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Abstract. Complex principal component analysis (CPCA) is
a useful linear method for dimensionality reduction of data
sets characterized by propagating patterns, where the CPCA
modes are linear functions of the complex principal compo-
nent (CPC), consisting of an amplitude and a phase. The use
of non-linear methods, such as the neural-network based cir-
cular non-linear principal component analysis (NLPCA.cir)
and the recently developed non-linear complex principal
component analysis (NLCPCA), may provide a more accu-
rate description of data in case the lower-dimensional struc-
ture is non-linear. NLPCA.cir extracts non-linear phase in-
formation without amplitude variability, while NLCPCA is
capable of extracting both. NLCPCA can thus be viewed as a
non-linear generalization of CPCA. In this article, NLCPCA
is applied to bathymetry data from the sandy barred beaches
at Egmond aan Zee (Netherlands), the Hasaki coast (Japan)
and Duck (North Carolina, USA) to examine how effective
this new method is in comparison to CPCA and NLPCA.cir
in representing propagating phenomena. At Duck, the under-
lying low-dimensional data structure is found to have linear
phase and amplitude variability only and, accordingly, CPCA
performs as well as NLCPCA. At Egmond, the reduced data
structure contains non-linear spatial patterns (asymmetric
bar/trough shapes) without much temporal amplitude vari-
ability and, consequently, is about equally well modelled by
NLCPCA and NLPCA.cir. Finally, at Hasaki, the data struc-
ture displays not only non-linear spatial variability but also
considerably temporal amplitude variability, and NLCPCA
outperforms both CPCA and NLPCA.cir. Because it is diffi-
cult to know the structure of data in advance as to which one
of the three models should be used, the generalized NLCPCA
model can be used in each situation.

Correspondence to:B. G. Ruessink
(g.ruessink@geo.uu.nl)

1 Introduction

Like data sets in many other branches of science, nearshore
bathymetric data sets are highly dimensional, being com-
posed of numerous observations in time at a considerable
number of spatial positions. Along sandy beaches, these
highly dimensional data sets often show the evolution of
submarine ridges of sand (sandbars) and their intermediate
lows (sandbar troughs). Principal component analysis (PCA)
(Von Storch and Zwiers, 1999; Jolliffe, 2002) is an often ap-
plied technique in nearshore batymetric studies to reduce the
data dimensionality with the purpose of gaining more insight
into the dynamics of these bars (e.g.,Wijnberg and Terwindt,
1995; Kuriyama, 2002). However, PCA suffers from a num-
ber of drawbacks that cause this technique to not always be
the most useful technique for dimensionality reduction in
nearshore (as well as in other (non-) geophysical) studies.

In sandbar studies, these drawbacks are related to the prop-
agating character of the sandbars and to their often asym-
metric (non-linear) spatial shape. This propagating charac-
ter expresses itself as bar generation near the shoreline, fol-
lowed by offshore migration until a bar finally dies away at
the outer edge of the nearshore (Ruessink and Kroon, 1994;
Shand and Bailey, 1999; Plant et al., 1999; Kuriyama, 2002).
Because PCA is limited to the detection of standing spa-
tial patterns, PCA scatters the propagating sandbars in two
or more PCA modes, complicating their physical interpre-
tation. While complex PCA (Horel, 1984) (where a mode
is of the functional formL(aeiθ ), with L linear, and the
complex principal component having an amplitudea and a
phaseθ ) may overcome this problem (e.g.,Ruessink et al.,
2003), the linearity assumption in CPCA imposes symmetric
sandbar and trough shapes, contrasting with often observed
asymmetric bar/trough profiles.Ruessink et al.(2004), for
instance, noted that bars along parts of the Dutch coast can
be narrower and higher than the relatively wide and shallow
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troughs. Linear methods of dimensionality reduction now
lead to modes that are uncorrelated but not independent and,
as a consequence, cannot be interpreted separately.

The advent of multi-layer perceptron neural networks
(Gardner and Dorling, 1998; Hsieh and Tang, 1998), hence-
forth denoted NNs, resulted in the non-linear generalization
of PCA (Kramer, 1991; Malthouse, 1998; Hsieh, 2001) and
CPCA (Rattan and Hsieh, 2004, 2005). Of particular rel-
evance for the description of propagating features are the
NN-based techniques circular non-linear PCA (NLPCA.cir)
(Kirby and Miranda, 1996; Hsieh, 2001) and the recently
developed non-linear CPCA (NLCPCA) (Rattan and Hsieh,
2004, 2005). NLPCA.cir and NLCPCA differ in the form of
non-linearity they can describe. An NLPCA.cir solution con-
tains non-linear phase information (as an NLPCA.cir mode
is of the functional formN(θ), with N non-linear) but can-
not describe temporal variability in the magnitude of the ex-
tracted features. Thus, while NLPCA.cir can be successful in
condensing the asymmetric shape of sandbars and troughs in
one mode (Ruessink et al., 2004), any temporal variability in
the magnitude of this shape remains unresolved and may se-
riously impair the description of the lower-dimensional data
structure when this variability is considerable (cf.Hamilton
and Hsieh, 2002). NLCPCA (with a non-linear functional
form of N(aeiθ )) overcomes this deficiency in NLPCA.cir
and captures both the phase and amplitude variability non-
linearly. For a review of non-linear PCA and for oceano-
graphic and climatological applications, seeHsieh(2004).

In this study, the NLCPCA method is applied to the
bathymetry data recently used inRuessink et al.(2004) to
investigate how effective this method is in comparison to the
CPCA and the NLPCA.cir methods in representing propa-
gating phenomena. As the first application of the NLCPCA
method to coastal morphodynamics, this paper illustrates the
potential advantage of NLCPCA over CPCA and NLPCA.cir
in analyzing geophysical (or non-geophysical) datasets.

2 Data

The bathymetric data used in this paper were collected at
the sandy barred beaches of Egmond aan Zee (The Nether-
lands), the Hasaki Coast (Japan) and Duck (North Carolina,
USA). Details on data acquisition and processing are given
by Ruessink et al.(2004) and are only briefly reiterated
here. For Egmond, 122 observations at 151 cross-shore posi-
tions were collected between 1964 and 2001 at weekly to
annual intervals using vertical aerial photogrammetry and
echosounding (e.g.,Wijnberg and Terwindt, 1995). Data at
Hasaki (Kuriyama, 2002), comprising 1414 observations at
85 cross-shore positions, were made from a 427 m-long pier
facing the Pacific Ocean on a daily basis between 1987 and
1991, while Duck data (423 observations, 121 cross-shore
positions) were collected at the U.S. Army Corps of Engi-
neers Field Research Facility on a fortnightly to monthly ba-
sis (1981–2002) using an amphibuous vehicle (e.g.,Birke-

meier and Mason, 1984; Plant et al., 1999). At all three sites
the spacing between consecutive cross-shore positions is 5 m.

From all available time series (that is, time series of depth
at each cross-shore locationx) the time-averaged depth value
was removed, resulting in perturbation datasets, in which
bars (troughs) are associated with positive (negative) per-
turbations. Time-space diagrams of the perturbation data
sets are provided in the upper row of Fig.1. Warm colours
(red) correspond to positive perturbations (bars), cold colours
(blue) reflect negative perturbations (troughs). All 3 sites
are characterized by sandbars that have multiannual lifetimes
and behave in an interannual quasi-periodic offshore directed
manner, as described inRuessink and Kroon(1994). A bar
cycle comprises bar birth in the inner nearshore, followed by
up to several years of net offshore migration and final dis-
appearance in the outer nearshore zone. The disappearance
of the outer bar triggers the onset of net offshore migration
of the next most seaward located bar, and the generation of
a new bar near the shoreline, as is clearly demonstrated for
Egmond around, for instance, 1970 and 1985. The cycle du-
ration, i.e. the time period between successive bar disappear-
ance, varies from site to site (12 years in Egmond, 1 year in
Hasaki and 3.5 years in Duck) (Ruessink et al., 2003). Dis-
cussions on the relationship between the cycle return period
and bulk statistics of external forcings (wave, tide, wind, sed-
iment, and bed profile characteristics) can be found inShand
et al.(1999); Kuriyama(2002) andRuessink et al.(2003).

As can be seen in the time-space diagrams, bars typically
reach their maximum amplitude (dark red colour) in the mid
nearshore, with smaller values further near the shoreline and
further offshore. The distance between consecutive bar crests
(in the cross-shore) increase in the offshore direction from
≈100 m near the shore to several hundreds of meters fur-
ther offshore, seeRuessink et al.(2003) for further discus-
sion. It is striking to see that the offshore progression of the
bars at Egmond is relatively smooth in time, whereas that
at Duck and, to a smaller extent, at Hasaki is characterized
by frequent standstills or short-term (up to several seasons)
onshore-directed progression. During such onshore migra-
tion phases, the bars may disappear almost entirely (e.g.
1982–1983 at Duck), only to increase again during the next
winter season when the offshore bar migration resumes. On
the whole, it thus appears that the temporal variability in bar
amplitude at Duck and Hasaki exceeds that at Egmond.

Environmental characteristics at the three sites are listed
in Table1 and include the mean slopeβ of the barred part
of the profile (Ruessink et al., 2003), the median grain size
D50, the “storm” breaker heightHb and peak periodTp, the
low-tide levelηLT with respect to mean sea level and the tide
range1η=ηHT−ηLT , whereηHT is the high-tide level. The
D50 is often not constant in the cross-shore (e.g.,Katoh and
Yanagishima, 1995) and the values in Table1 represent mid-
nearshore values. The stormHb andTp were quantified as
the 0.99-quantile of time series ofHb andTp, where theHb

time series were computed from long-term, hourly to two-
hourly sampled offshore wave records collected at each site
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Fig. 1. Observed (top row), NLCPCA mode 1 (second row), CPCA mode 1 (third row) and NLPCA.cir mode 1 (fourth row) perturbations at
(first column) Egmond, (second column) Hasaki and (third column Duck). Colours range from−3 (blue) to 3 m (red) at Egmond and Hasaki,
and from−1.5 to 1.5 m at Duck. These different ranges reflect the differences in magnitude of the bars at the three sites. The white colour
in the observations at Egmond and Hasaki represent missing values.

using linear wave theory

Hb =

(
γ

g

)1/5 [
H 2

0 cg0 cosθ0

]2/5
, (1)

where H0, cg0, and θ0 are the offshore root-mean-square
wave height, group velocity and angle of incidence, respec-
tively. The breaker parameterγ was set to 0.4 (Thornton and
Guza, 1982). At Hasakiθ0=0 was assumed because wave di-
rection estimates were not available. Values ofηLT andηHT
were computed as the 0.05 and 0.95-quantile of long-term
water level records obtained at each site, respectively.

Table 1. Environmental characteristics

Region D50, β Hb, Tp, ηLT , 1η,
µm m s m m

Egmond 170 1:170 2.58 9.0 −0.85 1.9

Hasaki 175 1:75 2.72 13.4 −0.54 1.1

Duck 180 1:80 2.47 15.4 −0.54 1.4
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a

b

Fig. 2. Schematic diagrams illustrating the NN model for
performing (a) circular non-linear principal component analysis
(NLPCA.cir) and(b) complex non-linear principal component anal-
ysis (NLCPCA)

3 Method

3.1 CPCA

CPCA is the complex generalization of PCA (Horel, 1984;
Von Storch and Zwiers, 1999). In PCA, a data matrixX
with dimensionm×n is decomposed into matrices of prin-
cipal components and eigenvectors. If we taken to be the
number of time points andm the number of spatial points,
with zero mean inn, then a PCA ofX seeks a solution that
containsr (r≤m, n) linearly independent vectors or eigen-
vectors in the columns ofQ (m×r) such that (Strang, 1988)

X = QA, (2)

where the rows ofA (r×n) contain ther principal compo-
nent (PC) time series. This decomposition is usually per-
formed using the singular value decomposition (SVD) tech-
nique (Strang, 1988). To perform CPCA, the data matrix
X is first Hilbert transformed (Horel, 1984; Von Storch and
Zwiers, 1999) to yield a matrixH[X]. The resultant complex
matrix Z=X+iH[X] is then analyzed with CPCA using the

same SVD technique used for PCA except that the variables
are now complex numbers. Each complex principal compo-
nent (CPC) has both an amplitudea and a phaseθ .

3.2 NLPCA.cir

NLPCA.cir uses a standard auto-associative feedforward NN
(i.e. multi-layer perceptron), with 3 “hidden” layers of vari-
ables or “neurons” (denoted by circles in Fig.2a) sandwiched
between the input layerx on the left and the output layerx′

on the right. In short, the five-layer network can be con-
sidered as the combination of two three-layer feedforward
NNs, where the third layer of the first sub-network is identi-
cal to the first layer of the second sub-network. The first sub-
network maps the input on to NLPC space, and the second
sub-network performs the inverse mapping back into origi-
nal space. The middle layer in the combined network has
fewer neurons than the other layers and is therefore known
as the bottleneck layer. This, combined with the fact that
the NN is trained to reproduce its inputs, forces the third
layer to represent the information in the inputs before it can
be decoded by the fourth layer. Thus, a total of 4 layers of
transfer functions are needed to map from the inputs to the
outputs. Both the second (encoding) and fourth (decoding)
layer containq neurons. A neuronvi at theith layer receives
its value from the neuronsvi−1 in the preceding layer, i.e.
vi=fi(wi ·vi−1+b), wherewi is a vector of weight param-
eters andb a bias parameter, and the transfer functionsf1
and f3 are the hyperbolic tangent functions, whilef2 and
f4 are simply the identity functions. Effectively, a nonlin-
ear functionu=F(x) maps from the higher dimension input
space to the lower dimension bottleneck space, followed by
an inverse transformx′

=G(u) mapping from the bottleneck
space back to the original space, as represented by the out-
puts. To make the outputs as close to the inputs as possible,
the cost functionJ=〈‖x−x′

‖
2
〉 (i.e. the mean square error,

MSE) is minimized (where〈· · ·〉 denotes a sample or time
mean). Through the optimization, the values of the weight
and bias parameters are solved.

To enable the description of propagating features the bot-
tleneck layer contains a circular neuron (Kirby and Mi-
randa, 1996), comprising two neuronsu andv constrained
to lie on a unit circle in theu−v plane (Fig.2a). Thus,
NLPCA.cir has only one free angular variable, the angular
NLPC θ= arctan(v/u). Because of the circular neuron and
the non-linear transfer functionsf1 andf3, NLPCA.cir can
describe non-linear phase variability but lacks the ability to
model temporal amplitude variability. Thus, NLPCA.cir ex-
tracts a mode that is in general a nonlinear function ofθ .

The presence of multiple minima in the cost function
means that an optimization run could end at a local mini-
mum, thereby necessitating multiple runs to solve the op-
timal (weight and bias) parameters. Here, an ensemble of
25 runs with random initial parameters was used, where for
each ensemble member 20% of the data was randomly se-
lected as test data and withheld from the training of the NN.
Runs where the mean square error was larger for the test data
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set than for the training data set were rejected to avoid overfit
solutions (Bishop, 1995). The chosen 20% is a compromise
between training and testing. If a substantially larger percent-
age is used, the NN may no longer capture all relevant fea-
tures, causing it to have poor generalization properties. On
the other hand, a lower percentage may cause the test data to
have different statistical properties than the entire data and,
accordingly, it loses its relevance in determining whether a
specific solution is overfit. To avoid the risk of overfitting, a
regularization or weight penalty term was added to the cost
functionJ . This term is basically the sum of the square of
the model weight parameters multiplied by a user specified
“weight penalty” parameterP . WhenP is increased, the
model is forced to find solutions with smaller weights, cor-
responding to less non-linear solutions which are less likely
to overfit the data. In the present paper, NNs with the num-
ber of encoding neuronsq=1 to 10 were run, each withP
in multiples of 0.001 and 0.01, and the NN with the smallest
mean square error was then chosen as the best solution.

Because the dimensionality of each perturbation data set
is too large for direct use as input into an NLPCA.cir model,
PCA was performed first on the input data. The number of
parameters to be estimated for even the most simple network
architecture (q=2) exceeds the number of temporal observa-
tions, leaving an ill-conditioned problem. At all three sites
the five leading PCs, representing 85−90% of the total vari-
ance, were used as input into the NLPCA.cir model. It is pos-
sible that some signal may be lost in the PCA compression;
however, the results ofRuessink et al.(2004) suggest that this
is highly unlikely. Measurement errors in the depth values,
estimated crudely at about 0.2 m (Ruessink et al., 2004), are
likely to constitute to the non-selected higher-numbered PCA
modes and, accordingly, do not influence the NLPCA.cir re-
sults presented below. Finally, we note that the choice of
five PCA modes is less stringent than in earlier PCA inves-
tigations of bathymetric data, which typically used only two
PCA mode to describe bar behaviour (e.g.,Wijnberg and Ter-
windt, 1995; Kuriyama, 2002).

3.3 NLCPCA

The NLCPCA model has the same NN structure as
NLPCA.cir with the exceptions that the bottleneck layer con-
tains an ordinary neuronu (Fig. 2b) and that all NLCPCA
parameters and neurons are complex numbers. The single
complex-valued bottleneck neuron (the nonlinear complex
PC, NLCPC) is unconstrained with both a temporal ampli-
tude (magnitude) and a spatial phase. Consequently, NL-
CPCA captures both phase and amplitude information non-
linearly. The nonlinear complex transfer function used in the
NLCPCA model is the hyperbolic tangent(tanh(z)), with
certain constraints onz as described inRattan and Hsieh
(2004, 2005). The NN parameters are randomly initialized
with magnitude≤0.1. Similar to the NLPCA.cir case, the
NLCPCA model was run in an ensemble mode because of
local minima in the cost function, and contained a weight
penalty term scaled withP to avoid the risk of overfit so-

Table 2. Explained variance

Egmond Hasaki Duck

NLCPCA mode 1 81.4 78.8 60.7

CPCA mode 1 66.4 71.7 59.1

NLPCA.cir mode 1 80.8 73.1 52.2
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Fig. 3. Explained variance of the perturbation data set by the first
(solid line) NLCPCA, (dashed line) NLPCA.cir and (dotted line)
CPCA mode versus cross-shore distance at(a) Egmond,(b) Hasaki
and(c) Duck

lutions. Rather than the first five leading PCs, the first five
leading CPCs were used as input into each NLCPCA model.

4 Results

4.1 Egmond

The best NLCPCA solution of Egmond was found with
q=7 andP=0.002. The NLCPCA mode 1 explains 81.4%
of the variance in the Egmond perturbation data set, about
the same as explained by the leading NLPCA.cir (q=4 and
P=0.02) mode and about 15% more than the first linear
CPCA mode (Table2). Both non-linear methods thus lead to
a more complete characterization of the lower-dimensional
data structure than possible with CPCA. When the fraction
of explained variance is viewed as a function of cross-shore
distance (Fig.3a), we see that NLCPCA mode 1 explains
more than 65% of the variance in the zone where bars are
most pronounced (x≈250−700 m), with a maximum value
of 99%. In comparison to the fraction of variance explained
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Fig. 4. Sequence of perturbation profiles at Egmond inπ/4-wideθ classes centered aroundθ=−π to θ=0.75π based on(a) NLCPCA mode
1, (b) CPCA mode 1 and(c) NLPCA.cir mode 1. The three lines in each phase class in (a) and (b) represent the mean perturbation profile
for the (dotted line) lower 1/3, (solid line) middle 1/3 and (dashed line) upper 1/3 of the temporal amplitudes in that class. The results for
each phase class have been vertically shifted for better visualization.

1965 1970 1975 1980 1985 1990 1995 2000
−25

−20

−15

−10

−5

0

5

10

Time (yr)

T
em

po
ra

l p
ha

se
 (

ra
d)

Fig. 5. Temporal phaseθ of (solid line) NLCPCA mode 1, (dashed
line) NLPCA.cir mode 1 and (dotted line) CPCA mode 1 versus
time at Egmond. The phases are offset by 2π for clarity.

by NLPCA.cir and CPCA mode 1, the NLCPCA mode 1
performs less well in the zone where bars are generated
(x≈100−250 m).

The larger amount of variance explained by NLCPCA and
NLPCA.cir mode 1 relative to the first linear (CPCA) mode
implies that the lower-dimensional structure of the Egmond
data is non-linear. To investigate the form of this non-
linearity, the perturbations reconstructed with each method
(Fig. 1) were divided in 8θ classes, eachπ/4 in width,

whereθ is the temporal phase computed by each method.
In each class, the perturbations were sorted by temporal am-
plitudes and computed into the mean spatial perturbations
for the lower 33.3%, middle 33.3% and upper 33.3% tem-
poral amplitudes. In this way, we can see how the shape of
the perturbations changes with temporal phase and, within
each phase class, with temporal amplitude. Because tempo-
ral amplitudes for the NLPCA.cir method are 1 by definition,
no amplitude sorting can be performed for this method and,
accordingly, all perturbations in each phase class were pro-
cessed into a single class-averaged perturbation profile.

As can be seen in Fig.4, the bars produced by the two
non-linear methods are higher and narrower than those re-
constructed by the linear method, whereas the troughs are
typically shallower and broader, consistent with the obser-
vations. Note, for instance, that in Fig.1 the Egmond bars
modeled by NLCPCA and NLPCA.cir mode 1 have reddish
colours, as do the observed bars. The CPCA mode 1 recon-
structed bars are generally lower, indicated by the yellow-
ish colours, underestimating the observed bar heights. Thus,
there is clear non-linearity in the spatial phase variability in
the Egmond sandbar data set. Non-linearity associated with
temporal amplitude changes within a phase class is also ob-
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Fig. 6. Sequence of perturbation profiles at Hasaki inπ/4-wideθ classes centered aroundθ=−π to θ=0.75π based on(a) NLCPCA mode
1, (b) CPCA mode 1 and (c) NLPCA.cir mode 1. The three lines in each phase class in (a) and (b) represent the mean perturbation profile
for the (dotted line) lower 1/3, (solid line) middle 1/3 and (dashed line) upper 1/3 of the temporal amplitudes in that class. The results for
each phase class have been vertically shifted for better visualization.

vious in Fig.4. Especially when the bar is located in the mid-
nearshore (e.g. atx≈400 m in the 0.75π phase class), the bar
shape in the upper 33.3% amplitude group departs far more
from the bar in the other 2 amplitude groups (Fig.4a) than
in the corresponding CPCA situation (Fig.4b). It is odd that
the CPCA curves for phase class 0.75π also change shape for
different amplitudes (Fig.4b), as we expect the CPCA curve
to change shape only when the phase is changed. However,
because the number of observations at Egmond is rather low
(on average, 122/8≈15 per phase class) the average phase of
the observations with large amplitudes turned out be slightly
different from the average phase for data points with small
amplitude. This implies that for Egmond we may never have
isolated the amplitude effect from the phase effect fully. On
the whole, the about equal amount of explained variance by
NLCPCA and NLPCA.cir suggests that the non-linearity in
the Egmond data is primarily caused by spatial phase vari-
ability, as NLPCA.cir does not model temporal amplitude
variability.

The time series of temporal phase extracted by each
method are virtually identical (Fig.5, linear correlation co-
efficient >0.99). The generalθ decrease in time implies

that the patterns in Fig.4 evolve from top to bottom and
thus describe offshore bar propagation. The slope of the
best-fit linear line through the NLCPCA results is about
−0.56 rad yr−1, corresponding to a cycle return period of
some 11.5 years, consistent with an earlier CPCA based es-
timate (Ruessink et al., 2003, 2004).

4.2 Hasaki

The best NLCPCA solution for Hasaki was found withq=6
andP=0.01. The variance explained by the NLCPCA mode
1 was 78.8%, about 6% more than explained by the lead-
ing NLPCA.cir (q=4 andP=0.02) and CPCA modes (Ta-
ble 2). The NLCPCA explaining more variance than CPCA
indicates that the underlying signal at Hasaki, just as at
Egmond, has considerable non-linear variability. NLCPCA
performs very well in the bar zone (x>≈200 m) with typi-
cal fractions of explained variance larger than 70% (Fig.3b)
and, as at Egmond, less well in the bar generation zone
(x≈100−200 m). Note that for all three methods the fraction
of explained variance reduces to near 0 atx≈100 m (Fig.3b),
the approximate location of the low-tide level, where the sub-
tidal bar zone changes into the intertidal beach.
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Fig. 7. Imaginary versus real part of NLCPCu at (a) Egmond and
(b) Hasaki

Similar to Egmond, the perturbation profiles show remark-
able non-linear phase variability. In particular, the inner
trough that develops atx=200 m once the bar starts moving
offshore (θ=−0.25π−0.25π in Fig.6) is deeper and broader
in the non-linear than in the linear solution, with little differ-
ences between the three methods in the shape of the asso-
ciated sandbar. The deeper trough is also obvious in Fig.1
by the darker blue colours in the NLCPCA and NLPCA.cir
reconstructed data aroundx=200 m in 1987 and 1990 com-
pared to the CPCA solution, in better agreement with the ob-
servations. As the bar progresses offshore with a decrease in
θ , the NLCPCA and NLPCA.cir reconstructed perturbations
become more symmetric, resembling the ones based on the
linear mode (Figs.1 and6).

Relative to Egmond, the Hasaki bars experiences a
somewhat larger amplitude variability (compare Fig.6a to
Fig. 4a), hence the advantage of NLCPCA over NLPCA.cir
at Hasaki. The larger variability is also obvious from Fig.7,
which shows scatterplots of the imaginary versus real part of
u at Egmond and Hasaki. When successive points at Egmond

are connected, the resulting general pattern in Fig.7a is a
clockwise rotating orbit, which represents the interannual
offshore propagation of the bars. Temporal changes in the
distanceD of the points to the origin reflect the temporal
amplitude variations. At Egmond, the ratioR of the standard
deviation inD to its mean amounts to 0.24. At Hasaki, the
orbit is occasionally interrupted in an anti-clockwise man-
ner, indicative of occasional onshore bar migration, and has
a much more jagged structure, caused by larger amplitude
variability. At Hasaki,R is larger than at Egmond, about
0.36.

The amplitude variability at Hasaki appears to be largely
linear, however, as the perturbation shapes in each NL-
CPCA θ class for the 3 amplitude groups are (besides the
magnitudes) about the same (Fig.6a) and comparable to
the corresponding CPCA situation (Fig.6b). The CPCA
and NLPCA.cir explained variances are similar for different
reasons: the CPCA explained variance is contributed from
the linear amplitude and phase variability, while that of the
NLPCA.cir is due to non-linear phase variability only. Thus,
the extra information captured by the NLCPCA method (Ta-
ble 2) is due to temporal amplitude variability missed by the
NLPCA.cir method and the non-linear spatial phase variabil-
ity missed by the CPCA method. As for Egmond,θ from the
3 linear and non-linear methods are closely alike (not shown,
linear correlation coefficients exceed 0.99) and suggest a cy-
cle return period of about 1 year.

4.3 Duck

The best NLCPCA solution of Duck was found withq=4 and
P=0.01. The variance explained by this solution was 60.7%
(Table 2), slightly more than the leading linear mode and
some 8% more than the leading NLPCA.cir mode. The rela-
tively close variances explained by the NLCPCA and CPCA,
their about equal cross-shore distribution (Fig.3c), and their
very similar perturbation profiles (Figs.8a and b) indicate the
underlying signal at Duck to be essentially linear. The ex-
plained variance of NLPCA.cir being lower than in both the
CPCA and NLCPCA methods suggests the need to model
amplitude variability and the lack of significant non-linearity
in the phase variability. At Duck,θ from the 3 methods are
essentially identical and reveal a cycle return period of about
3.5 years.

5 Discussion and conclusions

In this paper we have applied NLCPCA to three bathymet-
ric data sets characterized by interannual repetitive offshore-
directed sandbar behavior to investigate how effective this
method is in comparison to CPCA and NLPCA.cir in repre-
senting propagating phenomena. Basically, NLCPCA over-
comes deficiencies in both CPCA and NLPCA.cir, in the
sense that CPCA can capture phase and amplitude variability
only linearly and NLPCA.cir cannot model amplitude vari-
ability. Nonetheless, results for the three sites are remarkably
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Fig. 8. Sequence of perturbation profiles at Duck inπ/4-wideθ classes centered aroundθ=−π to θ=0.75π based on(a) NLCPCA mode 1,
(b) CPCA mode 1 and(c) NLPCA.cir mode 1. The three lines in each phase class in (a) and (b) represent the mean perturbation profile for
the (dotted line) lower 1/3, (solid line) middle 1/3 and (dashed line) upper 1/3 of the temporal amplitudes in that class. The results for each
phase class have been vertically shifted for better visualization.

different. At Egmond and Hasaki the data contains consider-
able non-linear phase variability, which causes the NLCPCA
mode 1 reconstructed data to match the observed data bet-
ter than CPCA (Fig.1). At Egmond the offshore propagat-
ing bar is higher and steeper than its linear counterpart, and
the associated trough is broader and shallower. There is, in
addition, a hint of non-linear temporal amplitude variabil-
ity at Egmond, in particular when the bar is located in the
mid-nearshore. At Hasaki the trough that forms near the wa-
ter line following bar generation is deeper and broader than
modelled with CPCA. At Duck non-linearity is found neither
in the spatial phase nor in the temporal amplitude variability.
Why physically results between the sites differ is not under-
stood.

Only at Hasaki the NLCPCA method explains more vari-
ance in a single mode than the other two methods. Here,
CPCA does not capture the non-linear spatial phase variabil-
ity, whereas NLPCA.cir lacks the ability to model temporal
amplitude variability. At Egmond, amplitude variability is
relatively low, and the NLCPCA performs only marginally
better than NLPCA.cir. Finally, at Duck, NLCPCA performs
about the same as CPCA as both spatial phase and temporal
amplitude variability appear to be linear.

In any propagating phenomena, it is difficult to know the
structure of the data in advance as to which one of the three
models should be used. In this study the simplest model
representing well the data structure at Duck, Egmond and
Hasaki is CPCA, NLPCA.cir and NLCPCA, respectively. To
avoid choosing a model, the generalized NLCPCA model can
be used for all 3 cases.
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