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Abstract. We try to obtain a spatio-temporal model of earth-
quakes occurrence based on Information Theory and Cellular
Automata (CA). The CA supply useful models for many in-
vestigations in natural sciences; here, it have been used to es-
tablish temporal relations between the seismic events occur-
ring in neighbouring parts of the crust. The catalogue used
is divided into time intervals and the region into cells, which
are declared active or inactive by means of a certain energy
release criterion (four criteria have been tested). A pattern
of active and inactive cells which evolves over time is given.
A stochastic CA is constructed with the patterns to simulate
their spatio-temporal evolution. The interaction between the
cells is represented by the neighbourhood (2-D and 3-D mod-
els have been tried). The best model is chosen by maximiz-
ing the mutual information between the past and the future
states. Finally, a Probabilistic Seismic Hazard Map is drawn
up for the different energy releases. The method has been ap-
plied to the Iberian Peninsula catalogue from 1970 to 2001.
For 2-D, the best neighbourhood has been the Moore’s one
of radius 1; the von Neumann’s 3-D also gives hazard maps
and takes into account the depth of the events. Gutenberg-
Richter’s law and Hurst’s analysis have been obtained for the
data as a test of the catalogue. Our results are consistent with
previous studies both of seismic hazard and stress conditions
in the zone, and with the seismicity occurred after 2001.

1 Introduction

The origin of modern science is based on the idea of reduc-
tionism. Since Democritus and Epicure, the macroscopic be-
haviour of matter has been explained in terms of its final con-
stituents. This first approximation is a natural way to start
the difficult challenge of understanding nature. Indeed it has
been successful: with such a scheme we have understood the
structure of the matter by using simple elements as atoms and
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molecules. The knowledge of atoms and their structure has
explained important properties of solids, fluids and plasmas,
and has been used to transform the world in what we know
today. However, with this reductionistic scheme one cannot
explain why a metal is so different from a cell, as both of
them are built with the same atoms. Other frameworks are
needed, that of complex and/or non linear systems, where
the whole is more than the sum of its parts. Until recently,
the paradigm of science was to consider that simple systems
(with a few variables) behaved in a simple manner (ordered),
and that complex systems (with many variables) behaved in
a complex manner (disordered, at random). However, it has
been discovered that simple nonlinear systems can behave in
a chaotic form. This implies that if one observes a disordered
and complex behaviour in a system, it could effectively be a
complex system or it could be a simple one, whose dynam-
ics is chaotic. On the other hand, one could have a complex
system with simple dynamics, due to a nonlinear synchro-
nization and/or auto-organization.

Even if the relation between the low-dimensional and the
spatially-extended systems is too close, the former has a fun-
damentally different property, and this is the formation of
patterns. Spatially-extended dynamical systems in general
are described by state spaces of infinite dimensionality. If,
however, some emergent pattern or regularity in the config-
uration of a system can be found, this pattern can be used to
reduce the evolution of the system to some effectively low-
dimensional, and therefore easier, dynamics. Discovery and
identification of emergent patterns is therefore a crucial first
step in the analysis of a system. If no such patterns can be
found, the analysis must fall back on an approximate stochas-
tic model of the evolution, although even that depends for its
success on some statistical regularity in the behaviour (Han-
son, 1993). Complex systems are not predictable with ab-
solute precision; however, after a coarse-graining (on not
too detailed a scale) a system becomes predictable (Keilis-
Borok, 2003).

A spatially-extended system can be modeled by
using “Cellular Automata” (CA), a simple class of
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idealized-discrete systems, which evolve in discrete space
and time, and whose states are discrete too (Adamatzky,
1994). Each site value is updated according to rules that
specify their values in terms of the values of neighbouring
sites. In spite of its extreme simplicity, CA exhibit a wide
range of behaviour (Wolfram, 1983): stationary uniform
states, periodic ones in time and space, spatially disordered
states, with turbulent behaviour, or in continuous evolution.
For these reasons CA has been studied extensively in natural
sciences, mathematics, and computer science.

Earthquakes have been represented in terms of discrete,
spatially-extended systems, being each part of the crust in-
teracting with its neighbouring parts; this approach repro-
duces the same characteristics of self-affinity and power laws
as earthquakes show (Burridge and Knopoff, 1967; Otsuka,
1972; Bak et al., 1988; Bak and Tang, 1989; Carlson and
Langer, 1989a, b; Nakanishi, 1990, 1991; Barriere and Tur-
cotte, 1991; Olami et al., 1992; Christensen and Olami,
1992).

The discrete approach has been also used by Hirata and
Imoto (1997), Posadas et al. (2000), Posadas et al. (2002),
Gonźalez (2002) and Jiḿenez et al. (2004) for characterizing
the evolution of the seismicity in a region, and for providing
maps (Probabilistic Seismic Hazard Maps) where the level of
the future seismic activity is predicted in a probabilistic way.
In the present paper this seismic hazard model is developed,
taking into account the methods and tools of these authors.
First, some basic concepts about CA as well as important
results of the Information Theory will be presented. Next,
the seismic hazard model will be exposed and applied to a
particular region: the Iberian Peninsula. Finally, the main
results and conclusions will be summarized.

2 Cellular automata

CA supply useful models for many investigations; in partic-
ular, they represent a natural way of studying the evolution
of large physical systems (Toffoli and Margolus, 1987). They
are simple mathematical idealizations of natural systems, and
consist of a lattice of discrete identical sites, each site taking
on a finite set of integer values; values which evolve in dis-
crete time steps according to rules that specify the value of
each site in terms of the values of neighbouring sites. CA
may thus be considered as discrete idealizations of the par-

tial differential equations used to describe natural systems.
Their discrete nature also allows an important analogy with
digital computers: CA may be viewed as parallel-processing
computers of simple construction (Wolfram, 1983).

A formal definition of CA is as follows (Delorme, 1998):
a d-dimensional Cellular Automata (ord-CA), is a 4-uplet
(Zd , S, n, δ), whereZd is a regular lattice (the elements of
Zd are called cells, orc), S is a finite set, the elements of
which are the states ofc; n is a finite ordered subset (with
m elements) ofZd , called the neighbourhood ofc, and δ

(Sm+1
→S) is the local transition function or local rule ofc

(since the rules are homogeneous,δ is the same for the whole
lattice).

In the construction of a CA to simulate a specific problem,
many choices have to be made. Firstly, the available set of
states for each cell (theS set); for simplicity, only two states
are usually chosen, active or inactive (represented by black
and white, respectively, Fig. 1). However, there are other
CA with intermediate states between these two. A reason
for preferring small state sets is that only when there are few
states is it possible to specify the CA rules explicitly and store
them in a table, which is important for simulation. A reason
for using large numbers of states could be that these CA can
better approximate a continuous system.

Another choice is the selection of a specific lattice geome-
try (Zd geometry, given by the cell geometry). The definition
of CA requires the lattice to be regular. For one-dimensional
automata, there is only one possibility: a linear array of cells.
For two dimensions, three cell geometries can be selected:
triangular, square and hexagonal. The first has the advantage
of having a small number of nearest neighbours; but, it is
difficult to represent or visualize (as it is the hexagonal one).
So, the square geometry is the most commonly used, and, if
a higher isotropy would be needed, the hexagonal one is the
best. There are many possibilities in three dimensions; the
easiest to handle and represent is the cubic one.

The lattice (Zd) is defined as infinite in all dimensions.
For considerations of computability and complexity, this
is reasonable and necessary; but, of course, it is impossi-
ble to simulate a truly infinite lattice on a computer (un-
less the active region always remains finite). Therefore it
is necessary to prescribe some boundary conditions; in gen-
eral, there are three kinds of them: periodic, reflective and
fixed value. All three conditions can be combined, so that
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Fig. 2. Neighbourhoods, from left to right, the von Neumann’s with radii 1 and 2, that of Moore, of Smith and two of Cole, all in 2-D; and
von Neumann’s neighbourhood radius 1 in 3-D.

different boundaries can have different conditions. Not only
the boundary conditions have to be specified, but also the ini-
tial conditions. They can be very special (constructed from
data, for example), or they can be generated randomly.

Next, a neighbourhood (n) must be selected. The neigh-
bourhood of a cellc (including the cell itself or not, accord-
ing to the convention used) is the set of cells which will
determine the evolution ofc. It is finite and geometrically
uniform. A neighbourhood can be any ordered finite set,
but some special ones are mainly considered. Classic neigh-
bourhoods are those of von Neumann and Moore. They are
known as the “nearest neighbours neighbourhoods”, and de-
fined according to the usual norms‖z‖1 , ‖z‖∞ , and the as-
sociated distances. More precisely, ifz=(z1, ..., zd):

‖z‖1 =

∑d

i=1
|zi |

‖z‖∞ = Max {|zi | /i ∈ {1, ..., d}}

with d1 andd∞ their associated distances.
This gives for the von Neumann’s neighbourhood:

nV N (z) = {x/x ∈ Zdy d1 (z, x) ≤ 1} with a given order,

and for the Moore’s neighbourhood:

nM(z) = {x/x ∈ Zdy d∞ (z, x) ≤ 1} with a given order.

Other interesting neighbourhoods appear in literature
(Weimar, 1998; Delorme, 1998) and some of them are repre-
sented in Fig. 2. Together with a modification of the rules, the
extension of the neighbourhood sometimes leads to a much
better isotropy, and is therefore often used when natural phe-
nomena have to be modelled. Note that a large neighbour-
hood is usually very inefficient to simulate.

The most important aspect of a CA is the transition rule
or transition function,δ. It depends on: the lattice geometry,
the neighbourhood, and the state set. Even though the transi-
tion rule most directly determines the evolution, it is in many
cases not possible to predict the evolution of a CA other than
by explicitly simulating it. The transition function can be
expressed in many different ways, being the most direct to
write down the outcome for each possible configuration of
states in the neighbourhood. Further simplification can of-
ten be achieved by grouping states together according to the
symmetries of the lattice. Also, they can be implicit, in that
the detailed rule has to be evaluated from some formula. In
classical Cellular Automata Theory a rule is called totalistic

if it only depends on the sum of the states of all cells in the
neighbourhood. It is called outer totalistic if it also depends
on the state of the cell to be updated. Another classification
is to distinguish between deterministic or probabilistic rules.
In the first case, the transition rule is a function which has ex-
actly one result for each neighbourhood configuration. This
corresponds to a Markov chain. However, probabilistic rules
provide one or more possible states with associated proba-
bilities, whose sum must be one for each input configuration
(Weimar, 1998). In this case a model which is equivalent
to a hidden Markov chain is obtained (Upper, 1997). Other
classes are the so-called fuzzy CA, the hierarchical ones, or
the exotic CA (Adamatzky, 1994).

3 Information theory

Information Theory confronts the problem of constructing
models from experimental data series. These models are
used to make predictions, but the underlying dynamics is
unknown (or known but with a high dimensionality and
thus incomputable). The limits of the predictive ability im-
ply a loss of information, and motive the use of the for-
malism and concepts of “Information Theory”. This the-
ory, widely developed by Shannon (1948) and Shannon and
Weaver (1949), often provides a natural and satisfactory
framework for studying the predictability. Shannon studied
the basic problem in sending and receiving messages, and
realized that it was a statistical one. If messages are com-
posed of an alphabetX with n symbols having the transmis-
sion probabilities (p1,. . . ,pn), the amount of information in
a message is defined as:

H(X) = −K

n∑
i=1

pi logpi, (1)

whereK is a positive units-dependent constant. Shannon ar-
rived at this expression through arguments of common sense
and consistency, along with requirements of continuity and
additivity. Because information is often transmitted in strings
of binary digits, it is conventional in Communication Theory
to take the logarithm to the base 2 and measureH in “bits”.
Thus,H quantifies the average information per symbol of in-
put, measured in bits. Later, Jaynes (1957a, b) made a rigor-
ous connection between Information Theory and the Physics.
Whereas Shannon envisioned the set{pi} as given in Com-
munication Theory, Jaynes turned the interpretation around
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Fig. 3. Driscretization process at each interval of time.

to utilize available information to determine the probabili-
ties.

The problem here is describing and quantifying the pre-
dictability of a stream of numbers obtained from repeated
measurements of a physical system. Shannon restricted his
discussion to the transmission of information from a trans-
mitter to a receiver through a channel, each with known sta-
tistical properties:p(x) describing the distribution of possi-
ble transmitted messagesx∈X, p(y) the distribution of pos-
sible received messagesy∈Y , and the properties of the chan-
nel connecting the two distributions is contained in the con-
ditional distributionp(x|y), the probability of receiving mes-
sagey given that messagex was transmitted. A dynamical
system communicates some information, but not necessary
all, about its past state into the future; the conditional dis-
tribution describes the causal connection between past and
future, given by the system dynamics. Then, the problem
of prediction, formally at least, becomes simple: givenp(x)

andp(x|y), computep(y).
The amount of information that a random variableX con-

tains about other random variableY can be expressed by the
“mutual information”. To explain its meaning, it is neces-
sary first to define the Kullback-Leibler’s distanceD(p||p′),
also called relative entropy, which represents the distance be-
tween two probability distribution functions,p andp′, of the
same variable (Cover and Thomas, 1991):

D(p||p′) =

∑
p log2

p

p′
(2)

This distance can be interpreted as a measure of the impre-
cision made by assuming a distributionp′ when the true dis-
tribution isp. With this quantity the mutual information,µI ,
is then defined as the relative entropy between the joint prob-
ability distributionp(x, y) and the distribution given by the
marginal probabilitiesp(x) andp(y) (Fraser and Swinney,
1986):

µI (X; Y ) =

n∑
i=1

m∑
j=1

p(xi, yj ) log2
p(xi, yj )

p(xi)p(yj )
(3)

Note that whenX andY are independent,p(x, y)=p(x)p(y)

(definition of independence),µI (X; Y )=0. This makes
sense: if they are independent random variables, thenY will
not tell us anything aboutX.

If X represents the seismicity of a region at a certain time
andY the seismicity at the same place but at a next interval
of time, they will be related; the mutual information between
them is an appropriate measure of how independent they are.

But this measurement depends on the time intervals consid-
ered, as well as the way the areas which interact are defined,
so that they establish a reasonable simplification of the real
seismicity.

4 The method

4.1 The model

There is sustantial evidence of complex dynamics in the
Earth’s crust. Following the “Tectonic Plates” theory, ad-
vanced by Wegener (1912), the lithosphere is composed by
a network of blocks (plates) which float over a viscous zone
(asthenosphere) and interact between themselves. There are
three main plate tectonic environments: extensional, trans-
form, and compressional. Plate boundaries in different lo-
calities are subject to different inter-plate stresses, produc-
ing several types of earthquakes. The system lithosphere-
asthenosphere, with the different plate interactions, forms a
dynamical system of non linear, coupled equations, which
consist in both internal plate equations (stresses, deforma-
tions, ruptures, etc.) and relative plate movements. Such a
system presents an extremely complex behaviour, although
the equations are deterministic, because of their non lin-
earity and coupling. This leads to a chaotic and/or com-
plex approach to the seismologic studies, as in Crutchfield
et al. (1986), Keilis-Borok (1990), Sotolongo et al. (2000)
for example, or to consider the crust as blocks which interact
(Burridge and Knopoff, 1967; Carlson and Langer, 1989a, b;
Rundle et al., 1996).

Here we deal with a discrete representation of the seis-
mic region, where each site is interacting with its neighbour-
ing sites; the model is a CA, and it simulates the spatio-
temporal evolution of the different seismic patterns obtained
from the discretization process. More precisely, the model
is a stochastic CA outer totalistic, whose boundary condi-
tions are fixed (inactive edges) and whose initial conditions
are given by the data. The class of CA chosen is the stochas-
tic one because there are only two available states, and it is a
generalization of a deterministic CA.

The seismic model proposed has four basic elements: a
coarse-graining of the data, both spatially (the lattice is con-
structed) and temporally; an activation criterion for the cell,
that will lead to a simplification of the seismicity by assign-
ing one of the two available values for each cell, active or
inactive (theS set), and that will provide the seismic pat-
tern, or lattice configuration, for each time; the template or
neighbourhood,n, (2-D or 3-D) that determines how the cells
interact; finally, the transition function,δ, which best repro-
duces the pattern series.

The first two elements cited before, which lead to the
pattern construction, are made by following the proposal
of Hirata and Imoto (1997), Posadas et al. (2000, 2002),
Gonźalez (2002) and Jiḿenez (2004): the seismic catalogue
is divided inton′ time intervals of lengthτ ; a coarse-graining
is carried out for eachτ , by dividing the region intoNd cells,
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Fig. 4. Correlation functions of the simulations made for the 2-D von Neumann’s neighbourhood of radius 1 with theα1 criterion and the
abridged catalogue. The Hamming distances are 12 and 9, respectively.

with N being the number of bins, or number of cells in one
spatial dimension, andd the selected dimension; a state (ac-
tive or inactive) is assigned in function of a determined acti-
vation criterionα.

The activation criterion homogenizes the information con-
tained in each cell at each interval of time, and determines
the pattern series to be fitted. In the works previously cited,
a cell is declared active in a time intervalτ if the number
of events in that cell is greater than or equal to the average
of the whole region at that interval. However, four different
activity criteria have been here evaluated to give an adequate
importance to the areas with less number of events, but with
high magnitudes. A cell will be considered active if:

α1) the accumulated energy of the events at a time interval
τi is greater than or equal to the average of the whole
region at the same interval;

α2) the accumulated energy is greater than or equal to a
threshold energy;

α3) the maximum magnitude is greater than or equal to a
threshold magnitude;

α4) the accumulated energy of the events until a time inter-
val τi is greater than or equal to the average of the whole
region.

The data set has been then translated to a CA representa-
tion, where time, space and states are discrete (Fig. 3). The
α1 andα4 criteria provide an approach of the places where
the maximum activity is foreseen. More precisely, theα4 cri-
terion would be similar to the macroseismic studies, where
the seismic hazard is evaluated from the whole catalogue in
a zone. Theα2 andα3 criteria mark the areas where cer-
tain energy is expected to be surpassed (accumulated or peak
energy).

The problem of obtaining the transition rules is an inverse
one: given a pattern series, theδ function which best fits
them has to be found. For each neighbourhood configuration
there is a certain probability for each cell of being active or

inactive in the future (Jiḿenez et al., 2004); two neighbour-
hood configurations are considered equivalent if they have
the same number of active neighbouring cells. The real prob-
ability distributions can be obtained directly from the data,
by using the Laplace probability concept (p(x)=favorable
cases/possible cases). Thus, the CA rules are the dynami-
cal model of the system, and characterize its spatio-temporal
evolution.

Since there is no a priori knowledge of the best neighbour-
hood to be used in the particular case of the seismic activ-
ity, some of them have been tried: those denoted as “nearest
neighbours neighbourhoods”, in 2-D (von Neumann’s radius
1, and Moore’s) and 3-D (von Neumann’s), and those of in-
teraction at a longer distance (von Neumann’s radius 2, in
2-D).

Having fixed the activation criterion and the neighbour-
hood, theδ function depends on the number of time intervals,
n′, and the number of cell,Nd . For choosing the best config-
uration of both of them, it is necessary to use the results of the
Information Theory. The mutual information is the function
which measures the dependence between two variables, and
its maximization gives the maximum dependence between
these two variables. In this work, it is made by a grid-search
in n′ andN . As an example, for the von Neumann’s neigh-
bourhood of radius 1 in 2-D, the mutual information can be
expressed as:

µI =

1∑
i=0

1∑
j=0

4∑
k=0

p(i; j, k) log2
p(i; j, k)

p(i)p(j, k)
(4)

beingp(i; j, k) the joint probability of past and future states,
andp(i)p(j, k) a distribution of independent states;(i) rep-
resents the central cell in the future, and(j, k) the central
and neighbouring cells in the past. For the Moore’s neigh-
bourhood, thek index is extended to 8, which is the maxi-
mum number of neighbouring cells. Once having then′ and
N which maximizeµI , the stochastic CA rules are calcu-
lated from the histograms of occurrence for each transition.
Finally, this function is applied to the last real pattern for
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Fig. 5. Epicenter distribution of the earthquakes occurred in the
Iberian Peninsula between 1970 and 2001.

constructing a Probabilistic Seismic Hazard Map for each en-
ergy level (or magnitude) at the nextτ in the future.

4.2 Simulations and tests

The pattern recognition technique previously exposed needs,
to be complete, to include some tests which will inform about
its fitness and will quantify the error levels in the method.
These tests are used here for the first time in this kind of
analysis, and are based on the simulation of the patterns and
their comparison with the real ones. First, it is necessary
to obtain the simulated patterns from the previous ones, and
then to compare them with those that actually occurred. To
generate the simulated patterns att+τ from the real ones at
time t , the CA rules of the model chosen have to be applied,
and an activation probability is obtained for each cell. Then,
the cells have to be declared active or inactive regarding these
probabilities. One possibility for deciding the value of the
threshold probability is to simulate the patterns for several
densities of active cells, and the nearest value to the real one
is chosen as the cutting probability (Posadas et al., 2000).

Once the real and simulated patterns for each time are
obtained, some mathematical tools are needed to compare
them. Those selected here are the correlation function (Vic-
sek, 1992) and the Hamming distance. The first represents
the probability of finding two points in the same sphere of
radiusr, by measuring the number of pointsx that are con-
tained in a sphere of radiusr centered at the pointy (Grass-
berger and Proccacia, 1983). The comparison between the
real and simulated correlation functions informs about the
similarity of both patterns. The Hamming distance is a com-
mon way to compare two bit patterns, and it is defined as
the number of bits different in the two patterns (Ryan and
Frater, 2002). More generally, if two ordered lists of items
are compared, the Hamming distance is the number of items
that do not identically agree. This distance is applicable to

encoded information, and is a particularly simple metric of
comparison. A complete study about tests and simulations
was carried out for all the cases; as an example, the cor-
relation functions of the simulation made for the 2-D von
Neumann’s neighbourhood with theα1 criterion are shown
(Fig. 4).

5 Data

The crustal deformation in the Iberian Peninsula, northwest-
ern Africa and the adjacent offshore areas is controlled by
the Africa-Eurasia plate collision and extensional processes
in the western Mediterranean Basin and Alboran Sea. The
regional seismicity is characterized by a diffuse geographi-
cal distribution and from low to moderate magnitudes. Only
in the Atlantic Ocean and northern of Algeria, seismic-
ity appears to be focused around a linear plate boundary,
and moderate to large earthquakes occur with a certain fre-
quency. Earthquakes are rarely exceeding magnitude 5.0 on
the Iberian Peninsula, northern Morocco, the westernmost
Mediterranean Sea and the Atlantic Ocean south of Portugal
(Stich et al., 2003).

The data used here has been recorded by the Geographic
National Institute, which runs the National Seismic Network
with 42 stations, 35 of them of short period, connected in real
time with the Reception Centre of Seismic Data in Madrid.
The catalogue, with more than 10 000 earthquakes in the re-
gion between 35◦ north and 45◦ north latitude and between
15◦ west and 5◦ east longitude, contains all the seismic data
in the Iberian Peninsula and northwestern Africa collected in
the period 1970–2001 (Fig. 5). Their depths range from 0 to
146 km, and the magnitudes are between 1.0 and 6.5 (mb).
The averaged error in the hypocentral localization at the di-
rections X, Y and Z are±5 km,±5 km and±10 km, respec-
tively, for the data recorded until 1985, and±1 km, ±1 km
and±2 km for those acquired since then.

Two tests have been made, to describe the nature of the
data series (Gutenberg-Richter’s law) and their predictability
(Hurst’s exponent). In first place, the frequency-magnitude
distribution of earthquakes is expressed by the Gutenberg-
Richter’s relation (Richter, 1958):

logs = a − bM, (5)

wheresis the number of shocks of magnitudeM or greater,a
andb are constants. This relationship shows that the number
of earthquakes declines logarithmically with the increase in
magnitude. The extent of this decline is expressed by theb-
value which is normally close to 1.0 (Mogi, 1985). Studies
of Mogi (1963) and Scholz (1968) reveal that theb-value
depends on the percentage of the rate of the existing stress
to the final breaking stress within the fault. Also it depends
on the mechanical heterogeneity of the rock and increases
with the increase in heterogeneity. The high values ofb are
considered as a result of the low stresses in the zone, so that
small earthquakes rather than large ones are more likely to
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occur. The expression of the Gutenberg-Richter’s law for the
used data set is:

logs (m) = (6.45± 0.08) − (0.982± 0.018) m (6)

with a correlation coefficient of 0.985. Theb-value can be
interpreted as the result of a region where the stresses are
relatively low. However, the seismicity can better be charac-
terized with the value ofa/b (Yilmaztürk and Burton, 1999)
which is of 6.57±0.20, and corresponds to a seismic area
with high activity.

Another analysis has been made: the rescaled range
statistical analysis, or “R/S analysis”; it was initiated by
Hurst (1951) to describe the long-term dependence of wa-
ter levels in rivers and reservoirs. It provides a sensitive
method for revealing long-run correlations in random pro-
cesses. There are two factors: the rangeR, the difference
between the minimum and maximum accumulated values or
cumulative sum ofX (t , T ) of the natural phenomenon at
discrete integer-valued timet over a time spanT , and the
standard deviationS, estimated from the observed valuesXi

(t). Hurst found that the ratioR/S is very well described
for a large number of natural phenomena by the following
empirical relation:

R/S = (aT )H , (7)

whereT is the time span,a is a constant andH the Hurst’s
exponent.

Lomnitz (1994), using Hurst’s method to study the earth-
quake cycles, found that these have the behaviour of the so-
called “Joseph effect” (Mandelbrot and Wallis, 1968): quiet
years tend to be followed by quiet years, and active years by
active years. This corresponds to a Hurst’s exponent greater
than 0.5. However, Ogata and Abe (1991) obtained values
of H of about 0.5, with data from Japan and from the whole
world. This means that successive steps are independent, and
the best prediction is the last measured value. The best fit
for our data set givesH=0.48±0.02, with a correlation co-
efficient of 0.93. This result is in agreement with the one
obtained by Ogata and Abe (1991).

6 Results

The method is applied for the neighbourhoods, arranged ac-
cording to the complexity of their analysis: 2-D von Neu-
mann’s template (r=1), 2-D Moore’s template (r=1), 3-D
von Neumann’s template (r=1) and 2-D Neumann’s template
(r=2). For a further comparison, the minimum numberN of
bins evaluated is 10 for every case. This is necessary, because
there are some neighbourhoods like that of von Neumann’s
with radius 2 in 2-D, or the one in 3-D, which need more
cells to be statistically representative.

6.1 2-D von Neumann’s neighbourhood,r=1

The main results obtained with this neighbourhood (Fig. 2a)
are summarized in Table 1. The rules for theα1 criterion

Table 1. Von Neumann’s neighbourhood (r=1, 2-D): activation cri-
terion, threshold energy-magnitude (m), number of time intervals
(n′), with the corresponding time lengthτ , and number of bins (N)

for the maximum of the mutual information (µI ) in bits; n′ andN

used for the simulation, and its error. (*) With the abridged cata-
logue. 

 

Simulation Criterion m n’ (ττττ in years) N µI 

n' N Error 
α1 (5.4) 5 (6) 10 0.07 5  10 6% 
α2 2.0 8 (3.75) 11 0.38 8 11 20% 
α2 2.5 8 (3.75) 11 0.39 8 11 20% 
α2 3.0 4 (7.5) 16 0.38 3 10 21% 
α2 3.5 2 (15) 15 0.38 2 15 19% 
α2 4.0 2 (15) 10 0.38 2 10 20% 
α2 4.5 3 (10) 10 0.23 3 10 20% 
α2 5.0 2 (15) 10 0.13 2 10 17% 
α3 2.0 8 (3.75) 11 0.38 8 11 19% 
α3 2.5 8 (3.75) 11 0.39 8 11 20% 
α3 3.0 4 (7.5) 16 0.38 3 10 21% 
α3 3.5 2 (15) 12 0.33 2 12 19% 
α3 4.0 2 (15) 10 0.33 2 10 22% 
α3 4.5 2 (15) 10 0.18 2 10 23% 
α3 5.0 2 (15) 10 0.13 2 10 17% 
α4 (4.8) 198 (0.15) 10 0.22 198 10 0.2% 
α1* (4.6) 3 (10) 10 0.13 3 10 11% 
α4* (4.0) 100 (0.3) 10 0.48 100 10 0.5% 

 

are the followings: if a cell is inactive, it will continue inac-
tive with a high probability (∼90%); an active one has 80%
probability of becoming inactive if there is one or no neigh-
bouring active cell, and 50% for inactivity if it has two neigh-
bouring active cells. The error, in terms of cells failed, is of
6%; the correlation functions are very similar; and sudden
changes in the patterns could not been modeled as well as
required.

By using theα2 criterion andm=2.0–3.5, for an initially
inactive cell the probability of continuing inactive is around
85–60% if it has less than three neighbouring active cells,
and with three cells, it is more probable (60%) that it will be
active at a next interval of time. For four neighbouring active
cells, the probability of activity is around 80%. When a cell
is initially active, there is a 60% probability of remaining ac-
tive with only one neighbouring active cell. This probability
rises until 97% in the case of four neighbouring active cells.
If there is none, the probability of future inactivity is 70%.
For m=4.0–4.5, the calculated model estimates higher prob-
abilities of inactivity for initially inactive cells (80%), and
for those active ones with less than two neighbouring active
cells (60%). The probability of activity for the configura-
tions with more than two neighbouring active cells is 90%.
With m=5.0, the proposed model estimates that there is a
high probability that an inactive cell will continue inactive,
whereas an active one will continue being active if it has two
neighbouring active cells. Due to the high magnitude thresh-
old value, the other configurations with more neighbouring
active cells have not been catalogued.

With theα3 criterion we have: for a threshold magnitude
of 2.0, the results are the same as those for theα2 criterion,
becausem=2.0 is the lowest magnitude of the events; also for
m=2.5–3.0 the results are the same as forα2. However, there
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Table 2. Moore’s neighbourhood (r=1, 2-D): activation criterion,
threshold energy-magnitude (m), number of time intervals (n′),
with the corresponding time lengthτ , and number of bins (N) for
the maximum of the mutual information (µI ) in bits;n′ andN used
for the simulation, and its error. (*) With the abridged catalogue. 

 

Simulation Criterion m n’ (ττττ in years) N µI 

n' N Error 
α1* (4.6) 3 (10) 10 0.22 3 10 9% 
α2 2.0 8 (3.75) 11 0.45 7 11 19% 
α2 2.5 8 (3.75) 11 0.45 7 11 19% 
α2 3.0 8 (3.75) 11 0.44 8 11 20% 
α2 3.5 2 (15) 12 0.40 5 11 21% 
α2 4.0 2 (15) 12 0.47 2 12 17% 
α2 4.5 2 (15) 10 0.34 2 11 18% 
α2 5.0 2 (15) 10 0.11 2 11 16% 
α3 2.0 8 (3.75) 11 0.45 7 11 19% 
α3 2.5 8 (3.75) 11 0.44 8 11 20% 
α3 3.0 8 (3.75) 11 0.43 8 11 21% 
α3 3.5 2 (15) 10 0.39 2 10 19% 
α3 4.0 2 (15) 10 0.44 2 12 19% 
α3 4.5 2 (15) 12 0.34 2 13 13% 
α3 5.0 2 (15) 10 0.11 2 12 11% 
α4* (4.0) 98 (0.3) 10 0.48 98 10 0.6% 

 

are some differences form=3.5: the CA rules calculated esti-
mate that there is a high probability (80%) for a cell remain-
ing inactive if it is initially inactive. If it is initially active, it
has an increasing probability of continuing active with an in-
creasing number of neighbouring active cells (60% to 90%).
Form=4.0, the most probable is that the cell remains inactive
(between 70% and 100%), if the cell is not initially active and
has one or more neighbouring active cells; in such a case,
the probability of activity is of 60–100%, increasing with the
surrounding activity. Withm=4.5 the preceding behaviour is
reproduced, although it is necessary that the active cell has at
least two neighbouring active cells to continue with its activ-
ity in the future. Form=5.0, the transition function obtained
is the same as for theα2 criterion.

The α4 criterion behaves in a different manner from the
others: the information is higher with the increase of then′

values, tending asymptotically to a value of 0.22 bits. Also
its average along then′ axis tends to a value of 0.16 bits.
The average along theN axis is maximum atN=10. The
errors are low (0.2%). According to the simulation, there is a
probability of 90% of continuity in the seismic activity of the
cell, and a probability of 99% for an inactive cell remaining
inactive.

For bothα1 andα4 criteria it is necessary to know the
average energy of all the cells, as the activity of a cell is de-
termined by comparing the energy released in the cell with
the average one at the same interval of time. This energy
is characteristic for each analyzed zone, being higher in re-
gions whose earthquakes present a higher magnitude. With
theα1 criterion, the averaged energy is the one correspond-
ing to a magnitude of 5.4; forα4 it is the one for a magnitude
of 4.8. In fact, the places more likely to have activity are
those of higher energy releases: the northern Algeria, and at
a region of the Atlantic Ocean, near Lisbon. There are sev-
eral events whose magnitude is higher thanm=5.0; because

of their occurrence these zones are considered as seismically
active with theα4 criterion. But, due to the general continu-
ity behaviour in the activity of the central cell, and to the fact
that the goal of this study is to provide a Probabilistic Seis-
mic Hazard Map for the Iberian Peninsula, the events of the
two areas previously cited (Algeria and Lisbon) have been
always removed from our analysis for both criteria (abridged
catalogue). The main results are shown at the bottom of Ta-
ble 1; for theα1 criterion, the transition function predicts a
high probability of inactivity (90%) for cells initially inac-
tive, and a moderate one (60%) for the cells previously ac-
tive; the averaged energy corresponds to a magnitude of 4.6.
With theα4 criterion, the CA rules show that the activity or
inactivity of the central cell does not change. The averaged
energy difference between consecutive intervals of time cor-
responds to a magnitude of 4.0.

6.2 2-D Moore’s neighbourhood,r=1

For this template (Fig. 2c) the results can be found in Ta-
ble 2. For the first activation criterion, if a cell is inactive,
it will remain inactive with a probability of 80%; an active
cell with only one neighbouring active cell has a 50% prob-
ability of continuing active; if it has two neighbouring active
cells, it is more likely to remain inactive, and, if it has three
or four, it will continue active with complete probability. The
characteristic energy corresponds to approximatelym=4.6.

For theα2 criterion: withm=2.0–3.0, an inactive cell is
more likely to continue inactive (80%) if there are less than
seven neighbouring active cells; otherwise, it has a higher
probability (60%) of becoming active. For an active one,
there is a higher probability (80%) of continuing active in
the future, unless it has got less than two neighbouring ac-
tive cells. In this case, it is more likely to become inactive
(70%). Form=3.5, the probability of continuity in the origi-
nal state is 80%. Form=4.0, the behaviour is similar; but, if
the cell is inactive and has 5 or 6 neighbouring active cells,
it has a higher probability of becoming active in the future
(80%). This also occurs form=4.5 andm=5.0 with an inac-
tive cell and 6 and 5, respectively, neighbouring active cells.
The other configurations behave the same as withm=4.0.

With regard to theα3 criterion, for thresholds of 2.0 and
2.5, the results are similar to theα2 criterion, as it was for
the von Neumann’s neighbourhood. From the CA rules, it
can be deduced that, for an inactive cell, the probability of
remaining inactive in the future is high if it has four or less
active neighbouring cells (90% to 60%, decreasing with the
increase of the number of surrounding active cells). If it has
more than four, the probability is 50%. Likewise, if a cell
is initially active, it will continue active at least with 60%,
increasing up to 100% with the increase of the number of
neighbouring active cells (more than two). If it has less than
two, it is more likely that it becomes inactive (∼70%). With
a threshold magnitude of 3.0, for an inactive cell there is
around 60–90% probability for continuing inactive, increas-
ing this probability with the decrease of the number of neigh-
bouring active cells. However, if a cell is considered active,
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for staying active needs two or more neighbouring active
cells. Form=3.5, if a cell is considered inactive, it has 100–
60% probability of remaining inactive, with less than four
neighbouring active cells. The higher the surrounding activ-
ity the lower the probability of continuing inactive. If it is
previously active, it is more likely to continue being active.
With m=4.0, an inactive cell with five or six neighbouring
active cells has a probability of 75% and 100%, respectively,
of becoming active. For the other cases, the cell remains
inactive with a probability that oscillates between 80% and
100%. If the cell is initially active, the probability of desacti-
vation is 70% if it has less than two neighbouring active cells.
With two or more, it is more likely the activity, increasing the
percentage with the number of neighbouring active cells. The
results form=4.5 are: the only configurations which predict
activity are those where the central cell is previously inactive
with three neighbouring active cells, and those where the cell
is active but with 3, 4 or 7 neighbouring active cells. Finally,
with m=5.0, the transition function estimates that a cell will
be activated (70%) if it is previously active with three neigh-
bouring active cells. If there are less than three, the proba-
bility of being inactive in the future is of 90%, on average.
As with α2 criterion, there are no configurations with more
active cells, because of the high threshold magnitude.

With the α4 criterion: the behaviour is similar to that of
the von Neumann’s neighbourhood (2-D,r=1). The time in-
tervals averaged energy is the one of a magnitude 4.0. With
regard to the transition function, its trend is to conserve the
state of the central cell, with independence of the surround-
ing activity; the error is of 0.6% of failed cells.

6.3 3-D von Neumann’s neighbourhood,r=1

As an example of interaction in three dimensions, the von
Neumann’s neighbourhood of radius 1 is studied (Fig. 2g).
The catalogue, is this case, is divided not only for the latitude
and longitude, but for the depth too. Firstly, according to
theα1 criterion (Table 3), if a cell is inactive, it will go on
being inactive with a 85–99% probability; an active one has
more than 50% probability of activation in the future if it has
three or more neighbouring active cells. Otherwise, it will
remain inactive at a next interval of time. The characteristic
magnitude ism=4.3.

For theα2 criterion, and for any magnitude, a cell remains
inactive with about a probability of 98% if no other cell in
its neighbourhood is previously active. The probability of
activation increases with the number of neighbouring active
cells; if it has three or four, there is a 50% probability for
activation, and 90% if there are six. This occurs untilm=4.0,
where an inactive cell is more likely to remain inactive, inde-
pendently on the number of neighbouring active cells. This
can be interpreted as that the higher energy releases occur al-
ways at the same sites. However, if a cell is active, the next
interval of time will be more likely to be inactive if there are
less than two neighbouring active cells; with two active cells,
the estimated probability of activation is 70%, and increases
until 100% where there are six.

Table 3. Von Neumann’s neighbourhood (r=1, 3-D): activation cri-
terion, threshold energy-magnitude (m), number of time intervals
(n′), with the corresponding time lengthτ , and number of bins (N)

for the maximum of the mutual information (µI ) in bits; n′ andN

used for the simulation, and its error. (*) With the abridged cata-
logue. 

 

Simulation Criterion m n’ (ττττ in years) N µI 

n' N Error 
α1* (4.3) 2 (15) 11 0.07 2 10 4.5% 
α2 2.0 2 (15) 10 0.38 2 10 19% 
α2 2.5 2 (15) 10 0.38 2 10 19% 
α2 3.0 2 (15) 10 0.40 2 11 19% 
α2 3.5 2 (15) 10 0.31 2 10 20% 
α2 4.0 2 (15) 10 0.18 2 11 17% 
α2 4.5 2 (15) 10 0.06 2 10 7% 
α2 5.0 2 (15) 10 0.03 2 10  6% 
α3 2.0 2 (15) 10 0.45 2 10 10% 
α3 2.5 2 (15) 10 0.44 2 11 10% 
α3 3.0 2 (15) 10 0.40 2 11 11% 
α3 3.5 2 (15) 10 0.29 2 10 9% 
α3 4.0 2 (15) 10 0.17 2 10 6% 
α3 4.5 2 (15) 10 0.06 2 10 4% 
α3 5.0 2 (15) 10 0.03 2 10 2% 
α4* (3.6) 91 (0.3) 10 0.18 91 10 1% 

 

With theα3 criterion the results are: if a cell is initially in-
active, has a 98% probability of remaining inactive if there is
no neighbouring active cell. This percentage diminishes and,
when there are three or more surrounding active cells, the
probability of activation is of 60%, increasing with the in-
crease of the surrounding activity. Otherwise, if a cell is pre-
viously active, has 80% probability of desactivation if there
are less than two neighbouring active cells; if there are two or
more, the probability of remaining active increases with the
number of neighbouring active cells (from 70% to 100%).
This behaviour is carried out untilm=3.0; for higher mag-
nitudes, when a cell is initially inactive, it is more likely to
continue inactive. Also, the probability of activation for the
active cell decreases with an increasing magnitude.

Finally, according to theα4 criterion, the mean energy to
be surpassed is calculated to be the one corresponding to a
magnitude of 3.6, and the seismicity is clearly clustered. The
most probable is that an inactive cell remains inactive, and an
active one continues being active, with a probability around
95% in both cases.

6.4 2-D von Neumann’s neighbourhood,r=2

So far, the analysis (in 2-D or 3-D) of interaction has cor-
responded to the so-called “nearest neighbouring neighbour-
hoods”. Here we study other neighbourhood where there is
an interaction of longer range. It is composed by two parts:
the nearest one, similar to the Moore’s neighbourhood of
radius 1, and other, the far-out one, with four cells cross-
disposed (Fig. 2b). The expression for the mutual informa-
tion in this case is:

µI =

1∑
i=0

1∑
j=0

8∑
k=0

4∑
l=0

p(i; j, k, l) log2
p(i; j, k, l)

p(i)p(j, k, l)
(8)
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Table 4. Von Neumann’s neighbourhood (r=2, 2-D): activation cri-
terion, threshold energy-magnitude (m), number of time intervals
(n′), with the corresponding time lengthτ , and number of bins (N)

for the maximum of the mutual information (µI ) in bits; n′ andN

used for the simulation, and its error. (*) With the abridged cata-
logue. 

 

Simulation Criterion m n’ (ττττ in years) N µI 

n' N Error 
α1* (4.6) 3 (10) 10 0.26 3 10 8% 
α2 2.0 18 (1.7) 10 0.59 18 10 19% 
α2 2.5 18 (1.7) 10 0.59 18 10 19% 
α2 3.0 6 (5) 10 0.58 9 11 21% 
α2 3.5 2 (15) 12 0.60 6 11 20% 
α2 4.0 2 (15) 10 0.65 7 10 20% 
α2 4.5 2 (15) 10 0.47 6 10 15% 
α2 5.0 2 (15) 10 0.19 5 10 9% 
α3 2.0 18 (1.7) 10 0.59 18 10 19% 
α3 2.5 18 (1.7) 10 0.59 18 10 20% 
α3 3.0 6 (5) 10 0.58 6 11 18% 
α3 3.5 2 (15) 10 0.60 8 11 24% 
α3 4.0 2 (15) 10 0.64 7 10 20% 
α3 4.5 2 (15) 12 0.42 6 10 17% 
α3 5.0 2 (15) 10 0.19 5 10 9% 
α4* (4.1) 48 (0.6) 10 0.48 48 10 1% 

 

with p(i; j, k, l) being the joint probability of past and future
states, andp(i)p(j, k, l) a distribution of independent states;
i represents the state of the central cell in the future andj

its past state, withk nearest andl far-out neighbouring active
cells, in the past.

With theα1 criterion, it can be observed that the cells are
clustered, and there is not much interaction with the four
cross-disposed cells. This can be due to the low number of
cells involved, but the models with more cells behave the
same. So the model forN=10 is chosen (Table 4). If a cell is
inactive, it will continue inactive with an averaged probabil-
ity of 90%; an active cell with a nearest active and one or two
far-out active cells has 100% probability of continuing active
(if there is no far-out active cell, it will be inactive); if there
are two active cells it is more likely that it remains inactive,
and, if it has three or four, with complete probability it will
continue to be active. The characteristic magnitude ism=4.6,
approximately. It has to be noted that the best model is equal
to the one obtained with the Moore’s neighbourhood.

For theα2 criterion, andm=2.0–2.5, if a cell is inactive,
and it has less than five nearest neighbouring active cells, it
will continue inactive in most of the cases (80%); when there
are active five nearest cells and also three or more external
ones, it will activate in the future with 60–80% probability;
starting from six nearest neighbouring active cells, in most
of the cases the configurations have more probability of ac-
tivation in the future. If a cell is active, it will be inactive
if it has less than one nearest and two external active cells
(70% probability of desactivation); otherwise, in general, the
cell will go on being active, with high probability (∼70–
90%). Form=3.0, an inactive cell, with less than four nearest
and three external active cells will remain inactive (60–90%
probability, diminishing with the increasing of active cells);
for most of the other configurations, the activation or desac-

tivation oscillates around the 50% probability. If the central
cell is active, it needs, at least, other nearest and two exter-
nal neighbouring active cells to continue being active. As the
number of neighbouring active cells increases, the probabil-
ity rises too, until 100%, when all the cells are active. For
m=3.5, one inactive cell will go on being inactive with high
probability (70%), unless there were four nearest and three
external active cells (70% probability of activation). When
the central cell is active it does not go on being active until it
has two nearest and two external active cells. Withm=4.0–
5.0, an inactive cell will remain inactive, independently on
the surrounding activity (80% probability in average); if the
cell is active it is more likely to become inactive (60%), if it
has less than two nearest and one external active cells. With
these magnitudes there is difficulty in choosing an adequate
model, because these energy levels are reached in set places,
and the configurations with high number of active cells are
not present. In general, inactive cells remain inactive (90%
probability), and the activation is produced when the central
cell is active, and there is a total of four neighbouring active
cells.

And for the α3 criterion we have: withm=2.0–2.5, the
simulation for the global maximum predicts that if a cell is
initially active, it will continue active with high probability
(80–90%) in most of the cases. However, when the central
cell has five or more nearest and three or more external active
cells, the probability of activation in the next time interval is
70%. With regard to the initially active cells, they do not set-
tle on activity until they have more than three nearest active
cells. Thus, the activation probability increases with the total
number of active cells (60–95%). Withm=3.0, if a cell is
active, it is more likely (∼80%) that it changes to inactive. If
the central cell has seven or eight nearest and more than two
external active cells, the probability of activation is 80% in
average. However, if a cell is previously active, it will not be
active in the future if it has less than two nearest and two ex-
ternal active cells. The probability of activation is, then, 90%
in average. Form=3.5, in most of the cases, when the central
cell is inactive, it goes on being inactive (70–100%). This
does not occur with: four nearest and three external active
cells (60% probability of activation), five nearest and three
external ones (100% to be active), six nearest and one ex-
ternal active cells (70% for the activation), six nearest and
three external ones (100%), and with seven nearest and two
or four external active cells (70% and 100% probability of
activation, respectively). It should be noted that the number
of involved cells is high (seven or more). Likewise, an active
cell will remain active (more than 80% probability) if there
are five or more neighbouring active cells, either nearest or
external ones. If this does not occur, it is most likely the in-
activity, mainly with the low number of neighbouring active
cells (two or less). Whenm=4.0, an inactive cell will remain
inactive, independent of the surrounding activity, with a high
probability (∼80%); if it is active, it will be inactive for less
than three neighbouring active cells. It is necessary at a min-
imum that an external active cell to be active in the future. In
general, this occurs when the total number of active cells is



A. Jiménez et al.: A probabilistic seismic hazard model based on cellular automata and information theory 391

six or more. Form=4.5, an inactive cell will go on being in-
active with 80–100% probability; an active one will continue
active if it has two nearest and one or two external active cells
(100%). Otherwise, it is more likely to be inactive in the fu-
ture. It has to be noted that the configurations with five or
more active cells has not been presented, because of the high
magnitudes involved. Finally, withm=5.0, if a cell is inac-
tive, it remains inactive (90% probability), and if it is active,
it will continue active with three nearest neighbouring active
cells, or with only one external neighbouring active cell. For
the other cases, it is more likely that the cell will be inactive
(80% in average). Neither this magnitude presents situations
with too many cells active (always three or less).

With the α4 criterion, a cell will go on being active or
inactive (95% probability) independently of the other cells.
Configurations with more than five active cells have not been
presented. The characteristic energy corresponds to a mag-
nitude of 4.1.

7 Discussion and conclusions

It can be seen that the best configurations (n′ andN) for all
the neighbourhoods studied have the lowest resolution tried:
N is regularly 10 or 11 (only a few are 12 or more). With re-
gard to the number of interaction times,n′, they are quite
similar for both von Neumann’s and Moore’s neighbour-
hoods of radius 1. The time intervalτ increases, within each
criterion, with the threshold energy-magnitude. The mutual
information rises with the number of cells in the neighbour-
hood (in order: von Neumann’s radius 1, Moore’s radius 1,
and von Neumann’s radius 2, in 2-D), but the errors are sim-
ilar.

With the von Neumann’s radius 2, the configurations and
maps are very similar to those of Moore’s radius 1 (Fig. 6);
and that tell us that the nearest activity to the cell is the most
important for the future of the state of the cell. Since the
simulation errors are similar, as well as the results, we can
say that it is better to use Moore’s, because, on the one hand,
the computation time is smaller and, on the other hand, it is
simpler than the von Neumann’s, and so the interpretation
is easier. Also, bearing this in mind, a study with another
template with a higher number of cells, as the Moore’s radius
2, would not contribute to obtaining better results.

However, it is very difficult to decide between the Moore’s
and the von Neumann’s of radius 1. First, the errors are sim-
ilar, and also the values forn′ andN , so that the best neigh-
bourhood would be the simpler one (von Neumann’s); but the
mutual information is always higher in the Moore’s; for ex-
ample, with theα1 criterion (using the abridge catalogue) the
maximumµI is 0.13 bits for the von Neumann’s, and 0.22
bits for the Moore’s. This behaviour is the same in general
for all the criteria, the reason being that the Moore’s neigh-
bourhood is larger. Because of the addition of the energy
from all the cells involved, if the von Neumann’s were cho-
sen, the preferred directions would be N-S and E-W, and that
could not be realistic. Therefore, because of the isotropy and

the higher amount of information, the Moore’s is considered
to be the best neighbourhood for the 2-D models, and the
Probabilistic Seismic Hazard Maps for the Iberian Peninsula
(Fig. 6) correspond to those obtained with this neighbour-
hood.

With regard to the 3-D neighbourhood, the resolution
found is poor (N=10), and the interaction timeτ is around
15 years. The advantage of this template is that it provides a
finer localization of the seismicity (the depth). However, the
simulations are worse than those of the 2-D neighbourhoods.

In general, the Probabilistic Seismic Hazard Maps ob-
tained by taking into account the complete catalogue indi-
cate that the main activity (with energy releases higher than
the average) is predicted in northern Algeria, northern Mo-
rocco and the Atlantic Ocean near Lisbon. If these zones are
excluded (abridged catalogue), the maximum activity is lo-
cated in the south of Iberia (mainly, the gulf of Cádiz, the
coasts of Ḿalaga and Almerı́a, and Murcia), Galicia, and the
coastal Catalonian range, over the next 7–10 years, accord-
ing to theα1 criterion. Taking into account theα4 criterion,
the western Pyrenees is also a zone of high activity. These
zones are, effectively, the main seismogenetic regions in the
Iberian Peninsula.

With the three-dimensional template evaluated, from the
α1 andα4 criteria (with the abridged catalogue) it can be de-
duced that the main activity will occur at the same sites as
in the two-dimensional cases. The important difference be-
ing that this analysis shows that this activity is concentrated
in the first 15 km of the crust, and that the deepest activity
is found at Tarifa. Fromα2 andα3, it is seen that the ac-
tivity is mainly shallow; starting fromm=4.0, the maximum
probability of seismic events deeper than 30 km is found in
the southern Iberian Peninsula. In the Pyrenees and Galicia
the probability is that only shallow earthquakes occur up to
a depth of 30 km and with a magnitude up tom=4.0. This is
in agreement with the observed seismicity (NEIC; Henares
et al., 2003). For a magnitude threshold of 5.0, the region of
highest seismic hazard is the northern Algeria and the Mo-
roccan coast, with a maximum depth of 15 km. Two impor-
tant earthquakes have occurred in these places, with a magni-
tude higher than 6.0: the Algerian, in May 2003, with a depth
less than 20 km, and the one of Alhoceima, in February 2004,
with a depth less than 5 km.

The maps obtained from theα1 andα4 criteria with the
abridged catalogue (whose characteristic magnitude was 4.0,
approximately) are similar to those calculated from theα2
andα3 criteria for a magnitude threshold of 4.0; the maps are
also similar using the complete catalogue (but with a magni-
tude threshold of 5.0 for theα2 andα3 criteria, because the
characteristic magnitude for theα1 andα4 criteria was 5.0
using the complete catalogue). So both kind of criteria are
consistent.

An interesting result for all the templates is that the high-
est transmission of information is found at the lowest reso-
lutions. This is the consequence of modelling a large and
complex area with regions of different tectonic behaviour.
The models have to fit the whole area, so the most reliable
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Fig. 6. Probabilistic Seismic Hazard Maps proposed for the Iberian Peninsula, with the Moore’s neighbourhood,r=1.
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Fig. 6. Continued.
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information is present when the cells represent zones of ho-
mogeneous seismicity and the local effects are removed by
making an average. A similar result was obtained by Lom-
nitz (1994), who showed that the Hurst’s analysis should not
be applied to large complex regions, because the localized
effects superimpose each other in such a way that statistics is
destroyed. To avoid this, smaller areas should be studied be-
cause, as it has been shown, more complex neighbourhoods
do not improve the results. This could be the reason for the
different time interaction between the 2-D and 3-D models.
In 3-D, when considering the depth, the statistics of the cells
is shown to have more differences. The seismicity is mostly
shallow, contributing more to the energetic weight; the deep-
est earthquakes happen to have higher characteristic time but
there are few so that, for 2-D models, these events have no
influence on the statistics.

The time intervals increaseτ when higher energies are
considered, as could be expected. The models obtained tend
to continue the activity, in agreement with the observed clus-
tering of the seismicity (Aki, 1956; Peña et al., 1993). The
Hurst’s analysis, by using the accumulated energy, shows an
inherent unpredictability in the future states. The Hurst’s ex-
ponent found is of 0.48±0.02, in agreement with the one ob-
tained by Ogata and Abe (1991). This means that the best
prediction is to repeat the last state, and it is related to the
inability of the CA calculated for predicting sudden changes
in the patterns.

From the calculatedb anda/b values from the Gutenberg-
Richter’s law, it can be deduced that the region under study
is highly active, and that the events with a lower magnitude
are more likely to occur. This is due to the high hetero-
geneity of the crust and is in agreement with the previous
results, which show that most of the earthquakes are bellow
magnitudem=5.0, and with other studies made in the zone
(Bezzeghoud and Buforn, 1999).

It has to be noted that our proposed method includes
the possibility of quantifying the errors (other probabilistic
methods used for seismic hazard studies do not provide these
error estimations), because of the discretization of the prob-
lem and the use of the Hamming distance. Although the cor-
relation functions from real and simulated patterns are a good
way to establish differences between them, they are more
qualitative than the Hamming distance, which has resulted
in a powerful tool, mainly because the former functions have
been found to be very close to each other in most of the cases.
The errors of the presented models (neighbourhood and con-
figurations) are different for each activation criterion. For the
α1 one, it oscillates between 5% and 10%; 10–20% for the
α2 andα3 criteria and 1 or 2% for theα4 one. This is due
to the fact that the seismicity events are located almost al-
ways at the same sites, and theα1 andα4 criteria signal the
main seismogentetic zones, as explained before. Besides, the
α4 criterion is built from the whole catalogue (complete or
abridge) until the time considered (as macroseismic studies
do), and, if an important seismic event occurs in a region,
that region will from then on be considered as seismically
active (note that the energy release has to be above the aver-

age in the whole area). On the other hand, theα1 criterion
only takes into account the amount of energy in a time in-
terval, so that the patterns are more dynamic, and not all the
zones interact synchronically (and because of that the mu-
tual information has to be used); therefore, the errors have
to be higher. The other criteria (α2 andα3) try to predict
the energy release in an absolute way, so that the errors are
the highest. It is well-known that the prediction of events
of a certain magnitude is, for the present, unreliable in most
of the cases, although some successful predictions have been
made (Sykes and Nishenko, 1984; Scholz, 1985; Nishenko,
1989; Nishenko et al., 1996; Wyss and Burford, 1985; Pur-
caru, 1996; Kossobokov et al., 1997; Tiampo et al., 2002;
Keilis-Borok, 2000).

In spite of the errors, the recorded seismicity after the
data used coincides to a large extent with the seismic hazard
maps proposed in this paper. Comparing them with the ESC-
SESAME Unified Seismic Hazard Model for the European-
Mediterranean Region (Jiḿenez et al., 2001), it can be seen
that they indicate the same sites where the highest magnitude
events are more likely to occur, and that these are of a mod-
erate magnitude. Theα4 criterion is the closest one to other
macroseismic studies found in literature. With regard to the
other criteria, they provide a more dynamic seismic hazard
assessment.

So we can conclude that a simple model based on stochas-
tic Cellular Automata for estimating the seismic hazard in
a probabilistic way is developed. The activity of a zone is
calculated from its previous activity and from the surround-
ing one. The released energy has been processed as a dis-
crete variable, both spatially and temporally, to predict, from
a probabilistic point of view, the energy to be released in the
future at that zone. From a theoretical point of view, the
maximization of the mutual information between previous
and future states at a site is an adequate and consistent way
in choosing the highest dependence between them.

The method has been applied to the seismic catalogue of
the Iberian Peninsula (from 1970 to 2001). Different acti-
vation criteria have been evaluated. Theα1 andα4 provide
a rough prediction of sites where the main seismic activity
will be presented. Theα2 andα3 criteria delineate the areas
where a certain energy will be surpassed. In all cases, the
inclusion of the energy of the events is crucial for the regions
where there are few earthquakes, but with a high magnitude;
for these regions, 2-D and 3-D neighbourhoods have been
tested. For 2-D, the Moore’s of radius 1 has been chosen,
because of the higher amount of information and isotropy;
with the 3-D (von Neumann’s of radius 1) the Probabilistic
Seismic Hazard Maps can be calculated taking into account
also the depth of the events. Therefore, our method is truly
adequate for the study of the seismic hazard in a probabilis-
tic way; it is solid and logical in characterizing the spatio-
temporal evolution of seismic activity.
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Jiménez, M. J., Giardini, D., Grünthal, G., and SESAME work-
ing group: Unified seismic hazard modelling throughout the
Mediterranean region, Boll. Geof. Teor. Appl., 42, 3–18, 2001.

Keilis-Borok, V. I.: The lithosphere of the earth as a nonlinear sys-
tem with implications for earthquake prediction, Rev. Geophys.,
38, 19–34, 1990.

Keilis-Borok, V. I.: Fundamentals of earthquake prediction: four
paradigms, In Nonlinear dynamics of the Lithosphere and earth-
quake prediction, edited by: Keilis-Bork, V. I. and Soloviev, A.
A., Springer-Verlag, Berlin, 1–36, 2003.

Keilis-Borok, V. I., Ismail-Zadeh, A., Kossobokov, V., and
Shebalin, P.: Non-linear dynamics of the lithosphere and
intermediate-term earthquake prediction, Tectonophysics, 338,
247–260, 2001.

Kossobokov, V. G., Healy, J. H., and Dewey, J. W.: Testing an earth-
quake prediction algorithm, Pure Appl. Geophys., 149, 219–248,
1997.

Lomnitz, C.: Fundamental of earthquake prediction, Wiley & Sons,
New York, 1994.

Mandelbrot, B. B. and Wallis, J. R.: Noah, Joseph and the opera-
tional hydrology, Water Resour. Res., 4(5), 909–918, 1968.

Mogi, K.: Some discussions on aftershocks, foreshocks and earth-
quake swarms – the fracture of a semi-infinite body caused by an
inner stress origin and its relation to the earthquake phenomena,
Bull. Earthquake Res. Inst., 41, 615–658, 1963.

Mogi, K.: Earthquake Prediction, Tokyo Academic Press, 1985.
Nakanishi, H.: Cellular-automaton model of earthquakes with de-

terministic dynamics, Phys. Rev. A, 41, 7068–7089, 1990.
Nakanishi, H.: Statistical properties of the cellular-automaton

model for earthquakes, Phys. Rev. A, 43, 6613–6621, 1991.
NEIC (National Earthquake Information Center): Earthquake

search, in the US Geological Survey’s web page:http://neic.usgs.
gov/neis/epic/epicrect.html

Nishenko, S. P.: Earthquake hazards and prediction, In: Encyclope-
dia of Solid Earth and Geophysics, edited by: James, D. E., Van
Nostrand Reinhold, 260–268, 1989.

Nishenko, S. P., Bufe, C., Dewey, J., Varnes, D., Healy, J., Jacob, K.,
and Kossobokov, V.: 1996 Delarof Islands earthquake – a suc-
cessful earthquake forecast/prediction?, (Abst.) Eos (American
Geophysical Union Transactions), 77, no. 46, suppl. 12 Novem-
ber, 456, 1996.

Ogata, Y. and Abe, K.: Some statistical features of the long-term
variation of the global and regional seismicity, Int. Stat. Review,
59, 139–161, 1991.

Olami, Z., Feder, H. J. S., and Christensen, K.: Self-organized criti-
cality in a continuous, nonconservative Cellular Automaton mod-
elling earthquakes, Phys. Rev. Lett., 68, 1244–1247, 1992.

Otsuka, M.: A simulation of earthquake occurrence, Phys. Earth
Planet. Inter., 6, 311–315, 1972.
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Space clustering properties of the Betic-Alboran earthquakes in
the period 1962–1989, Tectonophysics, 221, 125–134, 1993.

Posadas, A., Hirata, T., Vidal, F., and Correig, A.: Spatio-
temporal seismicity patterns using mutual information applica-
tion to southern Iberian peninsula (Spain) earthquakes, Phys.
Earth Planet. Inter., 122, 269–276, 2000.

http://direct.sref.org/1684-9981/nhess/2004-4-407
http://neic.usgs.gov/neis/epic/epic_rect.html
http://neic.usgs.gov/neis/epic/epic_rect.html
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