1c for case II withF=−0.15.
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Fig. 2. Bifurcation structure of the forced Lorenz Model in case I,
i.e.Fx=aF , Fy=−F aroundr=1.

For the case I, the eigenvalues of the linear tangent model
matrix at the fixed pointO are:

−b and

{
−(a+1)±

√{
(a+1)2−4a(1−r)

}}
/2 .

For r<1, all the eigenvalues are negative andO is a stable
node. One of the eigenvalues is positive forr>1. Hence, for
r>1, O is an unstable fixed point. The characteristic equa-
tions at the fixed pointP± are:

λ3
+(a+b+1)λ2

+(ab+b+x2
±)λ+a(x2

±+x±y±)=0 . (4)

Figure 2 shows two curves in ther−F plane (i)L given by
F 2=4b(1−r) and (ii) T given byr=1. For parameter points
to the left ofL, there is only one fixed pointO. For the re-
gion to the right ofL, there are two more fixed pointsP+ and
P−. Immediately to the right ofT , both these fixed points are
stable nodes, whereas in the region betweenL andT , one is
a stable node whereas the other is a saddle point. In this re-
gion, for F>0, P+ is a stable node, whereasP− is a saddle
point. ForF<0, it is the other way round. We notice thatL

represents a limit point bifurcation (Thompson and Stewart,
2002), where a node – saddle pair is born. ForF>0 (F<0),
asT is crossed from left to right,O andP− (P+) collide
and exchange their stability. Thus,T represents a transcriti-
cal bifurcation (Thompson and Stewart, 2002). The curvesL

andT touch at the pointr=1, F=0. For the unforced Lorenz
model, this is a point of pitchfork bifurcation (Thompson and
Stewart, 2002). For the two parameter bifurcation consid-
ered here this point may be regarded as a codimension 2 bi-
furcation point (Kuznetsov, 1998) obtained by the touching
of the limit point bifurcation and the transcritical bifurcation
curves.

For F=0, if a>(b+1), as r is increased beyondrc =(
a (a+b+3)
(a−b−1)

)
, the equilibrium pointsP± lose their stability via

a Hopf bifurcation.
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Fig. 3. Plot ofFc vs.r for fixed pointP+ (P−) in case I, i.e.Fx=aF ,
Fy=−F [P+ (P−) is locally stable ifF>Fc (F<−Fc)].

We defineFc such that ifF>Fc, P+ is stable, whereas if
F<−Fc, P− is stable.

In Fig. 3,Fc is plotted as a function ofr, taking the stan-
dard valuesa=10 andb=8/3, whereFc = (a−b − 1)(r −

rc)
(

b
(b+1){a(r−rs )}

)1/2
andrs = rc −

(
b+1
a

)
(rc − 1). It is

seen that forr>rc, the equilibrium pointP+ (P−), which
was unstable in the absence of forcing, can be made stable
by a sufficiently large positive (negative) forcing parameter
F . For rs<r<rc, P+ (P−), which is stable in the absence of
forcing, can be made unstable by a negative (positive) forcing
parameterF of sufficiently large magnitude. For 1<r<rs ,
the equilibrium pointsP± are stable for all values of the forc-
ing parameterF .

In case II, forr<1, there is only one fixed point atO (F , 0,
0). Forr>1 there are two more fixed pointsP±(x±,y±,z±),
where

x± = ±

√
{b(r − 1)}, y± = ±

√
{b(r − 1)} − F

and

z± = (r − 1) −

(
±F

√{
(r − 1)

b

})
. (5)

The characteristic equation at the fixed pointO is given by

λ3
+ (a + b + 1)λ2

+

(
ab + a + b − ar + F 2

)
λ

+ab(1 − r) + aF 2
= 0 . (6)

The equilibrium pointO becomes stable, ifF>Fc or
F<−Fc, where

F 2
c =


b(r − 1) , for 1 < r < r′

max
[
a(r − r ′), b(r − 1)

]
, for r′ < r < r′′

max
[
a(r − r ′), b(r − 1) ,(

a(a+1)(r−r ′′)
(b+1)

)]
, for r>r′′

(7)
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Fig. 4. Bifurcation structure of the forced Lorenz Model in case
II, i.e. Fx=aF , Fy=−rF aroundr=rI . Here, O is locally sta-
ble if F>Fc or F<−Fc andP+ (P−) is locally stable ifF<F

p
c

(F>−F
p
c ).

wherer ′
=

[
1 +

(
b(a+1)

a

)]
andr ′′

=

[
1 +

(
b(a+b+1)

a

)]
.

The fixed pointO in case II becomes stable for sufficiently
large values of the forcing parameter magnitude unlike the
case I where the fixed pointO remains unstable forr>1.

The characteristic equations at fixed pointP± of case II
are:

λ3
+ (a + b + 1)λ2

+

{
ab + b + a(1 − r + z±) + x2

±

}
λ

+a
{
b(1 − r + z±) + x2

± + x±y±)
}

= 0 . (8)

Necessary and sufficient condition for all roots of the
Eq. (8) to have negative real parts is:|F |<F

p
c , whereF

p
c

is given by

F
p
c = min

[(
b3/2(a + r)

a(r − 1)1/2

)
, [b (r − 1)] 1/2,(

b3/2

a

)(
rc − r

(r − 1)1/2

)(
a − b − 1

a − b + 1

)]
. (9)

The condition (9) reduces toF<F
p
c at P+, and toF>−F

p
c

atP−.
Figure 4 shows a plot ofFc from Eq. (7) andFp

c from
Eq. (9) as a function ofr, taking the standard valuesa=10
andb=8/3 along with their mirror images−Fc and−F

p
c . We

notice that the curveT is common to bothFc andF
p
c . For

F>0, as one crosses the lineL (r=1) from left to right, the
point O remains a stable node, whereas a saddle node pair
P+, P− is born. ThusL is a line of limit point bifurcation.
On crossing the curveT , O andP+ collide and exchange sta-
bility. Thus curveT is a codimension 1 transcritical bifurca-
tion curve at which one of the eigenvalues vanishes. Curves
HO andHP are co-dimension 1 Hopf bifurcations at which a
pair of pure imaginary eigenvalues exists for the fixed points
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Fig. 5. Bifurcation structure of the forced Lorenz Model in case I,
i.e.Fx=aF , Fy=−F .

O andP+ (or P−), respectively. The point of intersection
of these curves atrI =a (1+b)

(a−b)
is a codimension 2 bifurcation

point (Kuznetsov, 1998).
It is seen that forr>rc, the equilibrium pointP+ (P−),

which was unstable in the absence of forcing, can be made
stable by a sufficiently large negative (positive) forcing pa-
rameter. For 1<r<rc, P+ (P−), which is stable in the ab-
sence of forcing, can be made unstable by a positive (nega-
tive) forcing parameter of sufficiently large magnitude.

It is naturally of interest to know whether there is a pa-
rameter range ofF for which there is a co-existence of a
strange attractor and a stable fixed point in the forced Lorenz
model similar to the Lorenz model when the parameterr has
values in the interval 24.06<r<24.74 (Sparrow, 1982). To
answer this question we surmise that when a strange attrac-
tor co-exists with one or more stable fixed points, the unsta-
ble manifold of the fixed pointO belongs to the basin of the
strange attractor (Alfsen and Froyland, 1985). For a given set
of parameter values, if the orbit of a point close to the unsta-
ble fixed point on the unstable manifold does not converge to
P+ or P− in 2×105 time steps, we assume that it is attracted
to the strange attractor, where we have used a time step of
0.01. In this way, the parameter spacer−F is divided into
distinct regions as shown in Fig. 5 for case I.

These regions are distinguished by the following proper-
ties:

Region S.A.: There exists a strange attractor. None of the
fixed points is locally stable (For large values ofr, stable
periodic orbits are expected to exist, but this has not been
investigated).

Region I: There exists a strange attractor. The fixed point
P+ is locally stable. The unstable manifold ofO belongs to
the basin of attraction of the strange attractor.

Region II: There exists a strange attractor. The fixed point
P− is locally stable. The unstable manifold ofO belongs to
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Fig. 6. Bifurcation structure of the forced Lorenz Model in case II,
i.e.Fx=aF , Fy=−rF .

the basin of attraction of the strange attractor.
Region III: There exists a strange attractor. Both the fixed

pointsP+ andP− are locally stable. The unstable manifold
of O belongs to the basin of attraction of the strange attractor.

Region IV: The fixed pointP+ is stable. The unstable
manifold ofO belongs to the basin of attraction ofP+.

Region V: The fixed pointP− is stable. The unstable man-
ifold of O belongs to the basin of attraction ofP−.

Region VI: The fixed pointsP+ andP− are locally stable.
An orbit starting at a pointO− (O+), which is slightly left
(right) of O on the unstable manifold ofO, will converge to
P+ (P−).

Region VII: The fixed pointsP+ andP− are locally stable.
The unstable manifold ofO belongs to the basin of attraction
of P+.

Region VIII: The fixed pointsP+ andP− are locally sta-
ble. The unstable manifold ofO belongs to the basin of at-
traction ofP−.

Region IX: The fixed pointP+ andP− are locally stable.
An orbit starting at a pointO− (O+), which is slightly left
(right) of O on the unstable manifold ofO, will converge to
P− (P+).

As one enters region VI from the left, one encounters
a homoclinic orbit to the saddle pointO. As the saddle
quantity (Kuznetsov, 1998) at this bifurcation is positive, by
Shil’nikov theorem, this homoclinic orbit bifurcates into a
unique saddle limit cycle in region VI. The size of this limit
cycle diminishes and eventually vanishes as one approaches
the Fc (−Fc) curve at whichP+ (P−) becomes locally un-
stable. Prior to that in region III, there is a co-existence of
the strange attractor and the stable fixed pointsP+, P−. The
attractor basins of these are delimited in phase space by the
saddle limit cycles, which are a continuation of those created
at homoclinic bifurcation. This region may show hysteretic
behaviour. As one moves from left to right in this region if
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Fig. 7. The zoomed portion of the box region in Fig. 6 for case II,
i.e.Fx=aF , Fy=−rF .
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Fig. 8. Plot of p+ vs. forcing parameterF for case I, i.e.Fx=aF ,
Fy=−F .

the system lands at a fixed point, which loses its stability on
encountering the right hand boundary of region III then the
system may land on the strange attractor if the unstable man-
ifold of the fixed point collides with the strange attractor. On
returning back to region III from right to left the system will
remain on the strange attractor.

The bifurcation diagram for case II has also been obtained
using the same process and is shown in Fig. 6. The zoomed
portion of the box region in Fig. 6 is shown in Fig. 7. The re-
gions shown in this figure are distinguished by the following
properties:

Region S.A.: Same as in case I.
Region I–V: Same as is case I.
Region VI: The fixed pointsP+ andP− are locally stable.

The unstable manifold ofO belongs to the basin of attraction
of P+.
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Fig. 9. Plot of p+ vs. forcing parameterF for case II, i.e.Fx=aF ,
Fy=−rF .

Region VII: The fixed pointsP+ andP− are locally stable.
The unstable manifold ofO belongs to the basin of attraction
of P−.

Region VIII: The fixed pointsP+ andP− are locally sta-
ble. An orbit starting at a pointO− (O+) which is slightly
left (right) of O on the unstable manifold ofO, will converge
to P+ (P−).

Region IX: The fixed pointP+ andP− are locally stable.
An orbit starting at a pointO− (O+), which is slightly left
(right) of O on the unstable manifold ofO, will converge to
P− (P+).

Palmer (1994) has observed in the forced Lorenz model
that the effect of the forcing is not so much to shift the attrac-
tor, as to shift the probability distribution function between
the two branches of the Lorenz attractor. The probability of
finding a point in thex>0 half-space (active spell), i.e.p+ for
the case I is shown in Fig. 8 as a function of forcing parame-
terF (SST anomaly). Similarly, for case II, the probability of
finding a point in thex>F half-space (p+) as a function ofF
is shown in Fig. 9. In Fig. 8, the probability of finding a point
in thex>0 (x<0) half-space is the probability of occurrence
of active (break) spell of the Indian summer monsoon.

For r=28 and for different values of the forcing parameter
F , we determined the probability of finding a point inx>0
half-space for case I andx>F half space for case II from
105 iterations using a time step of 0.01, out of which the first
20 000 points were discarded. For each value ofF , initial
values were randomly chosen ten times. The probabilityp+

was obtained from ensemble average for these ten cases and
the error bar from the standard deviation.

We applied the results of our analysis on standard devia-
tion of NINO3 index JJAS seasonal anomaly and the IMR
index JJAS seasonal anomaly for 21 years from 1980–2000.
NINO3 index is the sea surface temperature anomaly aver-
aged over the area (150◦ W–90◦ W, 5◦ S–5◦ N) in the eastern
Pacific (in K) and IMR index is the rainfall anomaly averaged
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Fig. 10. Standard deviation of NINO3 and IMR index JJAS sea-
sonal anomaly time series for 21 years from 1980–2000.

over all India land points (in mm/day). These time series are
shown in Fig. 10.

We assume that the highest value of standardized NINO3
Index (seasonal anomaly/std. deviation), which is 3.65 in
1997, is equivalent to a forcingF=1.5 of the case I in forced
Lorenz model. In this way, we calculated the value ofF for
other years by linear scaling. We then calculated the cor-
responding probability (p+) for all the years. It has gen-
erally been observed that NINO3 index and IMR index are
negatively correlated i.e. warmer SSTs in central and eastern
parts of equatorial Pacific are associated with lower monsoon
rainfall (Angell, 1981; Khandekar and Neralla, 1984; Slingo,
1997). We got a similar correlation between probability and
IMR index. The value of the correlation coefficient that we
obtained in both the cases is−0.2.

In an attempt to understand/predict the shift in probability
distribution function, we study the effect of forcing on the
maxima inz one-dimensional return map (also known as the
Lorenz map). It is found that the single cusp obtained in the
absence of forcing splits into two cusps on introduction of
forcing. The Lorenz maps forF=0 andF=−1 for case I are
shown in Figs. 11a and 11b. Cusp map provides a simpler
picture of when the transition from one regime to another
of the forced Lorenz model takes place. Thezmax(n+1) vs.
zmax(n) map is a double valued map, but it is possible to
prescribe a heuristic rule by which one can decide which of
the two branches is to be chosen. According to this rule, a
transition from left hand side of a cusp will be to the same
cusp, whereas a transition from the right hand side of a cusp
will be to the other cusp. Figure 11b shows how this rule is
applied to select the branch at each stage of the iteration. The
two cusps correspond to the two regimes. Each point on cusp
A (B) corresponds to the regimex>0 (x<0). The point 1 in
the figure is on the left branch of cusp A, so for determining
its image, cusp A value of the double-valued map will be
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Fig. 11. Lorenz map of the forced Lorenz model without forcing
(F =0) and with forcingFx=aF , Fy=−F , F=−1.

chosen to get the point 2. Subsequent images will be points
3 and 4. Points 4 is on the right branch of cusp A, so a regime
transition will take place and the cusp B value of the double-
valued map will be chosen giving rise to point 5. Point 5
being on left branch of cusp B its image will be on cusp B.
As point 6 is on right branch of cusp B, its image (point 7) is
on cusp A.

3 Conclusions

We found that there is no interest in varyingFz, as it is
equivalent to a change in the parameterr. We studied the
forced Lorenz in detail in ther−F plane for two different
cases. First, when the forcing function lies along a particu-
lar straight line in theFx−Fy plane for which (0,−F , 0) is a
fixed point (case I) and then, when forcing function lies along
another straight line for which (F , 0, 0) is a fixed point (case
II). Bifurcation analysis is done here to see the effect of con-
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stant sea surface temperature forcingF in the forced Lorenz
model. The local and global bifurcation structure in ther−F

plane has been studied. We see here that the nature of the sys-
tem entirely changes as SST forcing is varied beyond a crit-
ical valueFc. One of the two symmetric fixed points which
lose stability via a sub-critical Hopf bifurcation at a critical
valuerc (Sparrow, 1982) becomes stable, ifF>Fc and the
other becomes stable ifF<−Fc. It is found that the prob-
ability distribution function remains linear for small values
of the forcing parameterF and suddenly approaches unity
near a critical value of the forcing thus representing a state
of continuous rainfall/complete absence of rainfall. The cusp
shaped Lorenz map (Sparrow, 1982) splits into double cusp
map for small values of the forcing.

Advancement of monsoon trough towards the Bay of Ben-
gal is found to correspond to a dry spell, while its reces-
sion towards the foothills of Himalayas denotes a good wet
spell (Sikka and Gadgil, 1980). The mathematical model pre-
sented here can be of relevance for understanding this phe-
nomenon as well, by treating the forcing function as repre-
senting the rate of advancement of monsoon trough towards
the Bay of Bengal/foothills of Himalayas.

Though the conceptual forced Lorenz model is too simple
to be used directly for the study of monsoon predictability,
the bifurcation analysis of the forced Lorenz model presented
here may help us understand the influence of slowly varying
SST forcing on the Indian summer monsoon rainfall and thus
it may provide a better understanding of the dynamics and
probability of occurrence of active and break spells of the
Indian summer monsoon.

The best defence of potential utility of conceptual models
is to remind of the success of Feigenbaum’s study of the one-
parameter (analog of Reynold’s number) family of Logistic
Map. It not only gave qualitative insight into period doubling
route to chaos, but also gave the concept of quantitative uni-
versality.
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