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Abstract. A quantitative global sensitivity analysis (SA) is
applied to the non-linear inversion of gravity changes and
displacement data which measured in an active volcanic area.
The common inversion of this data is based on the solution
of the generalized Navier equations which couples both types
of observation, gravity and displacement, in a homogeneous
half space. The sensitivity analysis has been carried out us-
ing Sobol’s variance-based approach which produces the to-
tal sensitivity indices (TSI), so that all interactions between
the unknown input parameters are taken into account. Re-
sults of the SA show quite different sensitivities for the mea-
sured changes as they relate to the unknown parameters for
the east, north and height component, as well as the pres-
sure, radial and mass component of an elastic-gravitational
source. The TSIs are implemented into the inversion in or-
der to stabilize the computation of the unknown parameters,
which showed wide dispersion ranges in earlier optimiza-
tion approaches. Samples which were computed using a ge-
netic algorithm (GA) optimization are compared to samples
in which the results of the global sensitivity analysis are inte-
grated by a reweighting of the cofactor matrix in the objective
function. The comparison shows that the implementation of
the TSI’s can decrease the dispersion rate of unknown input
parameters, producing a great improvement the reliable de-
termination of the unknown parameters.

1 Introduction

Sensitivity analyses are used in a variety of research and en-
gineering fields, where its application is widespread. The
determination

– of the influence of a certain unknown input parameter to
the output value qualitatively and also quantitatively
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– if, and which of, the parameters interact with each other

– which of the unknown input parameters should be deter-
mined more accurately in order to reduce the variance of
the output values

– if there are parameters which are significant or can be
eliminated from the model

are only some examples.Saltelli et al.(2000, 2004) give a
complete overview of the different types of sensitivity anal-
yses as well as how to implement them according to each
particular purpose.

The application of SAs can be found in the modeling of
various branches of volcanology, e.g. volcanic conduit flow
modeling, Proussevitch and Sahagian(2004), magma and
pressure source modeling,Tiampo et al.(2000), modeling
of CO2, Schmid et al.(2003), landslide modeling,Tinti and
Zaniboni(2004), and ash cloud modeling,Peterson and Dean
(2003).

Most of the applied SA techniques have a local charac-
ter. In local approaches the sensitivity of each unknown
input value is computed by keeping the other parameter
fixed and only varying the certain input parameter in a lo-
cal area around its nominal value. These can be interpreted
as one-at-a-time experiments (OAT). One drawback of OAT-
techniques is that it is not possible to compute the effects
which are caused by the interactions between the unknown
input parameters. Furthermore, OAT techniques tend to eval-
uate qualitative sensitivity results,Saltelli et al.(2004); they
determine a ranking of the input parameters but do not quan-
tify by how much one parameter is more important than an-
other. Both a quantitative result as well as the computation
of interactions between the unknown input parameters can
be evaluated by global, quantitative methods such as those
applied in this study using Sobol’ method.

As a case study, gravity data and three-dimensional dis-
placements were measured in an active volcanic area and in-
verted together in order to find the most reliable source for
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Table 1. Range limitations of the unknown input parameters used
for the SA computation.

unknown input lower upper
parameter bound bound

east (103 m) 435 441
north (103 m) 9160 9170
height (103 m) 0.01 3
pressure (105 Pa) −10 100
radial (103 m) 0 2
mass (1012 kg) -1 2

the measured changes in time. By anticipating a subsurface
body which produces a given change in density and pressure
between two measurement epochs, we can model both the
location as well as the gravity on the surface. The observed
changes in gravity and the three-dimensional displacements
measured over a certain time period can be interpreted as
the influence of this change in the source properties. Such
a source can be modeled in volcanic areas as a magma cham-
ber but also as another body, which is filled by a certain ma-
terial and includes a specified pressure. Other possible expla-
nations of such sources are voids that are filled with fluids,
or bodies in which the gas pressure is increasing that would
suggest highly explosive, dangerous volcanic activity.

The unknown parameters of the source (given by the east,
north and height component as well as the pressure, radial
and mass component) were determined by a non-linear in-
version which is based on the Navier-Stokes equations, cou-
pling elastic and gravitational effects. The inversion has been
optimized by a GA approach, which maximizes the objec-
tive function that is given as the 1/χ(comp.)2 value. This is
computed by taking all types of observations into account,
Eq. (12). Initial samples, Tiede et al. (2004)1 show that the
location as well as the mass can be determined with only
a small dispersion rate. However, the determination of the
radial and pressure component of the source show large vari-
ations which cover nearly the entire defined range of the un-
known parameters. As a result, it follows that the determi-
nation of the pressure and radial parameter is poorly con-
strained, with high standard deviations of the mean values
and signalling that these values could not be determined sig-
nificantly.

Due to the fact that the sensitivity to the unknown parame-
ters to the different types of is quite different, an investigation
was made with the goal of stabilizing the inversion by the
implementation of global SA results. The implementation is
performed through a reweighting of the cofactor matriceQll

which is implied in the 1/χ(comp.)2 value, Eq. (12). For that

1Tiede, C., Tiampo, K., Ferńandez, J., and Gerstenecker, C.: Ini-
tial Inversion Results for Elastic Gravitational Modeling via Genetic
Algorithms at Merapi Volcano, Indonesia, J. Volcanol. Geotherm.
Res., submitted, 2004.
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Fig. 1. Distribution of those data locations used for the SA. Every
observation point consists of gravity change as well as displace-
ments in east, north and height direction.

purpose, the data set which was the basis of the work in Tiede
et al. (2004)1 was used. The point distribution is given in
Fig. 1. At each of the 20 observation points, gravity changes
as well as displacements in the east, north and height compo-
nent were determined. The topography is represented by the
isolines. The limitation ranges of the unknown parameters
for the quantitative SA are set according to initial results of
the GA optimization (Tiede et al., 2004)1. The ranges were
set large enough so that the computed results did not reach
the limits of the defined ranges. These boundaries are sum-
marized in Table1.

2 Underlying physical model

The multimodal objective function is based on the general-
ized Navier equations which couple elastic and gravitational
effects in a homogeneous half space, given byLove (1911)
andRundle(1980)

0 = ∇
2u +

1

1 − 2σ
∇∇ · u +

ρ0g

µ
∇(u · ez)

−
ρ0

µ
∇φ −

ρ0g

µ
ez∇ · u + X (1)

∇
2φ = 4πρ0G∇ · u + Y (2)

with u=displacement,φ=gravitational potential,X=body
force, ρ0=undisturbed density,G=gravitational constant,
gez=surface gravitational acceleration,σ=Poisson ratio,
µ=shear modulus andY=gravitational source. WithX=0,
Y=0, Eqs. (1) and (2) are solved byRundle(1980, 1982) for
a layered homogeneous half space.
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Rundle(1982) evaluates the equations that are satisfied by
the displacement vectoru and perturbation potentialφ by
obtaining a general solution at the heightz=0:

u = M

∫
∞

0
[x1

0(0)P0 + y1
0(0)B0]kdk (3)

φ = M

∫
∞

0
ω1

0(0)J0(kr)kdk (4)

δg = −
dφ

dz
= −M

∫
∞

0
q1

0(0)J0(kr)kdk + 4πρ0Guz (5)

with M=mass of the intrusion,x1
0(0), y1

0(0), ω1
0(0), q1

0(0)

kernel functions, whose calculation is described inRundle
(1980), depend on the Fourier wave numberk and are given
as a function of the characteristics of the medium’s lay-
ers Ferńandez and Rundle(1994). P0,B0=vectors given in
terms of Bessel functionJ0(kr) of the first kind of order zero
andρ0 = density of the layer.

For the purposes of this inversion Poisson’s ratioσ was
chosen as 0.25 for an elastic medium and the Young’s mod-
ulusE was anticipated to be 30 GPa, according toBeaudu-
cel et al.(2000). The mean density for this area is given as
2242 kg/m3, a value which was derived by preliminary grav-
ity inversions in the area of interest.

3 Variance-based Sobol’ SA

Due to the non-linear property of the given inversion prob-
lem, a global sensitivity analysis with the aim of apportioning
the uncertainty in the output data due to the unknown input
parameters was applied,Saltelli et al.(2000). Global SAs
are based on the variation of all unknown input parameters at
the same time, the computation over the full definition range
of each unknown input parameter, and a form of probability
density function (pdf) of each. In contrast, local SAs fix all
unknowns and only vary one input parameter in a small range
around the nominal value per time. A general global sen-
sitivity concept, the variance-based SA is sampling-based,
and therefore a Monte Carlo simulation is applied. In this
work we applied Sobol’ as well as the Fourier amplitude SA,
FAST, also belonging to this same kind of global SAs. The
main advantage of these methods is that the analytic struc-
ture of the model to be analyzed does not need to be known
specifically. Schwieger(2004).

The main idea of these types of sensitivity analyses is
based on the idea that one can determine the nature of the
sensitivity through the varianceV and then evaluate how the
input variance contributes to the output variance. By set-
ting (X1, ..., Xk) as the vector of independent unknown input
parameters andY=f (X1, ..., Xk) as the output value, with
f as model function, an indicator for the importance of an
input Xi can be set by evaluating the variance of the out-
put Y V (Y |Xi). This is done by fixingXi to its true value
xi . V (Y |Xi) is called the conditional variance ofY with
Xi=xi . The true value ofxi is not known, so instead of

V (Y |Xi) the expectation of the conditional variance, noted
asE[V (Y |Xi)] is studied, whereby it is built into all possi-
ble values ofxi . The variance ofY is given by

V (Y ) = V (E[Y |Xi]) + E[V (Y |Xi)]. (6)

The first addend is called the variance of the conditional ex-
pectation and describes the importance ofXi on the variance
Y , which is equivalent to the sensitivity ofY to Xi . Normal-
izing the sensitivity valueSi as the ratio between the variance
of the expectation value and the variance of the output value
leads to

Si =
V (E[Y |Xi])

V (Y )
(7)

and is called the first order sensitivity index, correlation ratio
or importance measure and describes the main effect of the
unknown parameterXi on the output valueY . For an additive
model the summation over the ratios of the unknown param-
eters results in 1, if interactions between the unknown input
parameters exist, the entire decomposition of the objective
function must be evaluated.

By propagating the variances of the unknown input param-
eters through the model, which determines the influence of
this unknown parameter on the model output variance, some
of the variance-based techniques can deliver quantitative as
well as model independent sensitivity results.

The variance-based Sobol’ sensitivity method explores the
multidimensional space of the unknown input parametersX

with a certain number of Monte Carlo samples. The sensitiv-
ity indices, both first order and also the higher interactions
between the unknown input parameters, related toSobol’
(1993), are generated by a decomposition of the model func-
tion f in a k-dimensional factor space�k into summands of
increasing dimensionality,

f (X1, ..., Xk) = f0 +

k∑
i=1

fi(Xi) +

∑
1≤i<j≤k

fij (Xi, Xj )

+ ... + f1,...,k(X1, ..., Xk) (8)

with X1, ..., Xk=unknown input parameters andf0=const. In
all functions of the decomposition the integrals over any of
its own variables are zero and they are orthogonal. All terms
in f (X1, ..., Xk) can be evaluated by multidimensional inte-
grals.

Squaring and integrating Eq. (8) over �k leads to the
decomposition of the varianceV (X1, ..., Xk) of the output
valuef (X1, ..., Xk):

V (Y ) =

k∑
i=1

Vi +

∑
1≤i<j≤k

Vij + ... + V1,...,k (9)

with

Vi = V (E[Y |Xi]) (10)

Vij = V (E[Y |Xi, Xj ] − E[Y |Xi] − E[Y |Xj ])

With the assumption that the unknown input valuesX are
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Fig. 2. Normalized Sobol’ first order indices for the five defined
output parameters.

not correlated, the results can be obtained by

Vij = V (E[Y |Xi, Xj ]) − Vi − Vj (11)

The first order sensitivity indices are given bySi=Vi/V (Y ),
higher order indices bySi1,...,is = Vi1,...,is /V (Y ).

First order sensitivity indicesSi measure the main effect of
each unknown parameterXi on the output and are quantita-
tive sensitivity results for additive models. The higher order
indicesS(i1,...,is ) describe the interaction effects between the
unknown input parametersXi1, ..., Xis on the output value.
These effects are not included in the individual effects of
Xi1, ..., Xis .

The TSI of an unknown input parameterXi is defined as
the sum of all sensitivity indices, its main order effect as well
as all the higher order effects in which this value appears.
According toSaltelli et al.(2000) TSIs provide quantitative
sensitivity analysis results for all kind of models independent
of their model characteristics.

The SA, which is of an estimating nature, due to the lack
of knowledge about the relation between input and output
data as well as about the interactions between the unknown
parameters, has been computed by the program Simlab, ver-
sion 2.2,Saltelli et al.(2004). The general procedure to carry
out the SA include the definition of the pdfs for the unknown
input parameters, the generation of Monte Carlo samples for
the unknown input parameters as well as the computation
of the results of the physical underlying model using these
samples, the analysis of the output variance, and a sensitivity
analysis of the output variance in relation to the variation of
the unknown input parameters,Schwieger(2004).

The unknown parameters east, north and height as well
as pressure, radial and mass of the point source has been
taken as input parameters for the quantitative, variance-
based, global Sobol’ SA. The output is characterized by
the 1/χ()2 values, Eq. (12), including those for (gravity),
(height), (east), (north) as well as (comp.) which is computed
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Fig. 3. Normalized Sobol’ Total Sensitivity Indices (TSI) for the
five defined output parameters.

by taking all types of observations into account. Figure1
shows an overview of the location configuration whereby at
each of the 20 observation points, gravity changes, height,
east and north displacements were measured. Theχ()2 val-
ues are computed by

χ()2
=

vT Qll
−1v

n − u
(12)

with v as residuals between modeled and observed output
values, specified by the type of observation(), Qll through
a cofactor matrix. The given variances of each observation
of () lie on its diagonal, anticipating uncorrelated data, with
n−u degrees of freedom (n as number of observations,u as
number of unknown parameters).

The pdf of the unknown values were assumed uniform due
to the fact that it is not possible to specify any area or certain
value ranges which are more likely than others within the
given described bounds. The SA consists of 28 672 Monte
Carlo samples. Figure2 and Fig.3, show the normalized
Sobol’ first order indices and TSIs for the unknown input pa-
rameters. The bar plots are given for each of the five defined
output values 1/χ()2 separately.

By comparing the first order indices with the TSI’s, the
results show clearly that only taking the first order indices
into account would lead to large mistakes in the anticipa-
tion of the influence of a certain unknown to the different
kind of data. By computing the percentage of the first order
effect compared to the corresponding TSI, only the sensi-
tivity concerning the mass component for the output values
1/χ(gravity)2 and 1/χ(north)2 are influenced primarily by
the first order indices. All other TSIs are driven primarily by
interactions between the input parameters.

By analyzing the Sobol’ TSI’s, the influences on the ob-
served values due to the unknown input parameters are obvi-
ous:
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Table 2. Range limitations of the unknown input parameters used
in the GA.

unknown input lower upper
parammeter bound bound

east (103 m) 439.2 439.5
north (103 m) 9166.12 9166.24
height (103 m) 0.01 0.2
pressure (105 Pa) -10 100
radial (103 m) 0 1.5
mass (1012 kg) 0 0.08

– 1/χ(gravity)2 values are influenced in large part by the
mass of the source. The three location parameters of
the source have similar influences on this output value.
1/χ(gravity)2 values are only few sensitive to changes
in the pressure and radius of the unknown source.

– 1/χ(height)2 values are, surprisingly, equally sensitive
to the radial component as well to the north component
of the source.

– 1/χ(east)2 values are sensitive to changes in the radial
component of the source and almost equally sensitive to
changes in all other input parameters except the mass.
The mass does not influence the output value at all.

– 1/χ(north)2 values are most sensitive to changes in the
radial component of the source. The mass has little to
no influence and the east component has only a small
influence. The other TSI’s are approximately the same
size.

– 1/χ(comp.)2 values are most sensitive to changes in the
mass component as well as the north component.

This summary of the different sensitivities concerning the
unknown input parameters points out the great need of a joint
inversion of both displacements and gravity changes.

4 Implementation of TSIs into GA

As mentioned in the introduction, initial results of a GA ap-
proach, Tiede et al. (2004)1 showed that the unknown param-
eters pressure and radius of the source could not be deter-
mined significantly without any additional information. The
TSIs (caused by the unknown parameters) of the different
1/χ()2 values show that the sensibility of the observed dis-
placements to changes in the radial component are much
larger than the one of the gravity changes. Therefore, the
TSI values governing the radial component TSI(r) of the un-
known source has been taken as a reweighting factor in the
cofactor matrixQll(r) of the objective function 1/χ(comp.)2,
which is computed by taking all kind of measurements into
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Fig. 4. Histograms for the unknown parameters computed by 50
GA samples without reweightingQll .

account. The reweighted cofactor matriceQll(r) is given by

Qll(r) = diag

(
σgi

·

(
T SI(r)

T SI(r)g

)2

, σHi
·

(
T SI(r)

T SI(r)H

)2

,

σEi
·

(
T SI(r)

T SI(r)E

)2

, σNi
·

(
T SI(r)

T SI(r)N

)2
)

(13)

T SI(r) = T SI(r)g + T SI(r)H + T SI(r)E + T SI(r)N

with i=1...20, σg, σH , σE and σN=variance of gravity
change, change in height, east and north component of the
i-th observation point.

Fifty samples of a GA approach, explained in detail in
Tiampo et al.(2000), have been computed with the im-
plemented reweightedQll(r) matrix and are compared to
the original samples which were carried out without any
reweighting. The population size is given by 100. 1000 is
chosen as the maximum number of generations, the limita-
tion bounds for the unknown parameters are set equal, Ta-
ble2.

The results of the computation are shown in Fig.4 for
the GA optimization without reweighting and in Fig.5 for
the GA optimization with reweightingQll(r ) of the TSIs for
the radial component of the unknown source. Table3 lists
the ranges of the unknown parameters for these two different
computations. It can be seen that all ranges were decreased
by the reweightedQll(r ).

Comparing theχ(comp.)2 values of the best two models
shows that the model with the reweightedQll(r) matrix leads
to χ(comp.)2=115.847, whereby the best model determined
by the normal GA leads toχ(comp.)2=115.642. The small
change for the worse of the reweighted result is explained
by examination of the standard deviations of the output val-
ues whose weights are now changed according to theQll(r)
matrix.
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Table 3. Ranges of unknown parameters determined by 50 sample
of GA without and with reweightingQll(r).

unknown range without range with
parameter reweightingQll reweightingQll(r)

east (103 m) 0.059 0.048
north (103 m) 0.041 0.019
height (103 m) 0.079 0.077
pressure (105 Pa) 94.548 89.402
radial (103 m) 0.752 0.462
mass (1012 kg) 0.017208 0.010536

5 Conclusions

The paper reviews the application of Sobol’ variance-based
SA, a quantitative global method for the determination of the
TSI’s of the unknown input parameters for each kind of ob-
served output value.

The application of the Sobol’ sensitivity analysis shows
different sensitivities for the different 1/χ()2 output val-
ues. In particular, the sensitivity concerning the mass, radial
and pressure components for the 1/χ(gravity)2 compared
to the sensitivity against those values of the 1/χ(height)2,
1/χ(east)2 and 1/χ(north)2 are very different. These dif-
ferent sensitivities demonstrate that there is a great need to
invert gravity changes and displacement data in a common
approach for the determination of an elastic-gravitational
source.

Furthermore, if the different types of observation data
show different sensitivities against the unknown input pa-
rameters, this information can be used to determine spe-
cial unknown input parameters in more detail. By enlarging
the weights of those observations which are most sensitive
against differences of a certain unknown input parameter, this
special unknown can be determined more accurately.

In this example, the reweighting approach results in a
more homogeneous optimization. The sum of all residuals
concerning gravity and displacement observations constructs
the objective function to be minimized. By introducing the
reweighting approach, the influence of the dominant sensi-
tivity relating to the mass component of the gravity observa-
tions has been reduced, and the influence of the sensitivity
concerning the radial component could be increased by the
increase in the weights of the displacements.

The results of this approach show that it is possible to en-
large the accuracy of the determined radial component by
the implementation of the reweighting factors. Although the
fitness of the best chosen model is decreasing by a small
amount, the benefits of the implementation are obvious.

The introduced implementation of the sensitivity analysis
into an optimization might be applied in a many areas of in-
terest. If the objective function is computed by the sum of
different types of residuals (in this approach observed grav-
ity changes, height, east and north displacements) and these
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Fig. 5. Histograms for the unknown parameters computed by 50
GA samples with reweightingQll(r) by the TSIs.

observations have different sensitivities to the unknown input
parameters, the information of the TSIs can be used to stabi-
lize the optimization results. In that case, the reweighting
according to the TSIs must be incorporated into the cofactor
matrix Qll(r) in order to change the weights of the various
types of output values according to their sensitivity.

Acknowledgements.This research is supported by a scholarship
financed by Deutscher Akademischer Austauschdienst. Data
resulting from a project supported by the Deutsche Forschungs-
gemeinschaft under GE381/12. CT would like to acknowledge
the Department of Earth Science of Western University, London
Ontario for their great support as well as their hospitality during
the completion of this work. The research by KFT has been funded
by a UWO ADF grant. The research by JF has been funded under
MCyT project REN2002-03450.

Edited by: G. Z̈oller
Reviewed by: V. Schwieger and two referees

References

Beauducel, F., Cornet, F., Suhanto, E., Duquesnoy, T., and Kasser,
M.: Constraints on Magma Flux from Displacements Data at
Merapi Volcano, Java, Indonesia, J. Geophys. Res., 105, 8193–
8204, 2000.
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