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Abstract. In this paper we derive a reduced-order approxi- in convective clouds, but absorption of short wave radiation
mation to the vertical and horizontal structure of a simplified by suspended dust in the lower and middle atmosphere can
model of the baroclinically unstable Martian atmosphere.produce significant local heating rat€zi¢rasch and Goody
The original model uses the full hydrostatic primitive equa- 1972 Pollack et al.1979. This results in a fundamental dif-
tions on a sphere, but has only highly simplified schemes tderence between the two planetary circulations with the Mar-
represent the detailed physics of the Martian atmosphere, e.dian circulation driven primarily by the heating of the surface
forcing towards a plausible zonal mean temperature state ussnd dust suspended in the atmosphere.

ing Newtonian cooling. Three different norms are used to  Spacecraft observations, notably those made by the Viking
monitor energy conversion processes in the model and arganders, have provided evidence for the existence of tran-
then compared. When four vertical modes (the barotropicsient baroclinic eddies in the atmosphere of Mars. Such
and first three baroclinic modes) are retained in the reducedwaves have been thought to exist since the worlHess
order approximation, the correlation norm captures approxi{1950, and their occurrence was confirmed by the work of
mately 90% of the variance, while the kinetic energy and to-Barnes(198Q 1981), who showed that the oscillations were
tal energy norms capture approximately 83% and 78% of theoften regular and repeatable, and that, by assuming the waves
kinetic and total energy respectively. We show that the leadwere geostrophic and sinusoidal, typically flows were dom-
ing order Proper Orthogonal Decomposition (POD) modesinated by wavenumbers 3 and 4 with phase speeds between
represent the dominant travelling waves in the baroclinically-15-16 ms®. Barnes et al(1993 studied the baroclinic wave
unstable, winter hemisphere. In part 2 of our study we will activity using the NASA Ames Mars model and found that
develop a hierarchy of truncated POD-Galerkin expansiongonal wavenumbers 1-4 with periods 2-10 days existed, and
of the model equations using up to four vertical modes. that such oscillations were regular in timeCollins et al.
(1996 found evidence for dominant baroclinic modes at
wavenumbers 1 and 2 in the Oxford Mars General Circu-
lation Model (MGCM), with similar periods to waves de-
tected in the Viking Lander surface pressure data. More

Mars is one of the terrestrial planets, having a relatively thinrecentIyBanfleId et al(2009 have shown the presence of

atmosphere in terms of physical depth, composed primaril;ﬁtrong Wavt_ent:rr]‘nber :IL andtto a Ie;ser et;(tent 2t.and f3 trat\;]el-
of carbon dioxide with small amounts of other gases, and N9 Waves in thermal remote sensing observations from the

covering a solid surface. The inclination of the Martian po- Mars Global Survgyor spacecr.aft. : , .

lar axis to the ecliptic plane (25.Zompared to 239for The autum_n, wmtgr and spring circulation of the Maruan
Earth) implies that Mars has seasons like the Earth. Both ar@mosphere is fjomllnated by these heat transporting baro-
rapidly rotating planets, rotating at about the same speed (thgllnlc transients; dunng_the summer only small fluctuatlons
Martian day is 24 h 39.4 m), so that Coriolis forces will have of pressure, other than internal tides, occur and no travelling
similar magnitudes. Much of the water on Mars is believed aves are typically observed myelther hemisphere.

to be in the permafrost beneath the surface, leading to low Flows observed in the Earth’s atmosphere and in labora-
observed atmospheric concentrations. There is insufficientory models of hydrodynamical systems often provide evi-

water vapour to permit large amounts of latent heat releaséence of behaving as if they have a relatively small num-
ber of degrees of freedonselten(1993 introduced a two-

Correspondence td: M. Moroz level quasi-geostrophic hemi-spherical model of the Earth’s
(moroz@maths.ox.ac.uk) atmosphere, formulated in spherical harmonics with vertical

1 Introduction
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Empirical Orthogonal Functions (EOFs) to describe the evo-ing and friction. The spectral primitive equation model em-
lution of the circulation. The EOFs were calculated using ploys a triangular truncation at total horizontal wavenumber
either a kinetic energy (KE) or a total energy (TE) norm, 21 (denoted T21) and has 10 equally spagddvels in the
and evolution equations for their amplitudes were derivedvertical over a pressure range of 0 to 610 Pa. Surface drag
by the Galerkin projection of the model equations onto theis represented by Rayleigh friction in the lowest layer with
EOF basis. He found that the global structure of the systera time-scale of 3 days (denoteg). Heating is modelled
could only be described in a truncated TE model since theas Newtonian relaxation toward a zonally symmetric equi-
KE model failed to simulate adequately the energy conver-librium temperature distribution with a time-scale of 2 days
sion processes which are fundamental to baroclinic flows. (representing a typical radiative relaxation timescale on Mars
In a similar study of simplified Earth-like circulatiorSel- and denotedg). For simplicity topography was excluded in
ten(1995 used a T21 spectral barotropic model and showedthe model in order that the baroclinic waves could be isolated
that it could be accurately modelled by using just 20 EOFs,and would not suffer from orographic modulation (although
which were computed in spectral space, wiSkdten(1997) this is likely to be important for the real waves on Mars).
concluded that an EOF basis is more efficient at describing
large-scale atmospheric dynamics compared to spherical har-
monics. However this was not the case for the baroclinic2.1 Selecting the governing equations
model.

The main objective of this paper is to seek a low- ) ) ) )
dimensional description of a baroclinically unstable atmo-'n Selecting the set of governing equations to form the basis
sphere, under conditions appropriate to Mars, by deriving aof the POD-Galerkin reduced models which best suits our re-

reduced-order approximation of the vertical and horizontalduirements, we want the equations to describe the flow, but

structure of the system, retaining only the dominant baro-N0t P& excessively computationally intensive. If the origi-
clinic and barotropic modes. Then (in Part Il of our study) nal primitive equations are used as the governing equations,
we shall combine this with a POD-Galerkin expansion of the h€n the computations become too large for simple algo-
model equations. The POD or Proper Orthogonal Decompo-”thms’ and the retnevgl of the_elgenvalues and eigenvec-
sition method is a procedure for calculating the eigenvectord0rS Of the autocorrelation matrix (in order to compute the
(called the POD modes) of the time-averaged autocorrelatioy ©P modes_) could qnly be achieved by using sophisticated
function of a given time seriegx, 1) (Lumley, 1967 1981). and expensive algorithms such as the Iterative Lanzcos Al-
The resulting eigenvectors are optimal, in the sense of energ O”Fhm (ILA). Buizza and Palme(1993 _remark i
capture. The corresponding eigenvalues are measures of tfig” IS intended to compute a few of the eigenvalues and cor-

variance contained in each mode and describe the relativEeSPonding eigenvectors of a large symmetric matrix and is
energy content of each POD mode. applied to large, sparse, symmetric eigenvalue-problems. Al-

The vertical modes will be obtained, in Sect. 3, via thethoughthe highly truncated system which we investigate sat-

solution of a variational problem for data from a numerical ?sfies this criterion, the adjoint operator must also be coded,
model and corresponding to a wave number 3 observed du

rl_tself a formidable task. An alternative and simpler approach
ing winter in the Martian southern hemisphere (SH). involves the formulation of the quasi-geostrophic (QG) equa-
Reducing the system to its essential degrees of freedo

nq’ons on a sphere.
may provide useful insight into the underlying physical pro-
cesses WhICh' occur in the original model, revealing the_dom-z_2 Martian atmospheric behaviour and QG theory
inant interactions between the various modes and their con-

tributions to atmospheric variability on various timescales.

Dynamical systems methods will then be employed to analyars s a rapidly rotating planet, with maximum wind speeds
yse the resulting bifurcations. reaching0 (100 ms ™1 at a height of 30-50 km above the sur-
face. This suggests that the Rossby numBes=U/f L, is
much less than unity for large scales 1000 km. This is
important since it suggests the QG approximation holds for
atmospheric motions with frequencie<z, the angular fre-
quency of the planetAndrews et al.1987. The equations
used will retain the full Coriolis parameterf=2Q siné,

2 The SGCM

The numerical model in question is that@éllins and James
(1995 and is known hereafter as the Simple General Circu-
Iatlpn Model_(SGC_:M). The SGCM. IS an |deaI|s_ed model in where Q is the angular speed of the rotating planet @nd
which the adiabatic, hydrostatic primitive equations of mete-. . 4 . .

is the latitude. By includingf we consider large-scale, es-

orology, as described bioskins and Simmongl975, are . . .
; . . ) sentially geostrophic motions on a sphere.
solved in spherical coordinates using a spectral representa-

tion in the horizontal and finite-difference-coordinates in If L is the horizontal scale andthe planetary radius, the
the vertical, (Where=p(6, ¢, z, 1)/ p.(0, ¢, t), p=pressure, restriction to small /a permits the QG equations on a sphere
p«=surface pressuré,is latitude,¢ longitude,z height and  to be used as the governing set of equations for our investi-
¢t time) with simplified physical parameterisations of heat- gations.



S. G. Whitehouse et al.: Diagnostic analysis of the Martian atmosphere — Part 1 605

3 The vertical structures with homogeneous boundary conditions

In this section we discuss how to derive a set of normaIdH1| _ dHl| ~0 ©6)
modes to model the vertical structure using data generateddp '~ dp " 7
from the numerical model. If a poor vertical scheme is used . .
then important information concerning physical processesvhere thei;s in Eq. ) form a discrete countable set of
Galerkin model. sures at the upper and lower boundaries respectively. The

The separable solution approach was useBligyl (1979 H;s_ form a complete orthogonal set and can be orthonor-
in an oceanographic context. He showed that linear eigenMalised by setting
modes in a system with horizontal boundaries are integrated .
functions osz (the Brunt-Vasala frequency see below). In = / H;(p)H;j(p)dp = i}, )
a system with homogeneous boundary conditions, a simpl p1
Sturm-Liouville problem has to be solved in order to obtain . .

o . where P is the pressure difference between the two bound-
the normal modes. In practice it is found that the barotropic_ .
. . Co aries.

and the first few baroclinic modes are the most significant
(and con3|§tent with the two modes general!y represen_te%.2 The Eroude number
by well-calibrated two-layer or two-level quasi-geostrophic
models).

The Rossby radius of deformatio®/) is the characteris-
tic length scale of disturbances in the mid-latitudes (e.g.
James1994) and can be interpreted as the horizontal length

The adiabatic, frictionless Quasi-Geostrophic Potential Vor-Scale over which the geopotential height field adjusts whilst

ticity (QGPV) equation in isobaric coordinates takes the formapproaching geostrophic equilibrium. In the derivation of
Eq. 6), Ry;=1/+/; is the relevant Rossby Radius of de-

D ad 1 d (10D ; ; ;
ed _ <—+Vg . Vh) (—Vfdﬂrfo— <__) f> formatign for each mode. If the Froude number is defined
Dt 0 as F:%z, Eq. 6) therefore provides a spectrum of Froude

3.1 The QG vertical structure equation

at ap \ S dp

— d
=0, ) numbers{F;}, where each Froude numbé} corresponds
whereD,/Dt=3/3t+V, - Vj, is the derivative following the 10 @ different vertical scaling. Thereforero represents

geostrophic flow ang is the QGPV defined by the Froude number of the barotropic modé; the Froude
number of the first baroclinic mode, and so on. The global

g = <iv]§q> + foi (l a_cb) + f) ) @) Froude number for the SGCM is taken to Be=a11 since
fo ap \S ap the vertical length scale of the first baroclinic mode is the

The horizontal Laplacian is defined as depth of the planetary model. HenSgwill be replaced by

S, with the understanding that1.
1 (9 1 92
Ve S|+ ——]|. (3)
a2 \ 302~ co6 92 3.3 Definitions of energy

longitude.  The geostrophic component of velocity is To derive vertical normal modes which are solutions to the

V=(kAV,®)/f wherek is the unit vector in the verti- |inearised vorticity equation we assume a separable form for
cal direction,® (0, ¢, p, t) is the isobaric distribution of the the streamfunction:

geopotential ang is pressure. The geostrophic vorticity

term issgzv}f (®/fo), wherefy is a synoptic scale of motion _ o~
for the Coriolis parameter. Finally, the stratification profile is V. ¢, p.0) = ; Vi(®, ¢, D Hi(p), ®)
S=N?2/(g%p?), whereg is the acceleration due to gravity, -
is density and so that the total KE of the system on a sphere of radius
becomes:
NZZ_Q 960 :_gZP 960 (4)
6o \ ap RTOo \ dp )’ 1 [T [P 2 .
) KE = - (Vi - Vi) a“ sinfdpd ¢pdo
is the Brunt-Vasala frequency in isobaric coordinates, where 2JoJo Jp
6o is the potential temperature surface from equilibridims 1 [7 [T ~ 2 5 .
temperature ang is the gas constant for dry air. =5 /0/0 zXc; V()| a®sinbdgde, ©)

Writing @ in separable form a®=> 5,-(9, ¢, )H;(p)
and substituting into Eqlf, we find that the vertical struc-
ture equation to be solved is sures at the upper and lower boundaries respectively.

,d (1dH, H—0 5 Taking Ho(p) to be the barotropic mode arfd (p) to be
fo dp \S dp +riH; =0, (5 thek-th baroclinic mode (fok+£0), following Selten(1993,

where f [f’l”Hl H,,dp=3¢;,, is assumed ang, p, are the pres-
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the contribution to the available potential energy (APE) from  This is mathematically significant since, if total energy
thek-th baroclinic mode is: (TE) in the system is invariant, then minimising APE max-
imises KE. The first eigenmode which is derived from
APEy Eq. (15) is the barotropic mode which, by definition, con-
2 ePof fo? (dHy ~o o tains no APE but instead captures almost all of the KE of the
/ / / < dp ) Via®sinfdpdgds system. The remaining modes will then tend to contribute
k progressively less to the total KE of the system.

//2”<f0 (de)> de 12524 Sind g do From Sturm-Liouville theory (for example sedikhlin,
1964, smcef0 >0and (fo ) dp is bounded, we have
d Hy Ho 22 si
/f f ( ) W2a?sindpdgdo. f
ndp \ S \dp /], |H|£=f °< )dp (16)
(10) p S\ dp

Assuming that%m:ddﬂm:o, we obtain: where|H|. is the energy norm of functiofl. This is iden-
r tical to the vertical component of the APE norm used in

_ Eqg. (10), where
APEk—// / Ak Hklﬁk a SIﬂOdpd(ﬁdQ, (1)
p1

pnfo ' dH,
where the subscrigt refers to thek-th mode. [Hy. Hyle = . 5 dp W dp

3.4 The vertical modes = AuSum, 17

We begin by showing that Eg5) can be derived from a vari- shows the orthogonality off, with respect to the energy
ational principle in which we minimise APE in the vertical oM. The se{H,(p)},2, is complete both in terms of en-
direction. If we assume thab— @(9, ¢, ) H(p), then the  €rgy and in the sense of convergence in the mean.

APE integrand is proportional té_z(dH)z as above. The Multiplying both sides of Eq.14) by H and integrating

variational problem becomes that of seeklng stationary solu- by parts we obtain
tions to the APE functional:

Dn 2 n
M (a2 e [ B ani [ Hap 8)
0
ITH] = f e (T ) dp. (12) ” n
P p

’ where we have used E)( Therefore all non-zera’s are

subject to the constraint: positive. We note thai=0 is satisfied ifH=1 and corre-
sponds to the purely barotropic mode.

We remark here that, since we are solving an atmospheric
problem, the upper boundary condition should be made more
together with Eq. ). The original SGCM has an artificial realistic. IndeedL.indzen et al(1968 showed that bounded
“sponge” level at the upper boundary (in order to reduce theatmospheric models could produce spurious free oscillations
problems of spurious energy reflection) and so the verticaland concluded that bounded atmospheres do not properly re-
modes satisfying these constraints are perfectly consistent. spond to oscillations which propagate vertically. However,

Using standard Calculus of Variations, the Euler-Lagrangefor the purpose of this present study, the vertical structure

p}l 2
JIHl= | H?%dp=1, (13)
j21

equation becomes: equation is solved with homogeneous boundary conditions.
d (1dH

fozd— <§d_> = —YH, (14)
P> ap 4 The SGCM data

where y is the Lagrange multiplier to be determined (c.f.

Eq. ) if we identify y with A) or The SGCM with its simplified parameterisations of heating

and friction and the absence of topography has been used

LH =1H, (15) to examine a baroclinic wave number 3 flow during a con-
a [ 2 a ) o tinual seasonal numerical simulation of the southern hemi-

whereL=—75 | sy dp |- Since fo is independent op we  gphare Martian winterQollins and Jamed.995.

have an eigenvalue problem, whefeis the eigenfunction

corresponding to the eigenvalme 4.1 The decomposition

- 12 92F 92H?
Defining F= 0( ) and E_aH/Z )‘aHfz’ where By assuming a decomposition of the streamfunctiprio
H/_‘f[;, thenE= T>O implies that/[H] has a minimum  be possible in separable form, the amplitude distribution

within the range of integration. 1/7,”(9, ¢) of baroclinic moden can be calculated for each
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Fig. 1. The buoyancy frequency profiley2, at 52.6 S in the
SGCM.

Fig. 2. The stratification paramete$, at 52.6 S.

profile, as a function of, ¢ or profile location. Ify; is the
streamfunction for levef, then

N
V=Y YmHu(o)), (19)
m=1

whereH; (o) is thei-th vertical mode in layes ;. The spec-
tral primitive equation model has 10 equally spaeetkv-
els, wherex=p/p;, wherep; is the surface pressure, as de-
fined earlier. Itis therefore convenient to calculate the normal
modes on these surfaces; refers to thejzi level (see Ta-
ble 1). N is the number of vertical levels (and hence the total
number of normal modes).

The orthonormality condition dfl; becomes

1 N
= 2 80;Hi(0))Hi (o)) = di. (20)
j=1

where P=Y"" , o;. Since the difference in between two
consecutive sigma surfaces is fixed (see Tablédl)js con-
stant, so that

HHT = NI, (21)

Fig. 3. Southern hemisphere stereographic projection maps of the
SGCM modelled streamfunction data during the southern winter
solstice £ §=90°). The steady wave 3 streamfunction is shown at
the first 4 days o =0.45.

wherel is the identity matrix. Thus

~ 1 &
w=ﬁ;<mmm%>. (22)
We are thus able to calculate the KE and APE in each of thet.2 Eigenvalues and eigenmodes

modes.

The N2 profile at latitude 551° S is shown in Fig.1, Figure4 shows the decomposition of the SGCM streamfunc-
while the corresponding stratification parameter profile istion into its purely barotropic and nine baroclinic compo-
shown in Fig.2. Because the streamfunction has a domi- nents. Shown in Figda are the barotropic and first three
nant steady wave 3 in the southern hemisphere latitude banilaroclinic components during the first day. The barotropic
40° S-60 S (see Figs3 and4), the stratification was aver- component can be viewed as an equal-weighted averaged
aged over this interval, because of the significant atmospherilow over the vertical levels, which reveals a steady wave
activity there. The normal modes were optimised over thisflow between 40S-60 S. The first and second baroclinic
chosen band. components contain modulated wave three profiles in the
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Fig. 4. Decomposition of the SGCM streamfunction data into its purely barotropic and nine baroclinic components. The figure illustrates the
instantaneous fields ¢&) the purely barotropic and first three baroclinic components(epbaroclinic components 4 to 9.
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Fig. 5. Froude numbers calculated from the vertical structure equa-
tion for the stability profile shown in FidL.

SH, whereas the third component possesses a baroclini
wavenumber 3 structure, centred at a latitude ofS@nd
surrounded by a more complicated flow. Figdie shows
the instantaneous baroclinic components 4 to 9. Baroclinic
modes 4 to 7 contain wavenumber 3 structures, centred atig. 6. Eigenmodes of the vertical structure equation for the stabil-
a latitude of 50S, while baroclinic modes 8 and 9 have ity profile shown in Figl.

wavenumber 2 structures at a latitude of &5

The eigenvalueg;, computed from Eq.5), can be ex-
pressed as an increasing sequence (see Takbe shown
graphically (see Figp).

Figure6 shows the corresponding eigenmodes, |dent|f|ed\
as the purely barotropic mode (correspondingge-0) and ‘ ‘ ‘ ‘ ‘ ‘ ‘
the nine baroclinic modes (b)—(j). Tallealso gives the val- T 2 3 4 S e 7 8 o 10
ues of the Rossby radius of deformation for each eigenmode ‘ ‘
and the corresponding values of Froude number. For any
k>0,H; has one more zero in the intervah, o10) thandoes £ sof 1
Hy_1.

The purely barotropic mode takes the value unity at all °— 2 a , p p 7 2 PR
vertical levels, while the first two baroclinic modes have a 1w ode ndex
dominant baroclinic structure near the top of the model. The
vertical structures become progressively more comphcatedE sof 1
for the higher order modes, particularly near the ground level.

100

0 L I I L L I
1 2 3 4 5 6 7 8 9 10

4.3 Energy distributions mode index

Figure 7 shows the relative contributions to KE, APE and Fig. 7. Contributions to KE and PE from the barotropic (humber 1)
TE from each of the 10 eigenmodes. The purely barotropicd"d baroclinic (remaining, numbers 2-9) modes.
eigenmode represents 89% of the total KE, whereas the first
and second baroclinic eigenmodes supplement KE by just
6.1% and 25%, respectively. The remaining modes con- the experiment analysed here, the first, second and third baro-
tribute progressively less to the total KE except for baroclinic clinic eigenfunctions represent 486, 43.9% and 51%, re-
modes 8 and 9 which containl®% and 0% of KE, re-  spectively of the total APE. Baroclinic modes 8 and 9 contain
spectively. 0.89% and 064% of the total APE, respectively.

Most of the APE of the system is to be found in the first If modes 8 and 9 are neglected, the contribution of each
three baroclinic modes, accounting for.9% of the total successive mode to the TE is also a decreasing function
APE. The barotropic mode accommodates no APE, but inof mode numberm. Additional numerical experiments in
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Table 1. Table of Froude numbers of the associated vertical eigenmodes for the SGCM case.

Mode Eigenvalue Rossby radius of deformation ~ Froude number

Barotropic r=0 Rdp =0 0.0
Baroclinicl Aq=7.06x 10~/ km—2 Rdy =1190.1 km 8.14
Baroclinic2 Ay =2.44x 1078 km=2 Rdp = 640.2 km 28.1
Baroclinic3 i3 =6.21x 10 8km=—2 Rdg = 401.3 km 715
Baroclinic4 4 =1.29x 10~° km—2 Rdy = 278.4 km 148.8
Baroclinic5 i5=2.29x 10°° km—2 Rds = 208.9 km 263.7
Baroclinic 6 g = 3.64x 107> km~2 Rdg = 165.7 km 419.4
Baroclinic 7 A7 = 5.37 x 107> km™2 Rd7 = 136.5 km 618.4
Baroclinic8 ig=7.72x 10~° km~2 Rdg = 113.8 km 889.4
Baroclinic9 1ig=1.21x 104 km—2 Rdg =90.9 km 1390.9

which the T21 spectral data were reduced to a T5 truncab.1 Projection of streamfunction or vorticity.
tion also showed significant KE and APE contributions to be
present in modes 8 and 9. Such modes may be an artifact ofhe question naturally arises regarding the choice between
the vertical truncation level as well as consequences of thstreamfunction and vorticity for the calculation of the POD
severe reduction in the vertical length scales. On the othemodes Selten 1999. If vorticity is chosen, then the POD
hand, in the full Mars General Circulation Model (MGCM), modes need to be optimised to describe the vorticity rather
and apparently in the Mars Global Surveyor/Thermal Emis-than the streamfunction, with the result that small-scale mo-
sion Spectrometer (MGS/TES) observational analysis bytions are emphasised (the inner product in this case defines
Banfield et al.(2004), there are waves of different period enstrophy). We are, however, interested in large-scale circu-
(and sometimes wavenumber) that are trapped in very shalations and so we shall use the streamfunction. Itis important
low layers near the surface. Also, since the data are derivetb note that the corresponding vorticity and planetary vortic-
from a primitive equation model, it is possible that activity ity fields would not be described by the same set of PODs,
with smaller vertical scales may not show up in the first few and any resulting truncated POD model would not conserve
modes of a QG decomposition. both KE and enstrophy simultaneously. Furthermore, if forc-
ing and dissipative terms are added, then neither KE nor en-
strophy are conserved.

. 5.2 The KE and TE norms
5 \Various norms

The standard correlation norm gives

We now address the question of which norm should be used

to monitor energy conversion processes within the modelR® = A®, (23)
what emphasis each norm places on certain spatial and tem-h th . tixR is defined b
poral structures within the data and how many patterns ard’ erwanc.e matrix 'S ) etine . y
required to reproduce the most “significant” dynamics of the Rij=(Vi=Vi)(V;=V;) with overbar denoting the time
model. In particular we shall investigate whether standard@verage. The POD modes, therefore, describe deviations
EOFs, which describe deviations from the mean state, shoulfOm the mean state. ~Followingelten (1993, we can

be used or whether the basis should describe the total stafPnstruct a set of basis functions which describe the total

vector (and so include norms which maximise energy extracState vector, by replacing by C, whereC;;=V;V;. The
tions). mean state is now retained in the POD expansion to allow for

. dynamical interactions between the mean background flow
We take as our basic state for the SGCM example, the, 4 e anomalous POD modes. The POD modes obtained

steady state.of the 2-D zona!ly symmetric version of theusingR optimise the variance whereas those obtained using
SGCM, obtained by suppressing the waves, after 400 soI% optimise the energy

(i.e. 400 Martian days), to ensure that the state has equili- . - -
brated (see als@ollins, 1993. From the previous section, The inner product, defining the energy mafi satisfies
we see that it is necessary to retain the barotropic and at least. V.VT ==VvTMmv, (24)
the first two baroclinic modes in the vertical structure for our

POD-Galerkin dimensional-reduction analysis. Appendix Csp that the eigenvalue problem becomes

describes the details of how PODs are calculated in practice

in spectral space. <V, VI > MTu =auU. (25)
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SinceM is a diagonal matrixM 7 =M and we obtain KE and TE of the wave flow. Also given are the percentage of
variance, KE and TE captured by 4, 10 and 50 eigenmodes.
CMpU =2U. (26) Only 5 correlation modes are required to capture 90% of the
where the diagona| energy matmp depends upon variance whereas 13 KE or 26 TE eigenvectors are needed if
L orpm QIE)er(]) of the KE or TE is to be retairr:edh If an additional 5%
_ 2 of the variance, KE or TE is sought then an extra 9, 25 or
<V, = 5/0 /o (VP9 - vPy)a®sinédede,  (27) 30, respectively of correlation, KE and TE eigenvectors are
required.

for p=0, 1, 2, ..., and the basi$) describes the total state ) o
A sudden decrease from large to small eigenvalues with in-

vector. creasing EOF index (as in the correlation norm), offers a nat-
5.3 Formation of the spectral energy matrix ural criterion for selecting how many patterns are required
to describe the flow. Figur®, for example, shows a sud-
The equality given in Eq.9) for the KE yields: den decrease by a factor of 100 exists beyond wave pattern
e 2. Therefore only two modes would suffice to describe the
KE = —/ / Z [vth . th/ka] a®sinbdod¢ model dynamics to a first approximation (see &{smtz and
2JoJo 7 Schreiber1997.
b
- 2/ /h[{}k Vi) a?sinodods 5.5 SGCM POD modes
25~ Jo Jo
— Z n(n+ VY2, (28)  FigurelQillustrates the horizontal structure of the barotropic
ok components of the various POD eigenmodes computed with

the correlation norm. Here modes 1 and 2 represent a steady

while Eq. (L0) for the APE yields, for the TE: wavenumber 3 in the southern hemisphere, whichZaomit

1 Ly ~o of phase. Modes 3 and 4 correspond to a steady wavenumber
TE=KE+5 Z/ / MY a®sinddode 2 and mode 5 depicts a mean zonal flow. Also evident is a
7 J0Jo . :
~s wavenumber 6 structure in modes 6, 8 and 10. Fidure
= KE + Z)»kl/fmnk illustrates that modes 1 and 2, 3 and 4 form conjugate pairs.
mnk N However, the choice of norm affects the ordering of these
=>4+ 1)+ 1) Vi (29)  modes.
mnk Figures11-16 show the barotropic and baroclinic compo-

vgheremzk is thek-th baroclinic component in grid space and nents of the SGCM POD wave modes with respect to the

X o . : three different norms.
Yomnk 1S the coefficient at poingm, n) on the spectral grid of . .
thek-th baroclinic component. Since these expressions must Modes 1 and 2 form a conjugate pair for each of the

satisfy the inner product condition of E4), the spectral norms and. S0 Qenote a traveliing wavenumbe_r 3 in the lon-
energy matrices take the form of the diagonal matrix dis-9itudinal direction. The structure of mode 1 is unaffected
cussed in Appendix D by the choice of norm (see Fig$l, 13 and 15) and con-

tains a strong wavenumber 3 component centred at a latitude
5.4 Comparisons between the SGCM Eigenspectra of about 48 S. The barotropic components are almost sinu-
soidal in longitude. The first baroclinic components com-

Figures8 and9 show the eigenspectra (suitably normalised prise two parallel wavenumber 3 structures, centred at lati-
so that their sums equal unity) of the mean and perturbatioriudes of 48S and 18S, respectively, displaced by 5t
fields computed using the correlation (labelled as 1), KE (la-longitude. There are additional wavenumber 3 patterns, cen-
belled as Il) and TE (labelled as IlI) norms. From Rgwe tred at 20 N in the northern hemisphere (NH). The second
see that the first eigenvalue of the zonal flow dominates thdaroclinic mode also contains similar parallel wavenumber
spectra and captures 92% of the variance, 981% of the 3 patterns, centred at latitudes of45and 28 S, displaced
KE and 9960% of the TE. The rate of decay of the eigen- by 25 in longitude with a strong wavenumber 3 structure
spectrum with respect to the correlation norm is faster for theat 20 N. The third baroclinic mode is almost symmetrical
zonal flow than with respect to the other two norms. about the equator but tilted in the SH. A sinusoidal wavenum-

Figure9 shows that the two leading eigenvalues of the per-ber 3 pattern exists at 20, together with two wavenumber
turbation flow represent 84% of the variance (in 1), 79% of 3 patterns at latitudes of 1% and 50 S, where the latter
KE (in Il) and 73% of TE (in 1) if the correlation, KE or  wave pattern is displaced by S longitude.
TE norms are used. Figufshows that the first four wave Mode 3, in Figs.11, 13 and 15, contains a strong
modes appear in pairs. The dominance of these eigenmodegavenumber 2 pattern in each vertical component. With the
suggests that this flow in the original SGCM model could becorrelation or the KE norm, the barotropic component ap-
governed by two wave pairs. pears to be nearly sinusoidal but somewhat distorted with the

Table 2 gives an indication of how many eigenmodes TE norm. Similarly, the first and second baroclinic compo-
would be required to capture 90% and 95% of the variancenents of the correlation and KE modes contain a latitudinally
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Fig. 8. (a) The logarithmic eigenspectra zonal profiles using the (1) correlation, (II) KE and (lll) TE ndbh$he cumulative variance (1),
KE (1) and TE (lll) capture of the zonal field using the correlation (1), KE (II) and TE (Ill) norms, respectively.

stretched wavenumber 2 pattern, together with a small wavabout the equator (giving rise, very nearly, to a wave 3 on
3 structure centred at a latitude of°20, which is displaced the equator). The TE norm, however, produces a sinusoidal
by 100 in longitude. However in the TE case, this mode con- wavenumber 6 pattern at 25. Clearly, correlation modes 3
tains a severely modulated wave 2 structure, centred®an25 and 4 form a conjugate pair, whereas it is modes 3 and 5 in
the SH. The third baroclinic components produce very simi-the energy norms. The correlation mode 5 describes a depar-
lar structures in both the correlation and KE norms: both areture from the mean flow, suggesting that the choice of norm
centred at latitudes of45°, with a thin band of distortion  significantly effects the ordering of the modes.
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Fig. 9. As Fig. 8, but for the departure fields.
Table 2. POD modal truncation against variance/energy capture in the departure flow.
Norm 90 % 95 % 4 modes 10modes 50 modes
Correlation 5modes 14modes 89.83% 93.88% 98.44 %
KE 13 modes 38modes 82.68% 88.94% 96.01 %
TE 26 modes 56modes 77.72% 84.34% 94.07 %
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Table 3. Zonal wavenumbers associated with each of the POD
POD mode 2 modes (wavenumber 0 is zonal-mean flow).

Modes Correlation KE TE
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Latitude
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Longitude
(b) bc_2 : mode 1
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Fig. 11. The barotropic (bt) and three leading baroclinic compo-
nents (beg, b and bg) of the SGCM POD modes () and 3(b)
using the correlation norm. In this and following colour figures,
positive values are shaded red and negative, blue, with zero lying in
mid-green.

Fig. 10. Southern hemisphere stereographic projection plo{a)of
the first four SGCM POD modes of the barotropic component and
(b) modes 5, 6, 8 and 10, obtained using the correlation norm.
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Fig. 12. The barotropic (bt) and leading three baroclinic compo-

nents (bg, bc, and bg) of modes 5a), 7 (b) and 9(c) using the
correlation norm.

Mode 7 has a wave 4 structure (see Fity3.14 and16),
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Fig. 13. The barotropic (bt) and leading three baroclinic compo-
nents (bg, bo, and bg) of modes 1(a) and 3(b) using the KE
norm.

ponent for each norm has a wavenumber 4 structure, centred
at 35 in the SH. The first baroclinic components contain two
parallel wave 4 structures, centred at 4hd 15 in the SH,

and displaced by 25in longitude in the correlation norm
case, while for the energy norms, the modes are more regular
in structure. The second baroclinic components also con-
tain two parallel wave 4 structures, but now centred &t 50
and 25 in the SH with a large wavenumber 1 component in
the NH, at 30. The third baroclinic component of the KE
and TE mode 7 give structures similar to the first baroclinic
component. Both energy 8 modes contain dominant zonal
wavenumber 4 structures whereas the correlation norm mode
8 contains wavenumber 6 structures.

The correlation norm generates wavenumber 4 patterns in
the barotropic and first baroclinic components of mode 9,
although the second and third baroclinic components con-
tain wave 6 structures at a latitude of°2# the SH. The

which is almost sinusoidal with the energy norms but morebarotropic component of KE mode 9 contains two parallel

complicated with the correlation norm. The barotropic com-

wavenumber 3 structures centred at 3dd 25 in the SH,
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Fig. 14. The barotropic (bt) and leading three baroclinic compo-
nents (bg, bc, and bg) of modes 5a), 7 (b) and 9(c) using the
KE norm.

displaced by 59in longitude. However the TE norm has a
wave 4 at 45 in the SH. The first baroclinic components of
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Fig. 15. The barotropic (bt) and leading three baroclinic compo-
nents (bg, bo and bg) of modes 1(a) and 3(b) using the TE
norm.

tred at 35 in the SH, with an additional wave 3 at a latitude
of 2(° in the NH and displaced by 25n longitude. The
energy norms produce wavenumber 3 patterns in the second
baroclinic component, at latitudes of 4k the SH and on

the equator, displaced by 1t longitude. The third baro-
clinic component of the energy modes contain three wave 3
patterns at latitudes of 8@nd 2% in the SH and 20in the

NH.

Thus modes 1 and 2 for each of the norms form a com-
plex conjugate pair and depict a travelling wavenumber three,
whereas modes 3 and 4 for the correlation norm and modes
3 and 5 for the energy norms depict a travelling wavenum-
ber 2 structure. Hence two distinct travelling waves can be
observed from the leading order POD modes. The different

KE and TE modes 9 are tilted wavenumber 3 patterns, cennorms also rearrange the ordering of the spatial eigenmodes.
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Fig. 16. The barotropic (bt) and leading three baroclinic compo-

nents (bg, bc, and bg) of modes 5a), 7 (b) and 9(c) using the
TE norm.

5.6 SGCM Principal Components

ically if x; is part of the time series of one of the dependent
variables, then

Xj = ZaijVi, (30)
i=1

wherea;; is the PC of the-th eigenvectol; in the expan-
sion ofx;. When the eigenvectors form an oscillating pair,
the square root of the sum of the squares of the two PCs (in
the L2 norm) represent the amplitude of the oscillation at any
given time.

Figure 17 shows the temporal behaviour of the perturba-
tion spatial eigenmodes for the three different norms over
300 Martian days (sols).

The structures are wave-like, with the two leading PCs be-
ing wavenumber 3 structures, one quarter of a period out of
phase, oscillating with a period close to 0.23 cycles/sol. The
form of these two PCs is virtually unaffected by the choice
of norm. The higher order PCs appear to vary more irregu-
larly in time, particularly PCs 6 to 10 where high frequency
structures can be observed. Recall that the ordering of the
spatial POD modes is affected by the choice of norm, and
so comparisons between the various PCs must take this into
account.

PCs 3-5 display a long time modulation, as well as a short
time variability. The correlation norm PCs 3 and 4, and the
energy norms PCs 3 and 5, form complex conjugate pairs,
and so represent travelling waves. The travelling wavenum-
ber 2 structures oscillate at a rate of about once every 12
days, giving a frequency of about 0.08 cycles/sol. This is
consistent with the frequency values picked out by the power
spectral analysis in Fid.8a where peaks are clustered about
the 0.08-0.1 cycles/sol frequency band.

The correlation and TE norms extract similar wave pat-
terns in PC 4, as is visible in the clustering of peaks about
0.1 cycles/sol. This is interesting since the spatial patterns
associated with POD mode 4 are very different. The corre-
lation norm mode contains a wavenumber 2 structure, while
the KE and TE norm modes have a wavenumber 6 structure.
However, the wavenumber 6 structure in the KE case has a
very different temporal behaviour to that of the correlation
and TE norms. Its 4th PC has a much higher frequency de-
pendence, small in amplitude and fluctuating about zero with
a cluster of frequencies about 0.5 cycles/sol.

KE and TE PCs 3 and 5 form complex conjugate pairs and
so describe a travelling wave. This is apparent by compar-
ing the power spectra of PC 3 in Fig8a with that for PC 5,
shown in Fig18b. The energy norms produce structures with
a dominant frequency of about 0.1 cycles/sol, whereas the
correlation POD mode 5, which represents a departure from
the mean flow, has a small amplitude temporal behaviour
with a very low frequency of about 0.006 cycles/sol.

Since the temporal evolution of PCs 6 to 10 are far more
complicated and irregular than the leading five PCs, the
power spectra in Figl8b reveal a much broader range of
interacting frequencies in their power spectra.

The Principal Components (PCs) represent the time-varying Figure 19 shows the time dependence of the mean-flow
amplitudes of the POD eigenvectors at a given time. Specif-correction modes. We again find that PC 1 is almost insen-
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Fig. 17. Original SGCM departure principal components (PCs) using the correlation (red), the KE (green) and the TE norms (blue) shown
during an interval of 300 Martian days. Note that the range of PC1 and PC2 is five times, and that of PC3-5 is twice, that of the higher order
modes PC6-10.

sitive to the choice of norm, whereas PCs 2 to 10 contain The streamfunction data was decomposed into a basic-
strikingly different oscillatory behaviour. One reason might state, mean-flow correction (MFC) and a wave flow. The
be due to almost all of the TE of the flow being contained zonal flow, defined as basic state + MFC, accounts for
in the zonal mean (in excess of 90%). Since the APE in thed7.85% of the total variance, 90.73% of KE and 93.68% of
zonal flow accounts for almost 50% of the TE, maximisation TE if the correlation, KE and TE norms respectively are used.

of KE or TE produces significant differences in the spatial Figure20a shows histograms of KE as a fraction of TE in

and temporal patterns. the zonal POD modes using the (I) KE and (Il) TE eigen-
As the leading travelling waves propagate at a frequencyectors. Modes derived using the TE norm extract the APE
of about 0.23 cycles/sol (i.e. the spatial wave three mode)f the original system far more efficiently than with the KE
and 0.08 cycles/sol (i.e. the spatial wave two mode), it mightnorm. Since Fig7 showed that leading zonal mode accounts
then be a reasonable hypothesis that such behaviour coulgr over 90% of the total energy in the system, the amount
be emulated with a low-dimensional model. Since the anal-of KE and APE captured will almost be equal to the total
ysis picks out two frequencies of oscillation, there could beKE and APE contained in the truncated system. Figi0a
some degree of weak interaction occurring between the leadshows that 59% of the TE in the first zonal eigenmode is in
ing order spatial modes, suggesting how crucial it is to retainthe form of KE with the KE norm, indicating that this has in-
a ‘sufficient’ amount of information regarding the behaviour efficiently captured the SGCM APE. This is consistent with
of the two travelling spatial wave patterns. Thus for this par-the fact that the KE norm optimises KE and not APE. With
ticular data set, the highly regular baroclinic wave activity in respect to the TE norm, 48% of the TE in the leading zonal

the idealised Martian atmosphere is nearly bimodal. mode is in the form of KE and so the original balance be-
tween KE and APE has been retained.
5.7 Energy in the SGCM eigenmodes The KE norm also concentrates a large proportion of the

system’s KE into the leading order modes. This contrasts
We conclude with a discussion of the energy distribution be-with the TE eigenmodes which contain a very significant pro-
tween the various individual POD modes. portion of KE in the higher-order modes (about 80%), and
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Fig. 18. Power spectra profiles of the original SGCM departure PCs wfagrehows the frequencies of PCs 1 to 4 gbdl shows the
frequencies of modes 5 to 10 using the correlation (red), KE (green) and TE (blue) norms.

suggests that the TE eigenvectors have placed most of the Figure20b shows KE as a fraction of TE in the wave field
APE in the leading order modes and so have effectively opti-POD modes using the (I) KE and (ll) TE eigenvectors. The
mised the capture of APE. leading KE modes account for about 70% of TE, but after
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Fig. 19. Original SGCM principal components (PCs) of the mean-flow correction field using the correlation (red), the KE (green) and the
TE norms (blue) during an interval of 300 Martian days.

14 KE eigenvectors there is a steep decay in the KE prototal energy norms capture approximately 83% and 78% of
file, implying that the low-order TE modes capture most of the kinetic and total energy respectively.
the APE. However, the higher-order TE eigenvectors contain  The degree of dimensional reduction achieved here is no-
mainly KE, which again indicates that the KE norm places table, from0 (10%) degrees of freedom in the primitive equa-
the majority of its KE into the leading order modes, whereastion SGCM to O (50) total modes in the reduced dimension
the TE norm pushes the APE into the lower-order modes. model. Baroclinic waves on Mars appear to be more regular
These results agree wigelten(1993, who found that, for ~ than those on EartiRead and Lewi2004) and this may ac-
the Earth, eigenvectors obtained with different norms behavesount for the relative success of the present Martian reduced
differently in terms of how much KE and APE was captured order model. Recent investigations of low-order models for
by each mode. He also showed that the KE norm distributedhe Earth’s atmosphere suggest that many more modes, at
the majority of the KE into the leading order modes, whereaseast 500, are required to account for 90% of the variance in
the higher-order eigenvectors were dominated by APE. Interrestrial modelsAchatz and Branstatp 999 Achatz and
contrast, the TE norm placed most of the APE in the lead-Opsteegh2003ab), although it might be possible to repro-
ing order eigenmodes, leaving a greater fraction of KE in theduce aspects of low-frequency variability in a low-resolution
higher-order modes. quasi-geostrophic model usi®(10) modes D’Andrea and
Vautard 2001 D’Andrea 2002.
In a more realistic model of the Martian atmosphere,
6 Discussion which includes diurnal and seasonal thermal forcing cycles,
topography and planetary boundary layer effects, for exam-
The model has been shown to do remarkably well at capple, both the vertical and horizontal modal spectra are likely
turing a signficant fraction of the total energy and/or vari- to be significantly richer in structure (Martinez-Alvarado et
ance, using a relatively small number of vertical and hori- al., in preparation).
zontal modes. When just four vertical modes (the barotropic In part 2 we will develop a hierarchy of POD-Galerkin
and first three baroclinic modes) are retained in the reducedmodal truncations, using both two and four vertical modes
order approximation, the correlation norm captures approxwith the correlation, kinetic energy and total energy norms,
imately 90% of the variance, while the kinetic energy and as a prelude to performing a bifurcation analysis and a com-
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levels (see Sect. 4), so that

fo? f? 11

N i ﬁ(g + )H;

Sit1
2
+ #HH_]_ + AH; =0.

This yields an eigenvalue probler@H;=1;H;, where
C is a symmetric, tridiagonal matrix and vector
Hi=(H (o), ..., H(on)), where we choseN=10 as
in the SGCM experiments @ ollins and Jamegl995. The
boundary conditions were chosen todid/do=0 ato =01
and oc=oy (and were implicitly satisfied in Eq.AQ1) by
specifyingS1=Sy4+1=00).

The numerical code for EqAQ) was verified by setting
the stratification parametei(o) to be constant in the verti-
cal structure equation; as expected, sine and cosine functions
were obtained as the eigenfunctials

In the SGCM, we took the followingp=po+p’ is pres-
sure wherepg=610P, is the basic term ang’ is the per-
turbation;7=To+7’ whereTp=200K; R=1912 JKg~* K1
is the gas constant for dry aify=7.08822<10°s 1 is the
rotational rate of Marsg=3.394x10° m is the radius of the
planet.

(A2)

Appendix B The spectral grid

Since the streamfunction data lies on a jagged T21 spectral
grid, it is useful to explain the ordering of the spectral coeffi-
cients on such a grid.

The order of data storage is by level, beginning at the top
level whereo=0.05. For each level there are odd and even
complex coefficients (odd for a cosine and even for a sine co-
efficient), with an equal number of odd and even coefficients.
If n is the total wavenumber and the zonal wavenumber
(so that there are—|m| zeros between the north and south

Fig. 20. KE as a fraction of TE contained in (a) the zonal modes poles), the ordering of the coefficients is similar to that shown

and (b) the wave modes for the (1) KE and (Il) TE eigenvectors.

parison with the full SGCM integration.

Appendix A The numerical scheme

We solved Eq. %) numerically using finite differences for

a given profile of the stratification parametgis), derived
from the SGCM:

3 fo® 9 o fo®
do S; do Si+1(80i41)2
2
0
.y
S;i(807)

(Hiy1— H)

— H;i_1). (A1)

Takingdo;=K for some constank €RR, results in the verti-

in Fig. 5.1 for theT5 andT4 truncations. The coefficients
are read in order of increasingvith increasingn, beginning
with the even and then the odd coefficients (for full details
seeBlackburn 1985.

Specifically, if A is the spectral coefficient at position
(n, m) on a spectral grid, then the coefficients are read in the
following order:

0 40 40 1 41 2 42 NN-1
EVEN| 43, A3, A3, ..., AL, A}, ..., A3, A%, .., ANN-L,
0 4,0 40 1 41 2 42 NN-1
A, A9 AY . AL AL L A AR L ANNT

where NN is the highest total wavenumber retained in the
spectral series.

DiE are the diagonal matrices for the even spectral entries
of thei-th baroclinic component (recat0 is the barotropic
andi=1, 2, 3 are the first three baroclinic modes), whil€ D
are the analagous blocks for the odd entries.

The diagonal blocks of the even spectral entries for the KE
and TE matrices are

cal modal problem being solved over equally-spaced sigm Df =diag[ni(n1 + 1),
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(b) n o EVEN where®; (0, ¢)=;(0, ¢)/~/sind is thei-th POD mode.

- ODD Expanding both the streamfunctignr(®, ¢, ) and the spa-
tial eigenmode®; (6, ¢) as a jagged T21 spectral truncation,
we have:

20 Ny _
m m VO, 6.0 =D YmnPune™?,
012345 01234 m=0n=m
20 Ny
Fig. B1. The spectral grids for a jaggé€d) T5 and(b) T4 triangular (0, ¢) = Z Z Vinni Pmneim¢, (C3)
truncations. Coefficients are read in order of increasingotal m=0n=m

wavenumber) with increasing (zonal wavenumber) for the even

then the odd coefficients. wherey,,,, andV,,,,; are the spectral coefficients,,, (i) are

the associated Legendre polynomials of the first kind of de-
gree | and ordem and whereu is the sine of the geographic

na(nz +1), ..., ng(nsg + 1], latitude, which form an orthonormal set overr /2, /2).
DF = diag[ni(n1 + 1) + 4;, Np,=21if m is even andV,,=20 if m is odd. Substitution of
- - Eqg. (C3) into Eg. (C2) yields
nanz + 1) + ai, o ng(ns + 1) + 4] a. €3 into Eq. C2) yi
20 Ny
wheren; is total wavenumber of theth even spectral co- TtV = 3 Vor c4
efficient, the subscript={n(m+1)+max(m, n) + 1}/2, and r;),;n Yo't Vinn Vi = A Vo' (€4

coefficients are read in order of increasimgith increasing ) o

m as shown in FigBL1. where V,,,,; is the spectral coefficient of the thieth POD
Finally %; corresponds to thith Froude number obtained ModeV; at the spectral grid poiriin, n).

from the vertical structure equation in Sect. 3 above.

Appendix D Symmetrising the eigenvector problem

Appendix C Calculation of PODs in spectral space . . . .
Since the correlation matrix is now no longer symmetric, we

Although POD modes are usually calculated in physical gridn€ed to diagonallis@I\/l in Eq. 26) 1by i?troducing asymmet-
space, we have found it to be more computational efficient toic matrix D=M2CM 2 (whereM 2M 2=M), with the same
perform this calculation in spectral space (see 8ajubert  eigenvalues a€M. We now solve

1985 Selten 1995. Both methods are related via a linear __, ,

transformation. Because the data is truncated spectrally aI?E =2E, (D1)
T21, the POD modes alsq retain all Wavenl_meers up t0 a0y here E/'=M %E, since M2CM 2M 2U= M 2U. Having
tal wavenumber 21. In grid space, a covariance matrix of ai

_i,
least (48<24Y would be required for a T21 spectral resolu- ESS%;ZI: sPScI:Dtrangzcsé \;\:)ellol\JNSfT)Ma Tzisttl(zoruer(i:grv'?:ans-
tion (the SGCM actually transforms to a %82 real space P pace, y

grid, using fast transform techniques, oversampling in orderfOrm to transform the spatial modes back to physical grid

o o : 2o space. Direct comparisons can then be made between the
to limit wave aliasing from nonlinear products during inte- o ;
gration: using this grid data directly would imply a covari- qualitative structures of each of the modes obtained from the

ance matrix of size 9,437,184), whereas a T21 data set cafious norms.

be fully resolved with 242 real odd and even spectral datat
points, yielding a spectral covariance matrix of size 484,484
for the same resolution. We used the NAG routine FO2ABF
to calculate the eigenvalues and eigenvectors of the resulting

real symmetric matrix. The computational speed of this cal-References
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