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Abstract. MHD-scale fluctuations in the velocity, magnetic, features of the interplanetary medium, although their relative
and density fields of the solar wind are routinely observed.importance has yet to be fully determined (eMpatthaeus
The evolution of these fluctuations, as they are transported raet al, 1995 Goldstein et al.1995 Tu and Marsch1995
dially outwards by the solar wind, is believed to involve both Veltri and Malara1997, Velli et al., 2003.

wave and turbulence processes. The presence of an averageggin the wave and turbulence dynamics are influenced by

magnetic field has important implications for the anisotropy e preferred directions present in the interplanetary medium.
of the fluctuations and the nature of the turbulent wavenum-rpase include the radial expansion direction and the mean

ber cascades in the directions parallel and perpendicular tﬂwagnetic field. In particular, there is evidence for spec-

this_field. In particular, if the rat_io of_ the rms magnetic fluc- .41 and/or variance anisotropy with respect to one or both
tuation strength to the me.an field is small, then plaeal- of these preferred directions (eBelcher and Davis1971
lel wavenumber cascade is expected to be waak there  yain et al, 1991 Matthaeus et al199Q 1996 Bieber et al,

are difficulties in obtaining a cascade in frequency. The 'at'1996 Carbone et a]1995 Horbury et al, 1995.
ter has been invoked in order to explain the heating of solar ’

wind fluctuations (above adiabatic levels) via energy transfer AS 1S Well-known, the wavenumber energy spectrum for
to scales where ion-cyclotron damping can occur. a turbulent fluid can be characterized in terms of three dif-

Following a brief review of classical hydrodynamic and ferent wavenumber ranges, namely #rergy-containing

magnetohydrodynamic (MHD) cascade theories, we discusi€rtial, anddissipationranges (e.gLesieur 199Q Frisch

the distinct nature of parallel and perpendicular cascades ant223 Biskamp 2003. Figure 1 shows a schematic solar
their roles in the evolution of solar wind fluctuations. wind spectrum. In the classical view of turbulence, energy is
transferred from the energy-containing scales to the dissipa-

tion range scales not directly, but rather via passage through
_ the inertial range “pipeline”. In other words, the energy cas-
1 Introduction cades from wavenumber to (somewhat) larger wavenumber

) o ] ] o until it reaches scales where tbeect effects of dissipation
The solar wind exhibits fluctuations in the magnetic field, are important. The inertial range dynamics is self-similar

plasma velocity, and density over a broad range of lengthyhich yields a powerlaw energy spectrum there, for large
and time scales, as was suggestedPyker(1958 in con-  gnqugh Reynolds numbers. The question then arises, what

nection with his original model for the (large-scale) solar 5 pe determined about the nature of solar wind fluctuations
wind. Many of these fluctuations occur at magnetohydrody-.om observable quantities like the energy spectrum?

namic (MHD) scales, although dissipative processes almost ) N .
certainly require account to be taken of plasma-scale or ki- Intgre_stlngly, even th(_)UQh th_e _solar wind is a supersonic,
netic effects. fully ionized, anisotropic, collisionless plasma, the iner-

The nature of the MHD-scale fluctuations is a question oft:";jII rarllge f(,lolpe IS oftenhobserve%_to %5/3’ .Wh'Ch IS
some interest. Analysis of even the earliest observations pro_t- Ie value .Olr\lnogor% t kGOV)f/I Pcrje Xtts or r?n lncomprtlass-
vided evidence for the presence of both waves andturbulenc@ e isotropic Navier— to' es fluid. ‘As yet there Is no clear
(e.g.Coleman 1968 Belcher and Davis1971), and it now consensus as to why this should be, although various ex-

seems clear that Alen waves and turbulence are pervasive planations haye been_ suggested. Here, We review some of
these suggestions, with a focus on the distinction between

Correspondence tdS. Oughton the turbulent cascades occuring along and perpendicular to
(seano@waikato.ac.nz) the mean magnetic field.
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A Energy—containing rize work addressing the primary shortcoming of the !K ap-

scales proach, namely the assumption of isotropy. Subsections on
compressible anisotropy results and forcing/inhomogeneity
related timescales round out the section.

2.1 Kolmogorov (hydrodynamic) phenomenology

E reduced (k)

Suppose that an incompressible Navier-Stokes ¥l

forced isotropically at some set of large length and time

scales so that a statistically steady turbulent flow is set up.
- TheKolmogorov(1941) k—5/3 form for the inertial range en-
(reduced) wavenumber. k ergy spectrum can be obtained via dimensional analysis and
the assumption that there is a range of lengthscales for which

Fig. 1. Schematic energy spectrum for the fluctuation energy of the(l) directviscous damping is negligibfe(ii) the energy flux
solar wind. The energy-containing, inertial, and dissipation rangesat wavenumbek, denoted (k), depends only on local quan-
are indicated. Note the powerlaw nature of the spectrum in the indities, namelyk and the spectrunk (k), and (iii) the flux of
ertial range. energy through this range is in fact a constant. Also implicit
is the assumption that the energy is distributed isotropically.
Given this isotropic situation, it is convenient to work with
The paper is structured as follows. In the next section wethe omni-directional(or angle-integrated) spectrum. This is
review cascade theory for MHD turbulence. Sectbcon-  defined by
siders observational evidence for the existence of two distinct
types qf fluctuations in the solar wind. In Sedta simple E(k) = / E3 (k) k2dQ, 1)
model is employed to show that slopes of 5/3 can be com-
mon even when there is a non-5/3 component. The paper
closes with a short summary. where E3P(k) is the modal energy spectrum and<tl the
The basic notation employed is standard, witandb re-  differential solid angle. The total turbulence energy is
0o . I
spectively the fluctuating velocity and magnetic fieldghe ~ Jo E (k) dk, so thate (k) is readily interpreted as the energy
mass density, ankl the Fourier wavevector conjugate to the Per wavenumber &t
spatial position vectar. Magnetic fields are assumed to be ~ Assuming thate(k)=k*E(k)?, for constantse and
measured in Alfén speed units, obtained starting from labo- 8, and employing the above assumptions then yields
ratory units by letting— b//7p. E (k)=€2/3k—5/3, to within an undetermined (1) constant
usually called the Kolmogorov constant. For fuller discus-
sion of hydrodynamic turbulence see, for examplatchelor
2 MHD cascade theory (1970; Lesieur(1990; Frisch(1995.
The Kolmogorov form can also be obtained somewhat
In some ways the physics of (Navier-Stokes) turbulence ismore physically, by reformulating the approach to take ex-
more about lengthscales then timescales, since the fundaplicit account of the relevant{dependent) timescales. In
mental action of the nonlinear terms is to transfer excita-order to do so we first define these timescales.
tion between lengthscales. Thinking in Fourier space, this There are (at least) three conceptually distinct timescales
could be rephrased as the primacy of the wavevector speGssociated with each wavectork.
trum over the frequency spectrum. Of course, each length-
scale (or wavevector) has one or more timescales associated— Thenonlineartime istny (k)~1/ (kug), Whereu,% is ap-
with it, so that there is also an inherent transfer of energy proximately the kinetic energy per mass in wavevectors

Dissipation
range

a often 5/3

between timescales. In particular, tfetesof energy trans- ~k, and represents the timescale associated with non-
fer are of importance, helping to determine cascade proper-  linear modification ofs.

ties and the shape of the energy spectrum. Indeed, as we

review below, Kolmogorov theory can be reformulated in - The triple correlation timescale r3(k) characterizes
terms of such timescales, showing that it is the triple cor- the time separation over which third-order correlations
relation timescalers(k), that determines the slope of the en- (written symbolically aguuu’) with u andu’ at differ-

ergy spectrum in the inertial range. In MHD turbulence, as ent times) tend to zero.

contrasted with Navier—Stokes, the situation is further com-

plicated by the presence of An waves and their associated  — The spectral transfettimescalers(k) is the time for a

timescales. significant fraction of the energy in wavevecter to
In the subsections below we first review Kolmogorov the-

ory for hydrodynamics and the Iroshnikov-Kraichnan (IK)  Meaning gravity, Coriolis force, etc. play no important role.

extension of it to incompressible MHD, and then summa-  2Thus viscosity is not a relevant parameter in the inertial range.
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be transfered to other wavevectors. A common defini-nonlinear time. In order to achieve the equivalent of a hy-
tion is via (Obukhoy 1941) drodynamic “collision” (i.e. a nonlinear interaction lasting
for ~tnL), N2 interactions of lengtha are required, since
the collisions are incoherent. Thus=N?tao=13 /TA>™NL,

i.e. spectral transfer is slowed down by the presence of
Alfvén waves. Substituting this inte=u?/zs(k)=const

Although in general functions of the full wavevector, insist- Yields, as before, the IK forn (k)~k =3/, N
ing on isotropy means that the timescales, like the spectra Although well-regarded for many years, it is now recog-

d u?
Eu,{ = —e(k)~ ‘?';} )

themselves, are then functionsket|k|. nized that there is an important problem with the IK ap-
As noted byKraichnan (1965, the energy flux should Proach, namely the neglect of the intrinsic anisotropy of
be proportional to the triple correlation timescaigk).  7a(k) with respect toBo. There are many wavevectors for
Assuming isotropy and matching the dimensions of Which k-Bo#kBo; in particular, modes withk L Bo have
e=13(k)k“E (k)P yields 7a (k)— 00, which is not a short timescale and so will not
dominate the contribution tez for thoseks. (Modes with
€ = (K E (k)2 (3)  k-Bo=0 are called théewo-dimensiona(2D) modes, while

which might, mnemonically, be called the “2-3-4" rule. In those WIthk'BO%.O are.thequa5|-2Dmodes. Se@ughton

; : : . : et al.(2004) for discussion of how smakt- Bp needs to be.)

isotropic hydrodynamics the three timescales are in fact S .

equivalent: te~ta~n A/ (kg )~/ [kEE)], and sub- Thu_s the cascade in directions perpe_ndlcular and para_lllel
S ' to By is likely to be different, engendering a non-isotropic

stitution into Eq. 8) yields E (k)=e%/3k—>/3, as beforé. An
advantage of ?hig) ;/pproac;)however is that it allows formodal spectrum. Consequently, the relevance of the IK phe-
f ’ nomenology to MHD turbulence is probably more limited

mor neral situations in which the tim | iffer - S
ore general situations ch the timescales differ, SUChthan was initially thought. In addition, the omni-directional

as MHD which we discuss next. . . T
spectrum does not have the clean interpretation pertaining in

isotropic cases since excitations at different directionBgo

but with the samék| are lumped together.

Iroshnikov(1964 andKraichnan(1965 independently sug- Models designed to take some account of this anisotropy

gested that for MHD turbulence with a strong large-scalehave been proposedP@uquet et al.1976 Grappin et al.

magnetic field Bo, a new timescale becomes important. 1982 Matthaeus and Zhqu989. The key idea is that the

2.2 Iroshnikov—Kraichnan (IK) phenomenology

This is the Alfven timescale, rate of decorrelation of triples is

1 1 1 1 1
a(k) = = , 4 N 4 6
A = 5 Bol  kiBocosd] @ Rt mtm ©

and is essentially the period of an Aéfiw wave with wavevec- that is, the sum of the decorrelation rates from distinct phys-
tor k. Treating co® as approximately constant (i.e. ne- ical effects. In this case, decorrelation occurs due to the
glecting the anisotropy ofa), Kraichnan argued that since usual advective effects (ratel/zy. ) and also via the limited

a strongBo means that A(kBo) is very short,za should  time for which counter-propagating wave-packets are in con-
provide the dominant contribution to the triple correlation tact. This simple model provides a bridge between the Kol-
time in MHD turbulence. Insertings(k)=1/(k Bo) in Eq. @) mogorov spectrume —oo) and the IK spectrumBy— co)
yields the IK form for the over-simplistic approximatiok: Bo~k Bo.

B _3/2 If instead the full anisotropiea (k) is used in Eq. &) and
E(k) = veBok : () one tries to substitute this into a version of Eg) based
Physically, visualizing inertial range MHD turbulence as the O £°° (k) rather thank k), there is an immediate problem
interaction of counter-propagatiélfv én waves, it is clear ~SiNce there are now (atleast) two lengthscales presemind
that their large propagation speed limits the collision time XI=k c0sf, which dimensional analysis cannot distinguish

of two such wave-packets to bera< .. The latter in- between. _ _
equality holds if the fluctuation amplitude at scale ug, Note that there is also another difference between MHD

is much smaller than the large-scale AdfvspeedBy. Let ~ and hydrodynamic turbulence. The above phenomenologies
N(k)=tnL (k)/7a(k) be the number of wave periods in a @ll assume that the normalized cross helicity,

3The approximatiom?~k E (k) holds well whenE (k) is a pow- _ 2(v - b)
erlaw (e.gLesieur 1990 §6.4.1). T2 + D)

4The Iroshnikov and Kraichnan derivations are not identical. For . L . .
example, Kraichnan considered incompressible MHD while Irosh-1S Small «1). This is not a necessary physical require-
nikov considered the plasma betd compressible situation. Nei- ment, however. Extensions to take account of significant
ther author required that a dc field was present. cross helicity levels have been considered (Bgbrowolny

5Inincompressible MHD, Alfién waves propagating inthe same €t al, 198Q Grappin et al.1982 1983 Pouquet et a).1986
direction do not interact, either linearly or nonlinearly. Matthaeus et gl1994 Hossain et a).1995.

@)
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2.3 Anisotropy of the turbulence spectrum and its conse-+ions have wavevectors lying in the plane perpendicular to
guences the mean field, they are often called 2D fluctuations.
Besides being a counterexample to the minimum variance

When conditions are such that a large-scale mean magnetiargument, 2D fluctuations form a kind of paradigm for turbu-
field Bg threads the plasma, the dynamics, including turbu-lence, in much the same way that slab fluctuations represent
lence if it occurs, can be expected to respond to this preferrethe essence of MHD Alfen wave physics. 2D fluctuations
direction, frequently through development of anisotropy. havek-Bo=0 and are of “zero frequency.” Therefore the
This is seen even in the most basic models of linear MHDAIfv énic time decorrelation that entered into the discussion
waves, where dispersion relations involve anisotropic termdn Sect.2.2 does not occur: the decorrelation of 2D fluc-
like k-Bp. In the simplest anisotropic model of fluctua- tuations occurs without influence of the out-of-plane mag-
tion symmetr§ — the “slab model” — excited wavevectors netic field Bo. Uninhibited by this wave propagation effect,
k lie along By and the spectrum is one-dimensional. The 2D turbulence can be expected to be relatively stronger than
slab model has been widely employed in cosmic ray scat-other turbulence in which the nonlinear couplings decay in
tering theory Jokipii, 1966 and in interpretations of space- part due to propagation effeds.
craft data Belcher and Davis1971), and elsewhere, but it Although 2D symmetry is itself another highly idealized
is undoubtedly too simple. For example, for incompressiblecase, it points towards families of symmetries that may in fact
MHD, the slab model allows no wave-wave couplings, andbe relevant to MHD with a strong mean field. For example,
therefore no possibility of turbulence or a Kolmogorov-like it is well known in laboratory plasma studiegvweben et al.
cascade. 1979 Robinson and Rusbridgd971) that the correlation

The overemphasis on the slab model in solar wind appli-scales along the mean field are much longer than those per-
cations probably derives from two unfortunate oversimpli- pendicular to the mean field. This led to development of so-
fications. First, the “Alfenic” fluctuations often observed called “Reduced MHD” models (RMHD) which are “quasi-
in the solar wind (e.gBelcher and Davis1971) are iden-  2D” in the sense that they have excited wavevectors only in
tified by their high degree of correlation of the fluctuating a region ofk-space neak-Bo~0. They are also incompress-
components of the magnetic and velocity field; in turbulenceible (or nearly so). Various derivations of RMHB#&domt-
terms these are high cross helicity states. Such fluctuationsev and Pogutsel974 Strauss 1976 Montgomery 1982
resemble wave normal modes of MHD for fluctuations prop- Zank and Matthaeyd.9923, suggest how this kind of low-
agating along the locally dc magnetic fieRb; these might  frequency quasi-2D dynamics may be the “leading-order”
be assumed to obey a dispersion relatieatk-Bg for the  description of nonlinear evolution of MHD in the presence of
frequencyw, and to have perfectly correlated (or anticorre- a strong guide field (cMontgomery and Turned981). The
lated) velocity and magnetic perturbations, depending upormain point of the derivations of RMHD is that the strongest
the sign of frequency. Second the fluctuation variances innonlinearities — and therefore the expectation of the strongest
each of the two directions transverseRtg, tend to be larger wavenumber cascade — will occur in regionske$pace for
(by about a factor of five) than the parallel varianBelcher ~ which the nonlinear time is less than the Adfvtime, i.e.
and Davis 1972, Klein et al, 1991, Horbury et al, 1995. L (k) <TA (k).
The so-called “minimum variance direction” argument pro- An interesting and recurring topic has been the study of
ceeds t@stimatehe direction of as parallel to the direction theboundaries of applicabilityf the RMHD model.Mont-
of minimum variance, i.eBg. Taken together, one concludes gomery(1982 noted that strong anisotropy of spectral trans-
that the “turbulence” (which cannot be turbulence at all in thefer leads to “freezing out” of parallel spectral transfer, so
usual sense) has slab symmetry. thatk; no longer increases — in this limit there is no paral-

However, in strong MHD turbulence the cross helicity en- lel cascade at allHigdon (1984 recognized that quasi-2D
ters into the physics as well (e.gobrowolny et al, 1980, turbulence confined within a dynamically determined region
and dispersion relations do not provide the time dependenc# k-space would have, in steady-state, a distinctive bound-
in this case (i.e. there are many frequencies associated witAry shape in which the maximum (or, typical) excitedis
eachk). In addition, the minimum variance argument, by it- related to the maximum excite}. Later this was elabo-
self, cannot determine the directionkofConsider, for exam-  rated upon bysoldreich and Sridhg1995 1997 who made
ple, a total magnetic field=(b,, by, Bo) with fluctuations ~ use of these ideas to note that the marginal condition of
by=da(x,y)/dy andby,=—0da(x, y)/0x that are transverse 1y (k)=ta (k) would take on the powerlaw forrm~kﬁ/2
to the mean field. The wavevectors, however, are clearlytor steady MHD turbulence with &~>/3 inertial range (Hig-

perpendicular — not parallel — tBo. Since such fluctua-  don also obtained this scaling). They refer to this as a “criti-

6The most frequent assumption, that of isotropy, postulates 7 Here frequency means wave frequency, not a general (e.g.
equal excitation in all wavevectokswith the samgk|. Classical ~ Fourier) decomposition of the time dependence.
hydrodynamic turbulence theory (eBatchelor 1970 is almost 8 propagation effects can enter the physics of the 2D turbulence
entirely based on this assumption, and applications of it to the soif the large-scale fluctuating field the planeis sufficiently strong,
lar wind have sometimes made a tacit assumption of isotropy (e.gbut this is distinct from decorrelation associated with the strength of
Coleman 1968 Tu et al, 1984). Bo.
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A initially isotropic spectral state will evolve into a state that
-3 becomes more like that envisioned in RMHD. For the case
RIS that Bg is a dc field, this was investigated numerically in
f incompressible 2D Shebalin et a).1983 Grappin 1986
/‘ N f and later in 3D Carbone and Veltyi199Q Oughton et al.
Non-hydrolike ? f ‘ 1994 Matthaeus et al.1996, with consistent results. See
fuctuatons \ /‘ i ‘ alsoBondeson(1985. The basic conclusion is that spectral
4 TN~ transfer of energy proceeds more rapidly into wavevectors

“ 4

Hydro-like
fluctuations .
Non-Hydrolike

o >, >, perpendicular tdBg. Wavevectors parallel to the mean field
@ *8, ® that are initially unpopulated remain relatively unpopulated
because spectral transfer paralleBRgis weak. This can be

Fig. 2. (@) Partitioning ofk-space on the basis of whether the nqerstood on the basis of resonance arguments, as was first
nonlinear time atk is less than the (nominal) wave period there: noted byShebalin et al(1983 11

= . : . .
oNL (k) ~ Ta (k). The region where this holds defines the “hydro- o b e oy sics of thehebalin et al(1983 picture is
like region”, wherein nonlinear effects have primacy. Fluctuations

in this region arenot well described as waves. Conversely, outside corre_ct, and the_re is evidence Fhat it is valid in 3D as well
the hydrolike region wave effects are of importang®. Indication @S driven and slightly compressible low Mach number MHD
of the strength and direction of spectral transfer at selected pointéMatthaeus et al1996 1998 Galtier et al, 2001). However,

in k-space. Within the hydrolike region the transfer is roughly Kinney and McWilliamg(1998 made the very important ob-
isotropic and analogous to the hydrodynamic situation. Outside thisservation that the preference for perpendicular spectral trans-
region, parallel transfer is weak, perhaps exponentially so, whilefer extends to modes beyond those that fall into the RMHD
perpendicular transfer is still strong due to the resonant transfer mecategory. Put differently, the propagation effect is generally
diated by the hydrolike modes (aft®ughton et a|.2004. very strong for modes that are not in the RMHD segment
of k-space,except for those couplings that are resonant in
the sense of Shebalin et d@ven high-frequency, wave-like
Fourier modes can engage in certain “zero-frequency” cou-
plings, namely those catalyzed by the quasi-2D (or RMHD)
modes that form one arm of their resonant triads. Such cou-
plings increase thie, of the high-frequency modes, but leave
the energy unchanged in the participating RMHD modes
(e.g.Kinney and McWilliams 1998 Matthaeus et 811998
Oughton et a].1998 2004). See Fig2b.

In order to quantify the weakness of the parallel cascade
one can use simulation data to obtain mean wavenumbers
computed parallel and perpendicular to an imposed dc mag-
Ehy. ky) ~ k{203 exp(— Ik L | ) ’ (8  nefic field (assumed parallel to theaxis). We define the

(ky L)?/3 mean-square perpendicular wavenumber by

where L is a characteristic lengthscale for the energy- 2. 2
- . : : 2 ZkkJ_U(kL,kz”
containing range. This model spectrum is valid for wavevec-(x9); = - 5
tors above the energy-containing range and has the advantage DAV I NS
that it falls off strqngly with increasingk, | while retaining with an analogous definition for its parallel counterpart,
a strong _perpendlc_ular caspade. _AS stressediby et al. <kz2>J" Note that a weighting function is used, in this case
(2002, itis not a unique choice, being postulated rather than,[he electric current density(k), although any other rele-
derived. Nonetheless, it does provide a good fit to the simu-vant field could have been emp;loyed a@r b. Weighting

lation data they report on. with j emphasizes structure at smaller scales as compared
to weighting withd. The summations are over all excited
wavevectors.

A crucial test of whether RMHEP models are indeed cen- ~ Figure3 shows the evolution of thesg {veighted) mean
tral in low-compressibility MHD turbulence is whether an wavenumbers, as determined from a set of unforced pseu-

cally balanced” cascade (Figa). While this estimate seems
to be reasonably accurate for initial conditions and/or forc-
ing restricted to lie within the RMHD regionMaron and
Goldreich 2001 Cho et al, 2002, one may be faced with
applications in which the fluctuations are not confined in this
way. This leads to an examination of “high-frequency” or
non-RMHD couplings (see below).

Building on the critical balance conceg@ho et al.(2002
proposed a specific model for the (axisymmetric) energy
spectrum of strongMHD turbulence:

9)

2.3.1 Dynamical appearance of quasi-2D turbulence

9 Meaning the turbulent energy is approximately equal to the 11 Nonlinear interactions in incompressible MHD involve triads
energy in the mean field. of wavevectors satisfyingz=k1+ko. For strongBg, the most

10 Hereafter we often use RMHD, quasi-2D, and hydrolike as effective couplings are those triads that also satisfy a (wave) fre-
(near) synonyms. However, there are differences in their definitionsquency matching condition. Only oppositely propagating fluctua-
For example, RMHD fluctuations are necessarily of small amplitudetions interact, so all interactingesonanttriads of Fourier modes
relative to the mean field, whereas this need not be true for quasi-2have at least one member that satiskeBo=0 (Shebalin et aj.
or hydrolike fluctuations. See, for example, Appendix Bifghton 1983. Necessarily, the other two then have the s&meTherefore
et al.(2009. resonant spectral transfer will tend to increagebut notk;,.
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B,= 0.5 B,= 1.0 Dy(r)=(lb(x+rej)—b(x) 12), wheree is a unit vector along
T T the local magnetic field, an® | (r)=(|b(x+ré | )—b(x)|?)
wheree is a unit vector in any direction perpendicular to
the magnetic field. Both studies are consistent with the state-
ment thatD, (r)> Dy (r). This implies that the variation of

- the fluctuations perpendicular to the local magnetic field is
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ of smaller scale compared to that along it. One might call

30

30

CEE S L this “correlation anisotropy” and it is the-space, local, ver-
© B=3.0 © Bo=80 sion of the spectral anisotropy discussed above. Analyses of
spectra and/or mean wavenumbers computed relative to the

200 1 20f 1 local mean field have also been performithfon and Gol-

/\ <> dreich 2001 Cho et al, 2002 Muller et al, 2003. For the
0§ 1 10[\ most part these support thgwkﬁ/z scaling. It is reassuring

Tt LT - to find that the physics of the development of anisotropy is,
O T T, O T T T, in the end, local.

Studies have also shown that propagation-induced spec-

Fig. 3. Evolution of the average parallel and perpendicular tral (and correlation) fimsotropy IS a property of incom-
wavenumbers for 188incompressiblasimulations for several val- ~ Pressible and nearly incompressible MHD. For example,
ues of dc field strengttBo. The mean wavenumbers are rms values Matthaeus et al(199§ found, with strongBo, that the
with a weighting of| j (k)|2 at each scale; see E@)( Initial con- solenoidal ¥-v=0) part of the velocity field exhibits spec-
ditions for the simulations were identical, with the excited modes tral anisotropy, while the longitudinal par?(v#0) remains
band-limited betweetk|=4-20, having gaussian random phases, isotropically distributed irk-space. This was confirmed later
and an Alfien ratio of unity. TheBy=0 case is not shown, but has by Cho and Lazariaf2002), at higher resolution. Evidently
the two curves essentially overlain, as is to be expected for isotropyihis is due to the fact that suppression of spectral trans-
fer is mainly associated with AlBnic fluctuations, which

] ) ) i ) have the anisotropic dispersion relatios+k- Bg. Interest-
dospectral simulation$: Each panel in the figure is for i 4y one can arrive at a complementary result by consider-
a different value of the dc field stre_ngth, Where t_he initial ing the asymptotic low Mach number limit of nearly incom-
Reynolds numbers{400) andv andb fields are identical for pressible MHD at varying plasma be#apk and Matthaeys
all runs. The trenq towgrds “freeze-out” of the p_araIIeI cas-1993. Therein, a regularized asymptotic expansion of the
cade with mcreasmg?o is clear. Indgeq, saturation occurs compressible MHD equations is carried out, and the con-
for Bo = 4 (Shebalin et a.1983. This is to be contrasted gjtions necessary to attain the incompressible limit investi-
with the behavior of / <ki), which indicates that perpendic- gated. A main conclusion, for order one or low plasma beta,
ular transfer is still strong, although reducing somewhat withis that the limit to incompressibility can occonly if the
increasingBo (perhaps due mostly to the modest Reynoldséxcited wavevectors become arranged so ®akV for
numbers employed). the solenoidal part of the velocity, and also for the magnetic

Keeping in mind the expectation that physical processedluctuations. Departures from this ordering occutaVf;),

tend to be |0ca|, rather than depending on conditions “atWhereMs is the turbulent Mach number. This I’einforces,
infinity,” one might ask to what extent these results de-from an entirely different perspective, the association of per-
pend upon theiniformity of the mean magnetic field. One Pendicular spectral (or correlation) anisotropy with the in-
would expect that a strong magnetic field that varied oncompressive motions of MHD turbulence.
very large length scales would act, with regard to develop- A consistent conclusion emerges: provided that the turbu-
ment of anisotropy, in almost the same way as a uniform ddence is incompressible or nearly incompressible, MHD tur-
field. This issue was addressed ®ko and Vishnia¢2000 bulence tends to produce gradients perpendicular to a strong
and Milano et al.(2001), who asked whethet-space cor- magnetic field faster than it produces gradients along the
relation statistics were anisotropic relative to theal mag- same magnetic field. Generically, this is a consequence of
netic field. Although their approaches were somewhat dif-the suppression of parallel spectral transfer by the &ifv
ferent, in each case second-order structure functions weraave propagation effect. Further physical insight is gained
used, and the results were consistent with the above picfrom deeper examination of several special cases.
ture of the anisotropic development of gradients relative to
the mean magnetic field. One can summarize the results 3 5 \weak turbulence
as follows. Consider the second-order structure functions

We mentioned earlier that the high-frequency non-RMHD
modes can also engage in resonant nonlinear spectral transfer
‘/(ki)/z, since there are two independent directions in the perpenio higherk , a process in which the quasi-2D RMHD modes
dicular plane. act as couriers (Figb; and Fig. 2 inOughton et a].2004).

12 To make the comparison wii;!yl (kzz) fair, Fig. 3 actually plots
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Now let us change the question to how these high- B,= 0.0 B,= 1.0
frequency modes interact when the RMHD modes are nearly10 :
absent, i.e. energetically weak. This regime has become °|
known as “weak turbulence’Galtier et al, 200Q 2002. e
Nonlinear and resonant couplings are still present, with the 4
three-wave resonances where one modekijag playing 2
crucial roles. It is noteworthy that perpendicular spectral o
transfer is still favored, and indeed to leading-order there is
no parallel transfer. Standard dimensional analysis methods,,
reveal that the perpendicular spectrum is of the f@ﬁrﬁ in sl
the inertial rangeNg and Bhattacharjed 996 1997. The o
same scaling is also obtained using the more rigorous kinetic
equation approach&altier et al, 200Q 2002). oo
Interestingly in weak turbulencéy is more of a parame-
ter than a variable. In particular, to leading-order, the depen- %= 5" e
dence of the spectrum di) is set by the initial spectrum. Time Time

Fig. 4. Evolution of the average parallel and perpendicular
wavenumbers for 1238\/IS=1/4 compressiblépolytropic) simula-

. imulati . inalv hiah | tions. The mean wavenumbers are rms values with a weighting of
I?esp|te numerpus simulations at increasingly . 9 gr reso u'|b(k)|2 at each scale, which emphasizes large-scale anisotropy. The
tion, there is still debate over the value of the inertial rangejyjtia| conditions are band-limited betweeh|=4—8, with gaus-

slope of the energy spectrum in incompressible 2D MHD tur-sjan random phases, an A ratio of 1, uniform density, and

bulence. Several factors contribute to this debate. Currengolenoidal. Initial values for the plasma beta are shown.

computing resources are not sufficient to achieve the multi-

decadal inertial ranges long enough for unambiguous deter-

mination of their slope. Differences in numerical resolution, Galtier et al, 2001). We note that since, in the low-beta limit,

forcing methods (including unforced cases), and models foithe dispersion relation for fast waves is isotropiesk Bo,

dissipation (e.g. standard Laplacian diffusion versus hyperthe classical IK phenomenology can be applied to them, al-

diffusion) may also be causing discrepancies. though there are complications since fast modes need not be
In a recent high-resolution (819Q study, Biskamp  counter-propagating in order to interact nonlinearly. This is

and Schwarz(2001) claimed support for the IK scaling a possible alternative explanation for the 3/2 scaling.

2.3.3 2D turbulence

E(k)~k—3/2. However, this has been challengede(ma In order to show some of the similarities between in-
et al, 2002 Biskamp 2002. Further work is clearly called compressible and compressible MHD, as far as parallel and
for. perpendicular cascades are concerned, we have computed
mean parallel and perpendicular wavenumbers, defined as
2.4 Compressible MHD in Eq. 9), from a series of compressible (polytropic) sim-

ulations (Fig.4). The behavior depends on system parame-

There has not been quite as much work in this area, as conters such as the sonic Mach numbgf;&u/c,), the dc field
pared with the incompressible case, although some large nustrength Bo), and the plasma begy=pc?/[B3+(b?)], de-
merical studies have appeared recently (Blatthaeus etal.  fined to include thgb?) contribution to the magnetic pres-
1996 Vestuto et al.2003 Lee et al, 2003. sure. For compressible systems there are also further com-

A paper of particular interest Sho and Lazaria2003.  plicating factors such as how to choose the initial velocity
They performed isothermal simulations, with the plasma betgield (solenoidal, longitudinal, or some combination).
~0.2, and analyzed the data by projecting the fluctuations Although there are some differences compared to incom-
onto the linear mode polarizations, assuming that this woulchressible cases (cf. Fi§), the same gross behavior is seen:
be Statistica”y valid despite the presence of nonlinear Prothe para||e| cascade Weakens%s's increased (Or, a&) de-
cesses. This enabled them to compute structure functions angteases). Further investigation of the weakening of the paral-
spectra for each polarization type (conveniently, althoughle| cascade in compressible MHD is underway, but it seems

perhaps misleadingly, referred to by their linear mode namesiikely that some of the important incompressible results will
Alfven, slow, and fast modes). They found that spectra forcarry over.

the Alfvén modes were-k /3, in agreement with critical

balance-type models. Slow mode spectra were also foun@.5 Timescales: Forcing and inhomogeneByseffects

to have this form, consistent with suggestions that the slow

modes should be slaved to the Aéfv modesKligdon 1984 In this section we summarize some results regarding the
Goldreich and Sridhaf.997, Lithwick and Goldreich2001). impact of various external and/or inhomogeneity related
Fast modes, however, were found to have spesta®/?, timescales on the development and/or sustainability of tur-
a form which they derive using a resonance argument (cfbulent cascades (see aBoou et al, 2004).
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Table 1. Results from turbulence simulations which support ergy. On the basis of the cross helicity values, all the sys-

the idea that timescales ordered as in the “Dmitruk inequality”, t€MS could be classified as A#fic — often assumed to mean

Eq. (L0), favor higher levels of turbulent dissipation. Note that the Wavelike. Strikingly, however, the efficacy of the turbulence
turbulent heating efficiency varies from 0-61%, despite the (aver-heating varies from about zero to over 60%.

age) normalized cross helicity always being in excess of 0.94. Such In work related to these timescale ordering results, and
high values ofio.) have often been interpreted as evidence for thealso to theParker (1972 problem, Dmitruk et al. (2003
dominant presence of Alen waves, and by inference a relatively have shown that for a stationary forcing pattern at one bound-
unimpqrtant role flor.turbL.JIence. The results summarized in this ta‘ary, the slope of the perpendicular energy spectrum depends
ble |nd|ca_te that this is neither a necessary nor a general reqwremeréttrongw on the ration=reross/ Tarive. FOrm<1 the spectral
(afterDmitruk and Matthaey2003. slope isx~ —3, while form~2, it is the Kolmogorov value
—5/3. Varyingm between these two extremes yields slopes
Heat.eff. (%) O 0 2 13 19 46 61  petween the above values in an apparently rather continuous

(o¢) 1 094 1 095 095 099 0096 fashion. The weak turbulence slope-e? occurs form~1/2.

Trefl/ Tdrive oo 01 10 1 1 10 33 Note that in a system forced at one boundary, the bound-
Teross/ Tdrive 1 01 10 1 1 10 10 ary conditions at the other end of the system can also play
Tiorce/Tdrive 20 20 2 2 20 20 20 an important role in determining whether or not turbulence

can besustained The key point is that the boundary con-
ditions must allow non-propagating (e.g. 2D) fluctuations to

ersist in the system, as opposed to propagating through it in
Consider a system in which energy is being injected at afelatively shortyorder[QmitrSIF() etal ZO%J)p gating g
boundary with some known energy flux. One can then ask, ’ '

how efficiently is the energy dissipated by a turbulent cas-
cade? Define this efficiency, as the rate of energy dissipa- 3 Observational evidence for a two-component solar
tion by turbulence divided by the injected energy flux. wind

Using RMHD simulations designed to approximate the
situation in a coronal holeDmitruk and Matthaeug2003 From a turbulence perspective, it is desirable to have ac-
have shown that is subject to constraints between the var- c€ss to the full modal three-dimensional wavevector energy
ious timescales characteristic of the system. Specificallyspectrum&3P (k.. ky. k.) of the solar wind fluctuations. Un-
they found that increased valuesjofare favored when the fortunately, as is well-known, this is difficult to achieve us-

timescales are suitably ordered: ing data from a single spacecraft (ekgedricks and Coro-
niti, 1976. A spacecraft time series can be used to con-
TNL < Tdrive < Trefl < Tcross < Iforce < Tdiss (20) struct a correlation function, and then Fourier transformed to

o ) o yield thefrequencypower spectrun®? (). Alternatively, the
The geometry of the system is important in defining thesetemporal correlation function can be converted into a spa-
timescales: the coronal hole is considered to be forced afjg| one using the Taylor “frozen flow” hypothe&fs(Tay-
its base by photospheric motions, a large-scale vertical magyr, 1938. The problem, of course, is that this is only
netic field threads the system, and the Alfvspeed is non- 3 function of one of the three spatial coordinates, namely
uniform in this direction. The characteristic time for viscous that parallel to the measurement direction. Fourier trans-

or resistive energy dissipation giss, While Ty is the usual  forming this yields thereduced wavenumbegower spec-

turbulence nonlinear time. The frequency with which the ty;m 15 E’Ed(kred)szE:"D(k) dk1dky, wWhere kreg=k3 iS

field lines are shaken at their base determines the period Qilong the measurement direction. Except in cases of high

the forced waves emanating from the bounda@ftce. This  symmetry (e.g. isotropic), knowledge of the reduced spec-

is quite distinct from the driving timescalegrive=A0/40,  trum is not enough to invert this relationship and determine

which is associated with the horizontal photospheric motionsihe more fundamental modal spectrum (&atchelor 1970

of typical speedup and characteristic lengthp. The re-  Eredricks and Coronitil976.

flection timescalerrer, has a reciprocal which is the rate at  gych information is clearly important since even full vec-

which upward propagating fluctuations are reflected — due tgqy (amplitude) data may not uniquely determine the geom-

the gradient in the Alfen speed — into downward propagat- etry of the fluctuations. For example, as noted in S2@.

ing ones, and vice versa. Finaligiossis the time forawave  minimum variance direction arguments cannot, on their own,

to propagate the length of the systéfrive refer to Eq.10)  pe used to distinguish between 2D and slab fluctuations. A

as theDmitruk inequality related issue is how to interpret high values of the normalized
Table1 summarizes results from simulations which have cross helicity in a system in which turbulence is present (see

timescale orderings which satisfy EdLOf to varying de-  Sect.2.5and Tablel).

grees. Evidently the better satisfied the Dmitruk inequality ~pespite these limitations on single-spacecraft datasets, it is

is, the more efficiently turbulence dissipates the injected ensometimes still possible to obtain statistical approximations

13 Note that this is distinct from the period of the wave, unless  1#Valid in the solar wind because of the supersonic flow speed.
the wavelength equals the system length. L5Naturally, P(f) andE’Ed(kred) contain the same information.
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to E3P(k). For example, using an ensemble of datasets from . P(f) o 5 P(f)

1 AU for which the mean magnetic field was at different an- 0,27“\\ 1 =1

gles to the radial (measurement) directidfgtthaeus et al. . ) ////
104 S~

(2990 computed the autocorrelation function for the mag-
netic fluctuationsR(ry, r1), assuming axisymmetry about
Bo. A contour plot of this (the so-called “Maltese cross”) 10°r
reveals that there are regions where the contours are approxio* : ] la 0.1 : ] : ‘

. 0.0001 0.001 0.01 0.1 1.0 10.0 0.0001 0.001 0.01 0.1 1.0 10.0
mately parallel to- and also regions where they are approx- St o freq
imately parallel to-; , supporting the notion that there are at 10 ‘ ‘
least two distinct types of solar wind fluctuations. These can osf
be usefully idealized as power at approximateélafd 90 to of
By. Possibilities for the nature of these fluctuations include ,
quasi-2D turbulence®e-90°) and quasi-parallel-propagating -~ -
Alfvén waves{~0°: the slab component). Clearly this de- t — -
composition is not likely to be either exact or complete since 00oo1 0001 T
there is power at all angles.

Several quantitative studies have also been performedsig 5. power spectra for the 2D/slab model, Egl) evaluated

These include fits of assumed 2D/slab two-component modwith f,¢¢=0.01, =45, andrs=0.2. The different curves are for
els to cosmic ray mean free path lengtBgeper et al.1994), slab-component slopes of1 (black), 1.3, 1.5, 5/3, 1.8, and 2.0
and inertial range energy spectra as a function of the angldight blue). The slope for the 2D component is 5/3. Upper pan-
between the mean field and the radi@leper et al. 1996). els: Power spectra and compensated power spectra. Lower panel:
Both of these studies found best fits of about 80% 2D ver-Fractional contribution of slab component® /).
sus 20% slab, by energy. In addition, nearly incompressible

theory gank and Matthaey49928 predicts that the energy

in the slab component should scale with the Mach number int998 Ruderman et 311999 Goldstein et al.2003 Roberts
a specific way. Using Mach numbers typical of solar wind et al, 1992 have shown that the effects of spherical expan-

observations also yields an 80—20 2D/slab partitioning. Col-Sion gnd/or velocity shear can populate modes with Iarge.per-
lectively, these results indicate that there is abundant, an@€ndicular wavenumbers, thus generating or strengthening a

consistent, evidence for a 2D/slab two-component approxiPerPendicular component in the energy spectrum.
mation, with the 2D component energetically dominant. Var-
ious two (or more) component models have been employed, Spectral slopes in the solar wind: Why 5/37?
in efforts to explain the observed evolution of solar wind fluc-
tuations as they are transported outwards by the wind; seess noted in the introduction, it is somewhat of a puzzle why a
for example, the review article bu and Marsct{1999. compressible, ionized, collisionless, magnetized plasma like
In a distinct studyCarbone et al(1999 analyzed mag- the solar wind is frequently found to have energy spectra
netic fluctuations in Alfenic intervals in terms of the two with inertial range S|Opes equa| (W|th|n error bars) to the in-
independent polarizations #fk). Their results also support  compressible hydrodynamic value 65/3. Some theoret-
a two-component perspective, although of a different kind tojcal and observational perspectives were considered briefly
that of the Maltese cross study, perhaps because of the diffeghove. Below we present new results from a simple model
ent data selection policies and assumptions employed in thg/hich may help explain the commonness of t/8 Slope.
two studies. We model the fluctuations as an admixture of strictly
A few simulation studies have also been conducted with 2D MHD turbulence and Stricﬂy para||e|-propagating Adfy
view to understanding how (or if) the two components could waves. The components are assumed to have powerlaw
develop from particular initial conditions (ICs). For example, wavenumber spectra with independent slopes and energy lev-
Ghosh et al(1998ab) found that they could produce Maltese els. Bieber et al(1996 used fits of such a model to obser-
cross-like correlation functions in two different ways. The yational data to estimate the slab/2D energy partitioning (cf.
first involved time-averaging over the evolution associatedsmith (2003). Here, we investigate, theoretically, how the
with ICs consisting of slab waves and (magnetic) pressuresjope of the (composite) reduced spectrum varies as a func-
balanced “structures” (these hake.Bo andb||Bo). The  tjon of the field winding angles and the slab/2D partition-
second way was to have both slab and (magnetic) quasi-2fhg.
turbulence present in the ICs. The, perhaps surprising, im- Suppose the 2D component-isc—¢, with g fixed at 5/3,
portance of the initial conditions in this study suggests thatyhile the slab component isk—*, with s varied between 1
it might be possible to draw conclusions about the fluctua-and 2. Under the above assumptions, the frequency spectrum
tions present at the solar wind's “inner boundary” (at or nearcan then be writtenQ@ughton 1993 Bieber et al. 1996,
the Alfvén critical radius), from measurements made well .
beyond that distance. V2 s ( fret\T ef\d .
Other simulationsGrappin et al.1993 Grappinand Velli ~ £(f) Tors (ff> cos ™ty + <ff> sinf =y (11)

Lo min

s=1
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Table 2. Slopes obtained from least-squares fits to a powerlaw formanzing, we n_ote that a Wlde.ran_ge of spectral slopes can
the two-component model @ (f), with the indicated slab slope ©CCUr, depending on the contributions of the above factors.

and slab fraction afyes. Fitting is over the range (0.1-16) fref. Related to this is the efficiency of turbulence at dissipating
injected energy, which is also rather wide ranging, for simi-
lar reasons.

The observational support for two-component, particu-

slab slopes 1 1.3 1.5 5/3 1.8 2

slab fractions Best-fit slope larly “slab plus 2D”, descriptions of solar wind fluctuations
0.05 162 165 166 1.67 167 1.68 was summarized. Using a simple two-component model we
0.1 158 162 165 167 168 170  demonstrated that it can be relatively easy to get inertial
0.2 150 158 163 167 169 1.73 range slopes close to the typically observed value /&, 5
0.3 143 155 1.62 167 171 1.76 when the actual spectrum consists of the sum of&afbece

and a second, distinct, powerlaw contribution. How easy this
is depends on parameters such as the relative contributions of

The constants is the fractional contribution of the slab com- the two components over a given frequency range. Together
ponent toP ( fref) at the (arbitrary) reference frequengys with other results reviewed herein, this indicates that care
and reference anglg=45°. As noted in Sect3, previous should be exercised when using the observed slopes to draw
studies indicate thats=0.05-0.3 is a useful range to con- conclusions about the nature, type, or number of fluctuation
sider for the solar wind. Whesn<g the 2D spectrum will ~ cOmponents present in the solar wind. _
dominate for sufficientlyow frequencies, and vice versa. Unfortunately, space constraints have precluded a review
Figure5 shows spectra from this model for six different Of wWork related to important topics such as parametric de-
values ofs, all with rs=0.2 andy=45°. From the plots of ~ €2y (¢.gMalara et al.2001), and the expanding box model
P(f) and its compensated forif P(f), it is apparent that ~ (Grappin etal.1993 Grappin and Velli1999. _
provided|s—g| is not too big, there is a range gfnear the Also not discussed in any detail was the important issue
reference frequency for which the spectrurasg—4. Quali- of the observed heating of solar wind fluctuations to well
tatively similar plots and results are obtained for other values2Pove adiabatic levels (e.ichardson and Smifr2003
of rs andy. Smith et al, 2001). The role that cascades, both parallel and
To make a more quantitative comparison, we fit powerlawsPerpendicular, play in this heating remains to be fully deter-
to P(f) over the arbitrarily chosen rangelQe—10/ef. mined and is the object of much current work (€lg.and
The results of these fits, for the same set vhluesy=45°, ~ Marsch 1997 Leamon et a/.2000.

and four values ofs_, are listed in Tgble. It is evident that AcknowledgementsThis work was been supported by grants
many of the best-fit slopes are quite close to the 2D slopefrom the Nz Marsden Fund (02-UOW-050 MIS), NASA
despite the fact that the slab fraction can vary significantly(NNG04GA54G), and the NSF (ATM-0105254).
over the fitted interval (Fig5, lower panel). (Best-fit slopes
obtained using larger values ¢f are even closer to the 2D Edited by: J. Bichner
slope, since more of the 2D component is measured in thesBeviewed by: M. Goldstein
cases.) This suggests that it could be quite difficult to “re-
verse engineer” the makeup of the solar wind fluctuations
using the observed inertial range slopes.

On the other handBieber et al.(1999 have shown that  pgaichelor, G. K.: The Theory of Homogeneous Turbulence, CUP,
measuring the power levels as a function of winding angle cambridge, 1970.
¥, can provide useful constraints on the energy partitioningBelcher, J. W. and Davis Jr., L.: Large-amplitude &if/Waves in
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