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Abstract. In this paper we derive a reduced-order approxi-
mation to the vertical and horizontal structure of a simplified
model of the baroclinically unstable Martian atmosphere.
The original model uses the full hydrostatic primitive equa-
tions on a sphere, but has only highly simplified schemes to
represent the detailed physics of the Martian atmosphere, e.g.
forcing towards a plausible zonal mean temperature state us-
ing Newtonian cooling. Three different norms are used to
monitor energy conversion processes in the model and are
then compared. When four vertical modes (the barotropic
and first three baroclinic modes) are retained in the reduced-
order approximation, the correlation norm captures approxi-
mately 90% of the variance, while the kinetic energy and to-
tal energy norms capture approximately 83% and 78% of the
kinetic and total energy respectively. We show that the lead-
ing order Proper Orthogonal Decomposition (POD) modes
represent the dominant travelling waves in the baroclinically-
unstable, winter hemisphere. In part 2 of our study we will
develop a hierarchy of truncated POD-Galerkin expansions
of the model equations using up to four vertical modes.

1 Introduction

Mars is one of the terrestrial planets, having a relatively thin
atmosphere in terms of physical depth, composed primarily
of carbon dioxide with small amounts of other gases, and
covering a solid surface. The inclination of the Martian po-
lar axis to the ecliptic plane (25.2◦ compared to 23.9◦ for
Earth) implies that Mars has seasons like the Earth. Both are
rapidly rotating planets, rotating at about the same speed (the
Martian day is 24 h 39.4 m), so that Coriolis forces will have
similar magnitudes. Much of the water on Mars is believed
to be in the permafrost beneath the surface, leading to low
observed atmospheric concentrations. There is insufficient
water vapour to permit large amounts of latent heat release
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in convective clouds, but absorption of short wave radiation
by suspended dust in the lower and middle atmosphere can
produce significant local heating rates (Gierasch and Goody,
1972; Pollack et al., 1979). This results in a fundamental dif-
ference between the two planetary circulations with the Mar-
tian circulation driven primarily by the heating of the surface
and dust suspended in the atmosphere.

Spacecraft observations, notably those made by the Viking
Landers, have provided evidence for the existence of tran-
sient baroclinic eddies in the atmosphere of Mars. Such
waves have been thought to exist since the work ofHess
(1950), and their occurrence was confirmed by the work of
Barnes(1980, 1981), who showed that the oscillations were
often regular and repeatable, and that, by assuming the waves
were geostrophic and sinusoidal, typically flows were dom-
inated by wavenumbers 3 and 4 with phase speeds between
15–16 ms−1. Barnes et al.(1993) studied the baroclinic wave
activity using the NASA Ames Mars model and found that
zonal wavenumbers 1–4 with periods 2–10 days existed, and
that such oscillations were regular in time.Collins et al.
(1996) found evidence for dominant baroclinic modes at
wavenumbers 1 and 2 in the Oxford Mars General Circu-
lation Model (MGCM), with similar periods to waves de-
tected in the Viking Lander surface pressure data. More
recentlyBanfield et al.(2004) have shown the presence of
strong wavenumber 1, and to a lesser extent 2 and 3, travel-
ling waves in thermal remote sensing observations from the
Mars Global Surveyor spacecraft.

The autumn, winter and spring circulation of the Martian
atmosphere is dominated by these heat transporting baro-
clinic transients; during the summer only small fluctuations
of pressure, other than internal tides, occur and no travelling
waves are typically observed in either hemisphere.

Flows observed in the Earth’s atmosphere and in labora-
tory models of hydrodynamical systems often provide evi-
dence of behaving as if they have a relatively small num-
ber of degrees of freedom.Selten(1993) introduced a two-
level quasi-geostrophic hemi-spherical model of the Earth’s
atmosphere, formulated in spherical harmonics with vertical
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Empirical Orthogonal Functions (EOFs) to describe the evo-
lution of the circulation. The EOFs were calculated using
either a kinetic energy (KE) or a total energy (TE) norm,
and evolution equations for their amplitudes were derived
by the Galerkin projection of the model equations onto the
EOF basis. He found that the global structure of the system
could only be described in a truncated TE model since the
KE model failed to simulate adequately the energy conver-
sion processes which are fundamental to baroclinic flows.

In a similar study of simplified Earth-like circulations,Sel-
ten(1995) used a T21 spectral barotropic model and showed
that it could be accurately modelled by using just 20 EOFs,
which were computed in spectral space, whileSelten(1997)
concluded that an EOF basis is more efficient at describing
large-scale atmospheric dynamics compared to spherical har-
monics. However this was not the case for the baroclinic
model.

The main objective of this paper is to seek a low-
dimensional description of a baroclinically unstable atmo-
sphere, under conditions appropriate to Mars, by deriving a
reduced-order approximation of the vertical and horizontal
structure of the system, retaining only the dominant baro-
clinic and barotropic modes. Then (in Part II of our study)
we shall combine this with a POD-Galerkin expansion of the
model equations. The POD or Proper Orthogonal Decompo-
sition method is a procedure for calculating the eigenvectors
(called the POD modes) of the time-averaged autocorrelation
function of a given time seriesv(x, t) (Lumley, 1967, 1981).
The resulting eigenvectors are optimal, in the sense of energy
capture. The corresponding eigenvalues are measures of the
variance contained in each mode and describe the relative
energy content of each POD mode.

The vertical modes will be obtained, in Sect. 3, via the
solution of a variational problem for data from a numerical
model and corresponding to a wave number 3 observed dur-
ing winter in the Martian southern hemisphere (SH).

Reducing the system to its essential degrees of freedom
may provide useful insight into the underlying physical pro-
cesses which occur in the original model, revealing the dom-
inant interactions between the various modes and their con-
tributions to atmospheric variability on various timescales.
Dynamical systems methods will then be employed to anal-
yse the resulting bifurcations.

2 The SGCM

The numerical model in question is that ofCollins and James
(1995) and is known hereafter as the Simple General Circu-
lation Model (SGCM). The SGCM is an idealised model in
which the adiabatic, hydrostatic primitive equations of mete-
orology, as described byHoskins and Simmons(1975), are
solved in spherical coordinates using a spectral representa-
tion in the horizontal and finite-differenceσ -coordinates in
the vertical, (whereσ=p(θ, φ, z, t)/p∗(θ, φ, t), p=pressure,
p∗=surface pressure,θ is latitude,φ longitude,z height and
t time) with simplified physical parameterisations of heat-

ing and friction. The spectral primitive equation model em-
ploys a triangular truncation at total horizontal wavenumber
21 (denoted T21) and has 10 equally spacedσ levels in the
vertical over a pressure range of 0 to 610 Pa. Surface drag
is represented by Rayleigh friction in the lowest layer with
a time-scale of 3 days (denotedτD). Heating is modelled
as Newtonian relaxation toward a zonally symmetric equi-
librium temperature distribution with a time-scale of 2 days
(representing a typical radiative relaxation timescale on Mars
and denotedτE). For simplicity topography was excluded in
the model in order that the baroclinic waves could be isolated
and would not suffer from orographic modulation (although
this is likely to be important for the real waves on Mars).

2.1 Selecting the governing equations

In selecting the set of governing equations to form the basis
of the POD-Galerkin reduced models which best suits our re-
quirements, we want the equations to describe the flow, but
not be excessively computationally intensive. If the origi-
nal primitive equations are used as the governing equations,
then the computations become too large for simple algo-
rithms, and the retrieval of the eigenvalues and eigenvec-
tors of the autocorrelation matrix (in order to compute the
POD modes) could only be achieved by using sophisticated
and expensive algorithms such as the Iterative Lanzcos Al-
gorithm (ILA). Buizza and Palmer(1995) remark that the
ILA is intended to compute a few of the eigenvalues and cor-
responding eigenvectors of a large symmetric matrix and is
applied to large, sparse, symmetric eigenvalue-problems. Al-
though the highly truncated system which we investigate sat-
isfies this criterion, the adjoint operator must also be coded,
itself a formidable task. An alternative and simpler approach
involves the formulation of the quasi-geostrophic (QG) equa-
tions on a sphere.

2.2 Martian atmospheric behaviour and QG theory

Mars is a rapidly rotating planet, with maximum wind speeds
reachingO(100)ms−1 at a height of 30–50 km above the sur-
face. This suggests that the Rossby number,Ro=U/fL, is
much less than unity for large scales> 1000 km. This is
important since it suggests the QG approximation holds for
atmospheric motions with frequencies<�, the angular fre-
quency of the planet (Andrews et al., 1987). The equations
used will retain the full Coriolis parameter,f=2� sinθ ,
where� is the angular speed of the rotating planet andθ

is the latitude. By includingf we consider large-scale, es-
sentially geostrophic motions on a sphere.

If L is the horizontal scale anda the planetary radius, the
restriction to smallL/a permits the QG equations on a sphere
to be used as the governing set of equations for our investi-
gations.
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3 The vertical structures

In this section we discuss how to derive a set of normal
modes to model the vertical structure using data generated
from the numerical model. If a poor vertical scheme is used
then important information concerning physical processes
and energy exchanges may not be captured in the POD-
Galerkin model.

The separable solution approach was used byFlierl (1978)
in an oceanographic context. He showed that linear eigen-
modes in a system with horizontal boundaries are integrated
functions ofN2 (the Brunt-Väisälä frequency see below). In
a system with homogeneous boundary conditions, a simple
Sturm-Liouville problem has to be solved in order to obtain
the normal modes. In practice it is found that the barotropic
and the first few baroclinic modes are the most significant
(and consistent with the two modes generally represented
by well-calibrated two-layer or two-level quasi-geostrophic
models).

3.1 The QG vertical structure equation

The adiabatic, frictionless Quasi-Geostrophic Potential Vor-
ticity (QGPV) equation in isobaric coordinates takes the form
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longitude. The geostrophic component of velocity is
Vg=(k∧∇h8)/f where k is the unit vector in the verti-
cal direction,8(θ, φ, p, t) is the isobaric distribution of the
geopotential andp is pressure. The geostrophic vorticity
term isξg=∇

2
h (8/f0), wheref0 is a synoptic scale of motion

for the Coriolis parameter. Finally, the stratification profile is
S=N2/(g2ρ2), whereg is the acceleration due to gravity,ρ
is density and
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is the Brunt-Väisälä frequency in isobaric coordinates, where
θ0 is the potential temperature surface from equilibrium;T is
temperature andR is the gas constant for dry air.

Writing 8 in separable form as8=
∑
i 8̃i(θ, φ, t)Hi(p)

and substituting into Eq. (1), we find that the vertical struc-
ture equation to be solved is

f0
2 d

dp

(
1

S

dHi

dp

)
+ λiHi = 0, (5)

with homogeneous boundary conditions

dH1

dp
|p1 =

dH1

dp
|pn = 0, (6)

where theλis in Eq. (5) form a discrete countable set of
eigenvalues,S is the stratification profile andp1, pn are pres-
sures at the upper and lower boundaries respectively. The
His form a complete orthogonal set and can be orthonor-
malised by setting

1

P

∫ pn

p1

Hi(p)Hj (p)dp = δij , (7)

whereP is the pressure difference between the two bound-
aries.

3.2 The Froude number

The Rossby radius of deformation (Rd ) is the characteris-
tic length scale of disturbances in the mid-latitudes (e.g.
James, 1994) and can be interpreted as the horizontal length
scale over which the geopotential height field adjusts whilst
approaching geostrophic equilibrium. In the derivation of
Eq. (5), Rdi=1/

√
λi is the relevant Rossby Radius of de-

formation for each mode. If the Froude number is defined
asF=

a2

R2
d

, Eq. (5) therefore provides a spectrum of Froude

numbers{Fi}, where each Froude numberFi corresponds
to a different vertical scaling. Therefore,a2λ0 represents
the Froude number of the barotropic mode,a2λ1 the Froude
number of the first baroclinic mode, and so on. The global
Froude number for the SGCM is taken to beF=a2λ1 since
the vertical length scale of the first baroclinic mode is the
depth of the planetary model. HenceSi will be replaced by
S, with the understanding thati=1.

3.3 Definitions of energy

To derive vertical normal modes which are solutions to the
linearised vorticity equation we assume a separable form for
the streamfunction:

ψ(θ, φ, p, t) =

∞∑
l=0

ψ̃l(θ, φ, t)Hl(p), (8)

so that the total KE of the system on a sphere of radiusa

becomes:
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where
∫ pn
p1
HlHmdp=δlm is assumed andp1, pn are the pres-

sures at the upper and lower boundaries respectively.
TakingH0(p) to be the barotropic mode andHk(p) to be

thek-th baroclinic mode (fork 6=0), following Selten(1993),
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the contribution to the available potential energy (APE) from
thek-th baroclinic mode is:
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Assuming thatdHk
dp

|p1=
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|pn=0, we obtain:
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where the subscriptk refers to thek-th mode.

3.4 The vertical modes

We begin by showing that Eq. (5) can be derived from a vari-
ational principle in which we minimise APE in the vertical
direction. If we assume that8=8̃(θ, φ, t)H(p), then the

APE integrand is proportional tof0
2

S
( dH
dp
)
2
, as above. The

variational problem becomes that of seeking stationary solu-
tions to the APE functional:
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subject to the constraint:
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together with Eq. (6). The original SGCM has an artificial
“sponge” level at the upper boundary (in order to reduce the
problems of spurious energy reflection) and so the vertical
modes satisfying these constraints are perfectly consistent.

Using standard Calculus of Variations, the Euler-Lagrange
equation becomes:
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whereγ is the Lagrange multiplier to be determined (c.f.
Eq. (5) if we identify γ with λ) or
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have an eigenvalue problem, whereH is the eigenfunction
corresponding to the eigenvalueλ.
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within the range of integration.

This is mathematically significant since, if total energy
(TE) in the system is invariant, then minimising APE max-
imises KE. The first eigenmode which is derived from
Eq. (15) is the barotropic mode which, by definition, con-
tains no APE but instead captures almost all of the KE of the
system. The remaining modes will then tend to contribute
progressively less to the total KE of the system.

From Sturm-Liouville theory (for example seeMikhlin ,

1964), sincef0
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where|H |e is the energy norm of functionH . This is iden-
tical to the vertical component of the APE norm used in
Eq. (10), where
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shows the orthogonality ofHn with respect to the energy
norm. The set{Hn(p)}∞n=1 is complete both in terms of en-
ergy and in the sense of convergence in the mean.

Multiplying both sides of Eq. (14) by H and integrating
by parts we obtain
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f0
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2

dp/
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H 2dp, (18)

where we have used Eq. (6). Therefore all non-zeroλ’s are
positive. We note thatλ=0 is satisfied ifH=1 and corre-
sponds to the purely barotropic mode.

We remark here that, since we are solving an atmospheric
problem, the upper boundary condition should be made more
realistic. Indeed,Lindzen et al.(1968) showed that bounded
atmospheric models could produce spurious free oscillations
and concluded that bounded atmospheres do not properly re-
spond to oscillations which propagate vertically. However,
for the purpose of this present study, the vertical structure
equation is solved with homogeneous boundary conditions.

4 The SGCM data

The SGCM with its simplified parameterisations of heating
and friction and the absence of topography has been used
to examine a baroclinic wave number 3 flow during a con-
tinual seasonal numerical simulation of the southern hemi-
sphere Martian winter (Collins and James, 1995).

4.1 The decomposition

By assuming a decomposition of the streamfunctionψ to
be possible in separable form, the amplitude distribution
ψ̃m(θ, φ) of baroclinic modem can be calculated for each
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Fig. 1. The buoyancy frequency profile,N2, at 52.6◦ S in the
SGCM.

profile, as a function ofθ, φ or profile location. Ifψj is the
streamfunction for levelj , then

ψj =

N∑
m=1

ψ̃mHm(σj ), (19)

whereHi(σj ) is thei-th vertical mode in layerσj . The spec-
tral primitive equation model has 10 equally spacedσ lev-
els, whereσ=p/ps , whereps is the surface pressure, as de-
fined earlier. It is therefore convenient to calculate the normal
modes on these surfaces;σj refers to thej th level (see Ta-
ble 1).N is the number of vertical levels (and hence the total
number of normal modes).

The orthonormality condition ofHi becomes

1

P

N∑
j=1

δσjHi(σj )Hk(σj ) = δik, (20)

whereP=
∑N
i=1 σi . Since the difference inσ between two

consecutive sigma surfaces is fixed (see Table 1),δσj is con-
stant, so that

HkHT
k = N I , (21)

whereI is the identity matrix. Thus

ψ̃m =
1

N

N∑
j=1

< Hm(σj ), ψj > . (22)

We are thus able to calculate the KE and APE in each of the
modes.

The N2 profile at latitude 52.61◦ S is shown in Fig.1,
while the corresponding stratification parameter profile is
shown in Fig.2. Because the streamfunction has a domi-
nant steady wave 3 in the southern hemisphere latitude band
40◦ S–60◦ S (see Figs.3 and4), the stratification was aver-
aged over this interval, because of the significant atmospheric
activity there. The normal modes were optimised over this
chosen band.

Fig. 2. The stratification parameter,S, at 52.6◦ S.

Fig. 3. Southern hemisphere stereographic projection maps of the
SGCM modelled streamfunction data during the southern winter
solstice (LS=90◦). The steady wave 3 streamfunction is shown at
the first 4 days onσ=0.45.

4.2 Eigenvalues and eigenmodes

Figure4 shows the decomposition of the SGCM streamfunc-
tion into its purely barotropic and nine baroclinic compo-
nents. Shown in Fig.4a are the barotropic and first three
baroclinic components during the first day. The barotropic
component can be viewed as an equal-weighted averaged
flow over the vertical levels, which reveals a steady wave
flow between 40◦ S–60◦ S. The first and second baroclinic
components contain modulated wave three profiles in the
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(a)

(b)

Fig. 4. Decomposition of the SGCM streamfunction data into its purely barotropic and nine baroclinic components. The figure illustrates the
instantaneous fields of(a) the purely barotropic and first three baroclinic components and(b) baroclinic components 4 to 9.
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Fig. 5. Froude numbers calculated from the vertical structure equa-
tion for the stability profile shown in Fig.1.

SH, whereas the third component possesses a baroclinic
wavenumber 3 structure, centred at a latitude of 30◦ S and
surrounded by a more complicated flow. Figure4b shows
the instantaneous baroclinic components 4 to 9. Baroclinic
modes 4 to 7 contain wavenumber 3 structures, centred at
a latitude of 50◦ S, while baroclinic modes 8 and 9 have
wavenumber 2 structures at a latitude of 45◦ S.

The eigenvaluesλk, computed from Eq. (5), can be ex-
pressed as an increasing sequence (see Table1) or shown
graphically (see Fig.5).

Figure6 shows the corresponding eigenmodes, identified
as the purely barotropic mode (corresponding toλ0=0) and
the nine baroclinic modes (b)–(j). Table1 also gives the val-
ues of the Rossby radius of deformation for each eigenmode
and the corresponding values of Froude number. For any
k>0,Hk has one more zero in the interval(σ1, σ10) than does
Hk−1.

The purely barotropic mode takes the value unity at all
vertical levels, while the first two baroclinic modes have a
dominant baroclinic structure near the top of the model. The
vertical structures become progressively more complicated
for the higher order modes, particularly near the ground level.

4.3 Energy distributions

Figure 7 shows the relative contributions to KE, APE and
TE from each of the 10 eigenmodes. The purely barotropic
eigenmode represents 89% of the total KE, whereas the first
and second baroclinic eigenmodes supplement KE by just
6.1% and 2.5%, respectively. The remaining modes con-
tribute progressively less to the total KE except for baroclinic
modes 8 and 9 which contain 0.19% and 0.20% of KE, re-
spectively.

Most of the APE of the system is to be found in the first
three baroclinic modes, accounting for 97.1% of the total
APE. The barotropic mode accommodates no APE, but in
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Fig. 6. Eigenmodes of the vertical structure equation for the stabil-
ity profile shown in Fig.1.
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Fig. 7. Contributions to KE and PE from the barotropic (number 1)
and baroclinic (remaining, numbers 2–9) modes.

the experiment analysed here, the first, second and third baro-
clinic eigenfunctions represent 48.1%, 43.9% and 5.1%, re-
spectively of the total APE. Baroclinic modes 8 and 9 contain
0.89% and 0.64% of the total APE, respectively.

If modes 8 and 9 are neglected, the contribution of each
successive mode to the TE is also a decreasing function
of mode number,m. Additional numerical experiments in
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Table 1. Table of Froude numbers of the associated vertical eigenmodes for the SGCM case.

Mode Eigenvalue Rossby radius of deformation Froude number

Barotropic λ0 = 0 Rd0 = ∞ 0.0
Baroclinic 1 λ1 = 7.06× 10−7 km−2 Rd1 = 1190.1 km 8.14
Baroclinic 2 λ2 = 2.44× 10−6 km−2 Rd2 = 640.2 km 28.1
Baroclinic 3 λ3 = 6.21× 10−6 km−2 Rd3 = 401.3 km 71.5
Baroclinic 4 λ4 = 1.29× 10−5 km−2 Rd4 = 278.4 km 148.8
Baroclinic 5 λ5 = 2.29× 10−5 km−2 Rd5 = 208.9 km 263.7
Baroclinic 6 λ6 = 3.64× 10−5 km−2 Rd6 = 165.7 km 419.4
Baroclinic 7 λ7 = 5.37× 10−5 km−2 Rd7 = 136.5 km 618.4
Baroclinic 8 λ8 = 7.72× 10−5 km−2 Rd8 = 113.8 km 889.4
Baroclinic 9 λ9 = 1.21× 10−4 km−2 Rd9 = 90.9 km 1390.9

which the T21 spectral data were reduced to a T5 trunca-
tion also showed significant KE and APE contributions to be
present in modes 8 and 9. Such modes may be an artifact of
the vertical truncation level as well as consequences of the
severe reduction in the vertical length scales. On the other
hand, in the full Mars General Circulation Model (MGCM),
and apparently in the Mars Global Surveyor/Thermal Emis-
sion Spectrometer (MGS/TES) observational analysis by
Banfield et al.(2004), there are waves of different period
(and sometimes wavenumber) that are trapped in very shal-
low layers near the surface. Also, since the data are derived
from a primitive equation model, it is possible that activity
with smaller vertical scales may not show up in the first few
modes of a QG decomposition.

5 Various norms

We now address the question of which norm should be used
to monitor energy conversion processes within the model,
what emphasis each norm places on certain spatial and tem-
poral structures within the data and how many patterns are
required to reproduce the most “significant” dynamics of the
model. In particular we shall investigate whether standard
EOFs, which describe deviations from the mean state, should
be used or whether the basis should describe the total state
vector (and so include norms which maximise energy extrac-
tions).

We take as our basic state for the SGCM example, the
steady state of the 2-D zonally symmetric version of the
SGCM, obtained by suppressing the waves, after 400 sols
(i.e. 400 Martian days), to ensure that the state has equili-
brated (see alsoCollins, 1993). From the previous section,
we see that it is necessary to retain the barotropic and at least
the first two baroclinic modes in the vertical structure for our
POD-Galerkin dimensional-reduction analysis. Appendix C
describes the details of how PODs are calculated in practice
in spectral space.

5.1 Projection of streamfunction or vorticity.

The question naturally arises regarding the choice between
streamfunction and vorticity for the calculation of the POD
modes (Selten, 1995). If vorticity is chosen, then the POD
modes need to be optimised to describe the vorticity rather
than the streamfunction, with the result that small-scale mo-
tions are emphasised (the inner product in this case defines
enstrophy). We are, however, interested in large-scale circu-
lations and so we shall use the streamfunction. It is important
to note that the corresponding vorticity and planetary vortic-
ity fields would not be described by the same set of PODs,
and any resulting truncated POD model would not conserve
both KE and enstrophy simultaneously. Furthermore, if forc-
ing and dissipative terms are added, then neither KE nor en-
strophy are conserved.

5.2 The KE and TE norms

The standard correlation norm gives

R8 = λ8, (23)

where the covariance matrixR is defined by

Rij=(Vi−V̄i)(Vj−V̄j ) with overbar denoting the time
average. The POD modes, therefore, describe deviations
from the mean state. FollowingSelten (1993), we can
construct a set of basis functions which describe the total
state vector, by replacingR by C, whereCij=ViVj . The
mean state is now retained in the POD expansion to allow for
dynamical interactions between the mean background flow
and the anomalous POD modes. The POD modes obtained
usingR optimise the variance whereas those obtained using
C optimise the energy.

The inner product, defining the energy matrixM , satisfies

< V,VT >= VTMV , (24)

so that the eigenvalue problem becomes

< V,VT > MTU = λU. (25)
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SinceM is a diagonal matrix,MT
=M and we obtain

CMpU = λU, (26)

where the diagonal energy matrixMp depends upon

< ψ,ψ >p =
1

2

∫ 2π

0

∫ π

0

(
∇
pψ · ∇

pψ
)
a2 sinθdθdφ, (27)

for p=0, 1, 2, ..., and the basisU describes the total state
vector.

5.3 Formation of the spectral energy matrix

The equality given in Eq. (9) for the KE yields:

KE =
1

2

∫ π

0

∫ 2π

0

∑
k

[
∇hψ̃k · ∇hψ̃k

]
a2 sinθdθdφ

= −
1

2

∑
k

∫ π

0

∫ 2π

0

[
ψ̃k · ∇

2
hψ̃k

]
a2 sinθdθdφ

=

∑
mnk

n(n+ 1)ψ̃2
mnk, (28)

while Eq. (10) for the APE yields, for the TE:

TE = KE +
1

2

∑
k

∫ π

0

∫ 2π

0
λkψ̃

2
k a

2 sinθdθdφ

= KE +

∑
mnk

λkψ̃
2
mnk

=

∑
mnk

(n(n+ 1)+ λk) ψ̃
2
mnk, (29)

whereψ̃k is thek-th baroclinic component in grid space and
ψ̃mnk is the coefficient at point(m, n) on the spectral grid of
thek-th baroclinic component. Since these expressions must
satisfy the inner product condition of Eq. (24), the spectral
energy matrices take the form of the diagonal matrix dis-
cussed in Appendix D.

5.4 Comparisons between the SGCM Eigenspectra

Figures8 and9 show the eigenspectra (suitably normalised
so that their sums equal unity) of the mean and perturbation
fields computed using the correlation (labelled as I), KE (la-
belled as II) and TE (labelled as III) norms. From Fig.8 we
see that the first eigenvalue of the zonal flow dominates the
spectra and captures 99.92% of the variance, 99.61% of the
KE and 99.60% of the TE. The rate of decay of the eigen-
spectrum with respect to the correlation norm is faster for the
zonal flow than with respect to the other two norms.

Figure9 shows that the two leading eigenvalues of the per-
turbation flow represent 84% of the variance (in I), 79% of
KE (in II) and 73% of TE (in III) if the correlation, KE or
TE norms are used. Figure9 shows that the first four wave
modes appear in pairs. The dominance of these eigenmodes
suggests that this flow in the original SGCM model could be
governed by two wave pairs.

Table 2 gives an indication of how many eigenmodes
would be required to capture 90% and 95% of the variance,

KE and TE of the wave flow. Also given are the percentage of
variance, KE and TE captured by 4, 10 and 50 eigenmodes.
Only 5 correlation modes are required to capture 90% of the
variance whereas 13 KE or 26 TE eigenvectors are needed if
90% of the KE or TE is to be retained. If an additional 5%
of the variance, KE or TE is sought then an extra 9, 25 or
30, respectively of correlation, KE and TE eigenvectors are
required.

A sudden decrease from large to small eigenvalues with in-
creasing EOF index (as in the correlation norm), offers a nat-
ural criterion for selecting how many patterns are required
to describe the flow. Figure9, for example, shows a sud-
den decrease by a factor of 100 exists beyond wave pattern
2. Therefore only two modes would suffice to describe the
model dynamics to a first approximation (see alsoKantz and
Schreiber, 1997).

5.5 SGCM POD modes

Figure10illustrates the horizontal structure of the barotropic
components of the various POD eigenmodes computed with
the correlation norm. Here modes 1 and 2 represent a steady
wavenumber 3 in the southern hemisphere, which areπ

2 out
of phase. Modes 3 and 4 correspond to a steady wavenumber
2 and mode 5 depicts a mean zonal flow. Also evident is a
wavenumber 6 structure in modes 6, 8 and 10. Figure10
illustrates that modes 1 and 2, 3 and 4 form conjugate pairs.
However, the choice of norm affects the ordering of these
modes.

Figures11–16 show the barotropic and baroclinic compo-
nents of the SGCM POD wave modes with respect to the
three different norms.

Modes 1 and 2 form a conjugate pair for each of the
norms and so denote a travelling wavenumber 3 in the lon-
gitudinal direction. The structure of mode 1 is unaffected
by the choice of norm (see Figs.11, 13 and 15) and con-
tains a strong wavenumber 3 component centred at a latitude
of about 45◦ S. The barotropic components are almost sinu-
soidal in longitude. The first baroclinic components com-
prise two parallel wavenumber 3 structures, centred at lati-
tudes of 45◦ S and 15◦ S, respectively, displaced by 50◦ in
longitude. There are additional wavenumber 3 patterns, cen-
tred at 20◦ N in the northern hemisphere (NH). The second
baroclinic mode also contains similar parallel wavenumber
3 patterns, centred at latitudes of 45◦ S and 25◦ S, displaced
by 25◦ in longitude with a strong wavenumber 3 structure
at 20◦ N. The third baroclinic mode is almost symmetrical
about the equator but tilted in the SH. A sinusoidal wavenum-
ber 3 pattern exists at 20◦ N, together with two wavenumber
3 patterns at latitudes of 15◦ S and 50◦ S, where the latter
wave pattern is displaced by 50◦ in longitude.

Mode 3, in Figs. 11, 13 and 15, contains a strong
wavenumber 2 pattern in each vertical component. With the
correlation or the KE norm, the barotropic component ap-
pears to be nearly sinusoidal but somewhat distorted with the
TE norm. Similarly, the first and second baroclinic compo-
nents of the correlation and KE modes contain a latitudinally
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Fig. 8. (a)The logarithmic eigenspectra zonal profiles using the (I) correlation, (II) KE and (III) TE norms.(b) The cumulative variance (I),
KE (II) and TE (III) capture of the zonal field using the correlation (I), KE (II) and TE (III) norms, respectively.

stretched wavenumber 2 pattern, together with a small wave
3 structure centred at a latitude of 20◦ N, which is displaced
by 100◦ in longitude. However in the TE case, this mode con-
tains a severely modulated wave 2 structure, centred at 25◦ in
the SH. The third baroclinic components produce very simi-
lar structures in both the correlation and KE norms: both are
centred at latitudes of±45◦, with a thin band of distortion

about the equator (giving rise, very nearly, to a wave 3 on
the equator). The TE norm, however, produces a sinusoidal
wavenumber 6 pattern at 25◦ S. Clearly, correlation modes 3
and 4 form a conjugate pair, whereas it is modes 3 and 5 in
the energy norms. The correlation mode 5 describes a depar-
ture from the mean flow, suggesting that the choice of norm
significantly effects the ordering of the modes.
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Fig. 9. As Fig.8, but for the departure fields.

Table 2. POD modal truncation against variance/energy capture in the departure flow.

Norm 90 % 95 % 4 modes 10 modes 50 modes

Correlation 5 modes 14 modes 89.83 % 93.88 % 98.44 %
KE 13 modes 38 modes 82.68 % 88.94 % 96.01 %
TE 26 modes 56 modes 77.72 % 84.34 % 94.07 %
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(a)

(b)

Fig. 10. Southern hemisphere stereographic projection plots of(a)
the first four SGCM POD modes of the barotropic component and
(b) modes 5, 6, 8 and 10, obtained using the correlation norm.

Table 3. Zonal wavenumbers associated with each of the POD
modes (wavenumber 0 is zonal-mean flow).

Modes Correlation KE TE

1 3 3 3
2 3 3 3
3 2 2 2
4 2 6 6
5 0 2 2
6 6 6 6
7 4 4 4
8 6 4 4
9 4 3 4
10 4 3 4

(a)

(b)

Fig. 11. The barotropic (bt) and three leading baroclinic compo-
nents (bc1, bc2 and bc3) of the SGCM POD modes 1(a) and 3(b)
using the correlation norm. In this and following colour figures,
positive values are shaded red and negative, blue, with zero lying in
mid-green.
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(a)

(b)

(c)

Fig. 12. The barotropic (bt) and leading three baroclinic compo-
nents (bc1, bc2 and bc3) of modes 5(a), 7 (b) and 9(c) using the
correlation norm.

Mode 7 has a wave 4 structure (see Figs.12, 14 and16),
which is almost sinusoidal with the energy norms but more
complicated with the correlation norm. The barotropic com-

(a)

(b)

Fig. 13. The barotropic (bt) and leading three baroclinic compo-
nents (bc1, bc2 and bc3) of modes 1(a) and 3(b) using the KE
norm.

ponent for each norm has a wavenumber 4 structure, centred
at 35◦ in the SH. The first baroclinic components contain two
parallel wave 4 structures, centred at 45◦ and 15◦ in the SH,
and displaced by 25◦ in longitude in the correlation norm
case, while for the energy norms, the modes are more regular
in structure. The second baroclinic components also con-
tain two parallel wave 4 structures, but now centred at 50◦

and 25◦ in the SH with a large wavenumber 1 component in
the NH, at 30◦. The third baroclinic component of the KE
and TE mode 7 give structures similar to the first baroclinic
component. Both energy 8 modes contain dominant zonal
wavenumber 4 structures whereas the correlation norm mode
8 contains wavenumber 6 structures.

The correlation norm generates wavenumber 4 patterns in
the barotropic and first baroclinic components of mode 9,
although the second and third baroclinic components con-
tain wave 6 structures at a latitude of 25◦ in the SH. The
barotropic component of KE mode 9 contains two parallel
wavenumber 3 structures centred at 50◦ and 25◦ in the SH,
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(a)

(b)

(c)

Fig. 14. The barotropic (bt) and leading three baroclinic compo-
nents (bc1, bc2 and bc3) of modes 5(a), 7 (b) and 9(c) using the
KE norm.

displaced by 50◦ in longitude. However the TE norm has a
wave 4 at 45◦ in the SH. The first baroclinic components of
KE and TE modes 9 are tilted wavenumber 3 patterns, cen-

(a)

(b)

Fig. 15. The barotropic (bt) and leading three baroclinic compo-
nents (bc1, bc2 and bc3) of modes 1(a) and 3(b) using the TE
norm.

tred at 35◦ in the SH, with an additional wave 3 at a latitude
of 20◦ in the NH and displaced by 25◦ in longitude. The
energy norms produce wavenumber 3 patterns in the second
baroclinic component, at latitudes of 45◦ in the SH and on
the equator, displaced by 15◦ in longitude. The third baro-
clinic component of the energy modes contain three wave 3
patterns at latitudes of 50◦ and 25◦ in the SH and 20◦ in the
NH.

Thus modes 1 and 2 for each of the norms form a com-
plex conjugate pair and depict a travelling wavenumber three,
whereas modes 3 and 4 for the correlation norm and modes
3 and 5 for the energy norms depict a travelling wavenum-
ber 2 structure. Hence two distinct travelling waves can be
observed from the leading order POD modes. The different
norms also rearrange the ordering of the spatial eigenmodes.
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(a)

(b)

(c)

Fig. 16. The barotropic (bt) and leading three baroclinic compo-
nents (bc1, bc2 and bc3) of modes 5(a), 7 (b) and 9(c) using the
TE norm.

5.6 SGCM Principal Components

The Principal Components (PCs) represent the time-varying
amplitudes of the POD eigenvectors at a given time. Specif-

ically if xj is part of the time series of one of the dependent
variables, then

xj =

m∑
i=1

aijVi, (30)

whereaij is the PC of thei-th eigenvectorVi in the expan-
sion of xj . When the eigenvectors form an oscillating pair,
the square root of the sum of the squares of the two PCs (in
theL2 norm) represent the amplitude of the oscillation at any
given time.

Figure17 shows the temporal behaviour of the perturba-
tion spatial eigenmodes for the three different norms over
300 Martian days (sols).

The structures are wave-like, with the two leading PCs be-
ing wavenumber 3 structures, one quarter of a period out of
phase, oscillating with a period close to 0.23 cycles/sol. The
form of these two PCs is virtually unaffected by the choice
of norm. The higher order PCs appear to vary more irregu-
larly in time, particularly PCs 6 to 10 where high frequency
structures can be observed. Recall that the ordering of the
spatial POD modes is affected by the choice of norm, and
so comparisons between the various PCs must take this into
account.

PCs 3-5 display a long time modulation, as well as a short
time variability. The correlation norm PCs 3 and 4, and the
energy norms PCs 3 and 5, form complex conjugate pairs,
and so represent travelling waves. The travelling wavenum-
ber 2 structures oscillate at a rate of about once every 12
days, giving a frequency of about 0.08 cycles/sol. This is
consistent with the frequency values picked out by the power
spectral analysis in Fig.18a where peaks are clustered about
the 0.08–0.1 cycles/sol frequency band.

The correlation and TE norms extract similar wave pat-
terns in PC 4, as is visible in the clustering of peaks about
0.1 cycles/sol. This is interesting since the spatial patterns
associated with POD mode 4 are very different. The corre-
lation norm mode contains a wavenumber 2 structure, while
the KE and TE norm modes have a wavenumber 6 structure.
However, the wavenumber 6 structure in the KE case has a
very different temporal behaviour to that of the correlation
and TE norms. Its 4th PC has a much higher frequency de-
pendence, small in amplitude and fluctuating about zero with
a cluster of frequencies about 0.5 cycles/sol.

KE and TE PCs 3 and 5 form complex conjugate pairs and
so describe a travelling wave. This is apparent by compar-
ing the power spectra of PC 3 in Fig.18a with that for PC 5,
shown in Fig.18b. The energy norms produce structures with
a dominant frequency of about 0.1 cycles/sol, whereas the
correlation POD mode 5, which represents a departure from
the mean flow, has a small amplitude temporal behaviour
with a very low frequency of about 0.006 cycles/sol.

Since the temporal evolution of PCs 6 to 10 are far more
complicated and irregular than the leading five PCs, the
power spectra in Fig.18b reveal a much broader range of
interacting frequencies in their power spectra.

Figure 19 shows the time dependence of the mean-flow
correction modes. We again find that PC 1 is almost insen-
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Fig. 17. Original SGCM departure principal components (PCs) using the correlation (red), the KE (green) and the TE norms (blue) shown
during an interval of 300 Martian days. Note that the range of PC1 and PC2 is five times, and that of PC3–5 is twice, that of the higher order
modes PC6–10.

sitive to the choice of norm, whereas PCs 2 to 10 contain
strikingly different oscillatory behaviour. One reason might
be due to almost all of the TE of the flow being contained
in the zonal mean (in excess of 90%). Since the APE in the
zonal flow accounts for almost 50% of the TE, maximisation
of KE or TE produces significant differences in the spatial
and temporal patterns.

As the leading travelling waves propagate at a frequency
of about 0.23 cycles/sol (i.e. the spatial wave three mode)
and 0.08 cycles/sol (i.e. the spatial wave two mode), it might
then be a reasonable hypothesis that such behaviour could
be emulated with a low-dimensional model. Since the anal-
ysis picks out two frequencies of oscillation, there could be
some degree of weak interaction occurring between the lead-
ing order spatial modes, suggesting how crucial it is to retain
a ‘sufficient’ amount of information regarding the behaviour
of the two travelling spatial wave patterns. Thus for this par-
ticular data set, the highly regular baroclinic wave activity in
the idealised Martian atmosphere is nearly bimodal.

5.7 Energy in the SGCM eigenmodes

We conclude with a discussion of the energy distribution be-
tween the various individual POD modes.

The streamfunction data was decomposed into a basic-
state, mean-flow correction (MFC) and a wave flow. The
zonal flow, defined as basic state + MFC, accounts for
97.85% of the total variance, 90.73% of KE and 93.68% of
TE if the correlation, KE and TE norms respectively are used.

Figure20a shows histograms of KE as a fraction of TE in
the zonal POD modes using the (I) KE and (II) TE eigen-
vectors. Modes derived using the TE norm extract the APE
of the original system far more efficiently than with the KE
norm. Since Fig.7 showed that leading zonal mode accounts
for over 90% of the total energy in the system, the amount
of KE and APE captured will almost be equal to the total
KE and APE contained in the truncated system. Figure20a
shows that 59% of the TE in the first zonal eigenmode is in
the form of KE with the KE norm, indicating that this has in-
efficiently captured the SGCM APE. This is consistent with
the fact that the KE norm optimises KE and not APE. With
respect to the TE norm, 48% of the TE in the leading zonal
mode is in the form of KE and so the original balance be-
tween KE and APE has been retained.

The KE norm also concentrates a large proportion of the
system’s KE into the leading order modes. This contrasts
with the TE eigenmodes which contain a very significant pro-
portion of KE in the higher-order modes (about 80%), and
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Fig. 18. Power spectra profiles of the original SGCM departure PCs where(a) shows the frequencies of PCs 1 to 4 and(b) shows the
frequencies of modes 5 to 10 using the correlation (red), KE (green) and TE (blue) norms.

suggests that the TE eigenvectors have placed most of the
APE in the leading order modes and so have effectively opti-
mised the capture of APE.

Figure20b shows KE as a fraction of TE in the wave field
POD modes using the (I) KE and (II) TE eigenvectors. The
leading KE modes account for about 70% of TE, but after
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Fig. 19. Original SGCM principal components (PCs) of the mean-flow correction field using the correlation (red), the KE (green) and the
TE norms (blue) during an interval of 300 Martian days.

14 KE eigenvectors there is a steep decay in the KE pro-
file, implying that the low-order TE modes capture most of
the APE. However, the higher-order TE eigenvectors contain
mainly KE, which again indicates that the KE norm places
the majority of its KE into the leading order modes, whereas
the TE norm pushes the APE into the lower-order modes.

These results agree withSelten(1993), who found that, for
the Earth, eigenvectors obtained with different norms behave
differently in terms of how much KE and APE was captured
by each mode. He also showed that the KE norm distributed
the majority of the KE into the leading order modes, whereas
the higher-order eigenvectors were dominated by APE. In
contrast, the TE norm placed most of the APE in the lead-
ing order eigenmodes, leaving a greater fraction of KE in the
higher-order modes.

6 Discussion

The model has been shown to do remarkably well at cap-
turing a signficant fraction of the total energy and/or vari-
ance, using a relatively small number of vertical and hori-
zontal modes. When just four vertical modes (the barotropic
and first three baroclinic modes) are retained in the reduced-
order approximation, the correlation norm captures approx-
imately 90% of the variance, while the kinetic energy and

total energy norms capture approximately 83% and 78% of
the kinetic and total energy respectively.

The degree of dimensional reduction achieved here is no-
table, fromO(104) degrees of freedom in the primitive equa-
tion SGCM toO(50) total modes in the reduced dimension
model. Baroclinic waves on Mars appear to be more regular
than those on Earth (Read and Lewis, 2004) and this may ac-
count for the relative success of the present Martian reduced
order model. Recent investigations of low-order models for
the Earth’s atmosphere suggest that many more modes, at
least 500, are required to account for 90% of the variance in
terrestrial models (Achatz and Branstator, 1999; Achatz and
Opsteegh, 2003a,b), although it might be possible to repro-
duce aspects of low-frequency variability in a low-resolution
quasi-geostrophic model usingO(10)modes (D’Andrea and
Vautard, 2001; D’Andrea, 2002).

In a more realistic model of the Martian atmosphere,
which includes diurnal and seasonal thermal forcing cycles,
topography and planetary boundary layer effects, for exam-
ple, both the vertical and horizontal modal spectra are likely
to be significantly richer in structure (Martinez-Alvarado et
al., in preparation).

In part 2 we will develop a hierarchy of POD-Galerkin
modal truncations, using both two and four vertical modes
with the correlation, kinetic energy and total energy norms,
as a prelude to performing a bifurcation analysis and a com-
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Fig. 20. KE as a fraction of TE contained in (a) the zonal modes
and (b) the wave modes for the (I) KE and (II) TE eigenvectors.

parison with the full SGCM integration.

Appendix A The numerical scheme

We solved Eq. (5) numerically using finite differences for
a given profile of the stratification parameterS(σ ), derived
from the SGCM:

∂

∂σ

f0
2

Si

∂

∂σ
Hi ∼

f0
2

Si+1(δσi+1)
2
(Hi+1 −Hi)

−
f0

2

Si(δσi)
2
(Hi −Hi−1). (A1)

Takingδσi=K for some constantK∈R, results in the verti-
cal modal problem being solved over equally-spaced sigma

levels (see Sect. 4), so that

f0
2

SiK2
Hi−1 −

f0
2

K2
(

1

Si
+

1

Si+1
)Hi

+
f0

2

Si+1K2
Hi+1 + λHi = 0. (A2)

This yields an eigenvalue problemCHk=λkHk, where
C is a symmetric, tridiagonal matrix and vector
Hk=(Hk(σ1), ..., Hk(σN )), where we choseN=10 as
in the SGCM experiments ofCollins and James(1995). The
boundary conditions were chosen to bedH/dσ=0 atσ=σ1
and σ=σN (and were implicitly satisfied in Eq. (A1) by
specifyingS1=SN+1=∞).

The numerical code for Eq. (A2) was verified by setting
the stratification parameterS(σ) to be constant in the verti-
cal structure equation; as expected, sine and cosine functions
were obtained as the eigenfunctionsHi .

In the SGCM, we took the following:p=p0+p
′ is pres-

sure wherep0=610Pa is the basic term andp′ is the per-
turbation;T=T0+T

′ whereT0=200 K;R=191.2 JKg−1 K−1

is the gas constant for dry air;�=7.08822×10−5 s−1 is the
rotational rate of Mars;a=3.394×106 m is the radius of the
planet.

Appendix B The spectral grid

Since the streamfunction data lies on a jagged T21 spectral
grid, it is useful to explain the ordering of the spectral coeffi-
cients on such a grid.

The order of data storage is by level, beginning at the top
level whereσ=0.05. For each level there are odd and even
complex coefficients (odd for a cosine and even for a sine co-
efficient), with an equal number of odd and even coefficients.
If n is the total wavenumber andm the zonal wavenumber
(so that there aren−|m| zeros between the north and south
poles), the ordering of the coefficients is similar to that shown
in Fig. 5.1 for theT 5 andT 4 truncations. The coefficients
are read in order of increasingnwith increasingm, beginning
with the even and then the odd coefficients (for full details
seeBlackburn, 1985).

Specifically, ifAmn is the spectral coefficient at position
(n,m) on a spectral grid, then the coefficients are read in the
following order:

EVEN A0
0, A

0
2, A

0
4, ..., A

1
1, A

1
3, ..., A

2
2, A

2
4, ..., A

NN−1
NN−1,

ODD A0
1, A

0
3, A

0
5, ..., A

1
2, A

1
4, ..., A

2
3, A

2
5, ..., A

NN−1
NN−1,

whereNN is the highest total wavenumber retained in the
spectral series.

DEi are the diagonal matrices for the even spectral entries
of thei-th baroclinic component (recalli=0 is the barotropic
andi=1, 2, 3 are the first three baroclinic modes), while DO

i

are the analagous blocks for the odd entries.
The diagonal blocks of the even spectral entries for the KE

and TE matrices are

KE DEi = diag [n1(n1 + 1),
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Fig. B1. The spectral grids for a jagged(a) T5 and(b) T4 triangular
truncations. Coefficients are read in order of increasingn (total
wavenumber) with increasingm (zonal wavenumber) for the even
then the odd coefficients.

n2(n2 + 1), ... , ns(ns + 1)] ,

TE DEi = diag
[
n1(n1 + 1)+ λ̄i,

n2(n2 + 1)+ λ̄i, ... , ns(ns + 1)+ λ̄i
]
,

whereni is total wavenumber of thei-th even spectral co-
efficient, the subscripts={n(m+1)+max(m, n)+ 1}/2, and
coefficients are read in order of increasingn with increasing
m as shown in Fig.B1.
Finally λ̄i corresponds to thei-th Froude number obtained
from the vertical structure equation in Sect. 3 above.

Appendix C Calculation of PODs in spectral space

Although POD modes are usually calculated in physical grid
space, we have found it to be more computational efficient to
perform this calculation in spectral space (see e.g.Schubert,
1985; Selten, 1995). Both methods are related via a linear
transformation. Because the data is truncated spectrally at
T21, the POD modes also retain all wavenumbers up to a to-
tal wavenumber 21. In grid space, a covariance matrix of at
least (48×24)2 would be required for a T21 spectral resolu-
tion (the SGCM actually transforms to a 64×32 real space
grid, using fast transform techniques, oversampling in order
to limit wave aliasing from nonlinear products during inte-
gration; using this grid data directly would imply a covari-
ance matrix of size 9,437,184), whereas a T21 data set can
be fully resolved with 242 real odd and even spectral data
points, yielding a spectral covariance matrix of size 484,484
for the same resolution. We used the NAG routine F02ABF
to calculate the eigenvalues and eigenvectors of the resulting
real symmetric matrix. The computational speed of this cal-
culation scales likel3 (wherel is the order of the matrix), so
that the spectral problem runs approximately(4.23)3 times
faster than an equivalent grid space formulation.

If the covariance of the streamfunction is defined as

C(θ, φ, θ ′, φ′) = r2
√

sinθ sinθ ′

(
ψ(θ, φ)ψ(θ ′, φ′)

)
, (C1)

where the overbar denotes a time average, then the eigen-
value problem on a sphere becomes:

1

2π2

∫ 2π

0

∫ π

0
C(θ, φ, θ ′, φ′)ϒi(θ

′, φ′)dθ ′dφ′

= λiϒi(θ, φ), (C2)

where8i(θ, φ)=ϒi(θ, φ)/
√

sinθ is thei-th POD mode.
Expanding both the streamfunctionψ(θ, φ, t) and the spa-

tial eigenmodes8i(θ, φ) as a jagged T21 spectral truncation,
we have:

ψ(θ, φ, t) =

20∑
m=0

Nm∑
n=m

ψmnPmne
imφ,

8i(θ, φ) =

20∑
m=0

Nm∑
n=m

VmniPmne
imφ, (C3)

whereψmn andVmni are the spectral coefficients.Pmn(µ) are
the associated Legendre polynomials of the first kind of de-
gree l and orderm and whereµ is the sine of the geographic
latitude, which form an orthonormal set over(−π/2, π/2).
Nm=21 if m is even andNm=20 if m is odd. Substitution of
Eq. (C3) into Eq. (C2) yields

20∑
m=0

Nm∑
n=m

ψm′n′ψmnVmni = λiVm′n′i, (C4)

whereVmni is the spectral coefficient of the thei-th POD
modeVi at the spectral grid point(m, n).

Appendix D Symmetrising the eigenvector problem

Since the correlation matrix is now no longer symmetric, we
need to diagonaliseCM in Eq. (26) by introducing a symmet-

ric matrix D=M
1
2 CM

1
2 (whereM

1
2 M

1
2 =M ), with the same

eigenvalues asCM . We now solve

DE′
= λE′, (D1)

where E′
=M

1
2 E, since M

1
2 CM

1
2 M

1
2 U=λM

1
2 U. Having

found the POD modes, we usedE=M−
1
2 E′ to recover

Euclidean spectral space, followed by a Fast Fourier Trans-
form to transform the spatial modes back to physical grid
space. Direct comparisons can then be made between the
qualitative structures of each of the modes obtained from the
various norms.
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