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4Instituto Andaluz de Geofı́sica y de Prevención de Desastres Sı́smicos, Universidad de Granada, E-18080, Granada, Spain
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Abstract. Several empiric cumulative distributions of
elapsed times and distances between seismic events occurred
in the Southern Iberian Peninsula from 1985 to 2000 (data
extracted from the seismic catalogue of the Andalusian In-
stitute of Geophysics) are investigated. Elapsed times and
distances between consecutive seismic events of the whole
catalogue, taking into account threshold magnitudes of 2.5,
3.0, 3.5 and 4.0, and of five seismic crises, without distin-
guishing magnitudes, are investigated. Additionally, the se-
ries of distances and elapsed times from the main event to
every aftershock are also analysed for the five seismic crises.
Even though a power law is sometimes a satisfactory model
for the cumulative distribution of elapsed times and distances
between seismic events, in some cases a fit with a Weibull
distribution for elapsed times performs better. It is worth of
mention that, in the case of the seismic crises, the fit achieved
by the power law is sometimes improved when it is combined
with a logarithmic law. The results derived might be a con-
tribution to a better representation of the seismic activity by
means of models that could be based on random-walk pro-
cesses.

1 Introduction

The analysis of the space-time patterns of the seismic activ-
ity is a relatively complex problem. Several researches are
devoted to the spatial and temporal clustering of the seismic-
ity (Ouchi and Uekawa, 1986; Smalley et al., 1987 and Chen
et al., 1998, among others). The chaotic and dissipative be-
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haviour of the elapsed times and how can be characterised
the predictability of the seismicity in terms of Lyapunov
exponents have been also analysed for instance by Correig
et al. (1997) by using the reconstruction theorem (Takens,
1981). More recently, nonlinear analyses of sequences of
magnitude and interevent time intervals have been performed
by Matcharashvili et al. (2000) and differences in the tem-
poral distribution of small earthquakes before and after large
events have been investigated by Matcharashvili et al. (2002).
In the first case, significant evidence of low nonlinear dimen-
sion structure is detected. In the second case, it is verified
that the low nonlinear dimension structure of the temporal
distribution of earthquakes changes remarkably before and
after the largest events. It is also worth of mention the book
of Goltz (1998), where concepts of fractal and chaos are in-
troduced and fractal and chaotic properties of earthquakes
are broadly analysed.

From the point of view of a stochastic process, it has
to be mentioned the model of the continuous time random
walk, CTRW (Bouchaud and Georges; 1990) and Lévy dis-
tributions (Gnedenko and Kolmogorov, 1954; Feller, 1996),
which try to establish relationships between interevent wait-
ing times and hypocenter location. An illustrative application
can be found in Sotolongo-Costa et al. (2000) and Posadas et
al. (2002).

The main objective of the present study is to obtain sta-
tistical models to describe the elapsed times and distances
between earthquakes occurred in Southern Spain. These re-
sults will be compared with those derived from several seis-
mic crises occurred in the same area. Although the distri-
bution of the elapsed times between consecutive events has
been extensively studied (Smalley et al., 1987; Sornette and
Knopoff, 1997; Wang and Kuo, 1998; Corral, 2003, 2004),
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Table 1. Range of magnitudes,1m, recording period,1t , number of events, latitude and longitude intervals, parametersb of the Gutenberg-
Richter law andp of the Omori’s law, and fractal dimensionDS of the spatial earthquake distribution for the five seismic crises of Adra,
Agrón, Alboŕan, Antequera and Loja. Uncertainties onDS , b andp are also specified.

Adra Agrón Alboŕan

1m 5.0–1.5 4.0–1.5 4.5–2.5
1t 23 Dec. 1993 5 Dec. 1988 2 July 1997

16 March 1994 15 Dec. 1998 24 Dec. 1997
events 346 101 56
latitude 36.4◦ N–37.0◦ N 36.99◦ N–37.05◦ N 36.3◦ N–36.7◦ N

longitude 2.5◦ W–3.3◦ W 3.8◦ W–3.9◦ W 2.8◦ W–3.4◦ W
b 0.87±0.02 0.97±0.02 0.86±0.03
p 0.983±0.001 0.89±0.01 0.86±0.01

DS 2.10±0.03 2.01±0.04 1.79±0.01

Antequera Loja

1m 3.5–2.5 3.5–2.0
1t 7 June 1989 3 Feb. 1985

9 June 1989 13 June 1985
events 79 146
latitude 36.9◦ N–37.3◦ N 37.1◦ N–37.2◦ N

longitude 4.4◦ W–4.8◦ W 4.1◦ W–4.3◦ W
b 0.98±0.01 1.06±0.03
p 0.84±0.01 0.89±0.01

DS 2.07±0.03 2.08±0.03

less attention has been paid to the distribution of distances
between consecutive events. A power law, which derives
from a truncated gamma distribution for small arguments,
is assumed to model cumulative probabilities of both the
elapsed times and distances. Additionally, the Weibull dis-
tribution and a logarithmic law have been also successful in
some cases.

2 Seismological and tectonic settings

The southern part of the Iberian Peninsula is the most vul-
nerable to seismic risk in Spain. The area is situated in the
central part of the Betic Cordillera (Fig. 1a). It includes
the Granada Basin and several mountain ranges around it.
The crust is characterised by thickness variations (Galindo-
Zald́ıvar et al., 1997, 1999). The Granada Basin fault sys-
tem created a set of blocks structured at different levels, thus
allowing independent movements of them. These features
fit into a general compressive framework, which produces
contemporary extensional and compressive deformations on
strike-slip faults. The seismogenetic areas are concentrated
in three fracture systems having N10–30E, N30–60W and
N70–100E directions. All the fracture systems are embedded
in the Betic Area (Vidal, 1986; Peña et al., 1993; Posadas et
al., 1993a, b) and the Granada Basin has a high activity of
microearthquakes with hypocenters shallower than 20 km.

The Andalusian Seismic Network installed by the An-
dalusian Institute of Geophysics provided a wide seismic
catalogue constituted by 20000 events with extreme body-

wave magnitudes reaching 5.5. According to the Gutenberg-
Richter law (Fig. 1b), only events with magnitudesML≥2.5
have been considered, being 2.5 the minimum magnitude of
completeness. This cut-off magnitude implies to finally dis-
pose of a maximum number of 5648 events to be analysed.
The study also includes the investigation of five seismic se-
ries, which locations are schematised in Fig. 2. These five
seismic crises represent a varied sample of seismic activ-
ity and it should be interesting to observe if their interevent
elapsed times and distances distribute with similar statisti-
cal parameters and functions. Some of the crises are char-
acterised by a short duration (only three days) and others by
a relatively long duration (more than 6 months). From the
point of view of the magnitude range, some of the crises have
a relatively wide range of available magnitudes (from 1.5 to
5.0), while others have narrower ranges, from 4.0 to 2.5.

1. The Adra-Berja area is located in the south-eastern
Iberian Peninsula and it is characterised by a high
level of seismicity; between December 1993 and March
1994, several hundred microearthquakes and earth-
quakes were recorded in this zone. The seismic se-
ries began with an earthquake of magnitudeML=5.0 on
23 December and several aftershocks occurred, two of
which reachedML=4.0; a few days later, there was an-
other earthquake ofML=4.9.

2. In the Agŕon seismogenetic region, several seismic
crises have occurred in the 1985–2000 recording pe-
riod. The main crisis began on 5 December with



M. D. Mart́ınez et al.: Statistical distribution of elapsed times and distances of seismic events 237 

 25 

Longitude 

La
tit

ud
e

N

E

0.0 1.0 2.0 3.0 4.0 5.0 6.0
magnitude

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

lo
g1

0 
(N

)
 
 
    (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  
 

Fig. 1. (a)Area (inner rectangle) covered by the seismic activity in
Southern Spain.(b) Gutenberg-Richter law for the seismic events
within the inner rectangle. Magnitudes less than 2.5 depart remark-
ably from the cumulative law.

an earthquake ofML=4.0 followed by another of
ML=3.9. Between 5 and 15 December 1988, 292 mi-
croearthquakes were recorded, with epicentres near the
villages of Agŕon and Caćın (Granada, Spain).

3. The Alboŕan Sea zone on the Mediterranean is close to
that of Adra-Berja. The seismic series occurred from
June 1997 until January 1998. After the beginning of
the crisis with an event ofML=4.5, more than 300 mi-
croearthquakes were located in this area.

4. In the Antequera area only one seismic crisis occurred
with a very short duration, between 7 and 9 June 1989.
At least 158 earthquakes ofML <3.4 occurred.

5. The Loja region is an active zone where several seis-
mic series have occurred, one of them in 1985, in a
group of faults with orientation N40-55W. More than

Table 2. Parameters and least square regression coefficients for the
power law (elapsed time and distances) and the Weibull distribution
(elapsed times) when the whole seismic catalogue is considered.
dmax and tmax represent the maximum distances an elapsed times
predicted by the power law. Bold characters foru andK correspond
to estimations achieved by maximum likelihood.

Power law
δD (km) m= 2.5 m= 3.0 m= 3.5 m= 4.0

a 0.028 0.041 0.042 0.015
c 0.598 0.535 0.512 0.660
ρ2 0.988 0.970 0.990 0.979

dmax 395.1 391.7 488.61 580.1

Power law
δt (days) m= 2.5 m= 3.0 m= 3.5 m= 4.0

a 0.648 0.383 0.203 0.103
c 0.504 0.433 0.456 0.453
ρ2 0.963 0.945 0.975 0.976

tmax 2.36 9.17 33.01 151.11

Weibull distribution
δt (days) m= 2.5 m= 3.0 m= 3.5 m= 4.0

u 0.769 2.597 9.835 44.625
0.769 2.495 9.532 42.280

K 0.680 0.536 0.587 0.591
0.697 0.603 0.661 0.709

ρ2 0.987 0.981 0.986 0.963

300 microearthquakes and earthquakes were located in
a very small area. The main event (3 February 1985)
hadML=3.7.

Table 1 summarizes the parameterb of the Gutenberg-
Richter law, the parameterp of the Omori’s law, the frac-
tal dimensionDS of the spatial earthquake distribution, the
magnitude range1m for which completeness is assured by
the Gutenberg-Richter law, the number of events, latitude
and longitude range and recording period1t of every seis-
mic crisis. All these details are compiled from Posadas et
al. (2002), who tested the reliability of the parametersb, p

andDS . The spatial clustering was estimated by a standard
box-counting and the computation of the Morishita’s index
(Ouchi and Uekawa, 1986). It has to be pointed out that due
to the close monitoring of these seismic crises by the IAG,
the completeness of the seismic series is sometimes reason-
ably assured for magnitudes below 2.5. In this way, a low
magnitude as 1.5 in the cases of Adra and Agrón has been
accepted after the verification of the Gutenberg-Richter law
for these crises.
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Fig. 2. Emplacement of the five seismic crises in Southern Spain.

3 Results

3.1 Consecutive events for the whole catalogue

The set of elapsed times,δT , and distances,δD, between
consecutive seismic events have been analysed for four dif-
ferent threshold magnitudes of 2.5, 3.0, 3.5 and 4.0. These
threshold values reduce the number of available events to
5648, 1951, 441 and 103, respectively. The first thresh-
old value is the lowest magnitude for which the Gutenberg-
Richter law depicts completeness (Fig. 1b), while the last one
is the maximum magnitude for which the series ofδT andδD

are long enough to obtain reliable empiric cumulative proba-
bilities.

For the series ofδT both a power law

P(x0 ≤ x) = axc (1)

and the Weibull distribution function

P(x0 ≤ x) = 1 − exp

{
−

(
x − ε

u − ε

)K
}

x ≥ ε; u, K > 0 (2)

are assumed. Besides its first applications in the analysis of
fatigue of materials, the Weibull distribution has been of-
ten used in stochastic processes where the analysis of the
elapsed time between certain events is investigated. As an
example, two applications in different fields of the Earth’s
sciences such as seismology (Correig et al., 1997) and cli-
matology (Burguẽno et al., 2004) can be cited. Other distri-
butions easier to manage, as the exponential function, could
be also considered. Nevertheless, after some tests, the best
fit was always performed by the power law and the Weibull
distribution. It has to be remembered that the Weibull dis-
tribution includes as a particular case (K=1) the exponential
function.

The power law is very simple and characterise the fractal
behaviour of seismicity. The parametersa andc of this law
can be easily determined by means of a least square regres-
sion in log-log scales. The parameterε of the Weibull func-
tion is set equal to zero, which is equivalent to assume that
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Figure 3.  
 
 

Fig. 3. Power law(a) and Weibull distribution(b) for the elapsed
time between consecutive events for a threshold magnitude of 3.5.

the minimum elapsed time is almost null in comparison with
the total length of the seismic episode, and parametersu and
K can be easily estimated in a first approach by a least square
regression in a log-log scale. Empirical and theoretical mod-
els are represented in terms of log{−log(1−p)} versus log(x)
for a first visual inspection of the possible linearity, since, in
these scales, data accomplishing the Weibull model are evi-
denced by a linear behaviour. Better estimations ofu andK

are achieved by maximum likelihood and the Kolmogorov-
Smirnov test (Lemeshko and Postovalov, 2001) in the case
of composite hypothesis can be considered in order to decide
if the Weibull distribution performs well empiric data. The
cumulative probabilities for the seriesδD of distances are
also modelled by the power law (Eq. 1).

Table 2 shows the values of the parameters and the cor-
responding least square regression coefficientsρ2 for series
δT and δD and the maximum elapsed times and distances
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Table 3. Parameters and least square regression coefficients for the power and logarithmic laws and the Weibull distribution in the case of
elapsed times computed from the starting (main) event.tmax (days) represents the maximum time predicted by the logarithmic laws.δT is
the time interval for which every model fits well empiric data. Bold characters foru andK correspond to estimations achieved by maximum
likelihood.

Power law Logarithmic law
Crisis a c ρ2 δT α β ρ2 tmax δT

Adra 11.49 1.012 0.985 0–0.02 0.992 0.196 0.958 1.1 0.02–7.0
Agrón 2.380 0.502 0.913 0–0.02 1.062 0.135 0.959 0.6 0.02–0.9

Alborán 0.581 0.287 0.946 0–0.02 0.638 0.103 0.991 33.6 0.02–20.0
Antequera 4.019 0.504 0.922 0–0.02 1.148 0.117 0.957 0.3 0.02–0.3

Loja 1.008 0.342 0.867 0–0.02 0.852 0.107 0.896 4.0 0.02–20.0

Weibull
Crisis u K ρ2

Adra 0.157 0.773 0.988
0.167 0.698

Agrón 0.056 0.698 0.972
0.061 0.605

Alborán 0.933 0.392 0.982
1.046 0.396

Antequera 0.020 0.699 0.976
0.023 0.598

Loja 0.177 0.486 0.944
0.207 0.389
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Fig. 4. Power law for the distance between consecutive events for
a threshold magnitude of 3.5. Dashed lines correspond to 95%
Kolmogorov-Smirnov uncertainty bands derived with the assump-
tion of simple hypothesis.

derived from the power law (Eq. 1). Bold characters corre-
spond to parametersu andK estimated by maximum like-
lihood. Figure 3 shows the fit performed by the power law
(Eq. 1) and the Weibull distribution (Eq. 2) for the seriesδT

and a threshold magnitude of 3.5. In the case of the Weibull
distribution (Fig. 3b), the straight line depicts the theoreti-
cal distribution computed from parametersu andK derived
by means of maximum likelihood and dashed lines the 95%
Kolmogorov-Smirnov uncertainty bands for composite hy-
pothesis, which can be roughly estimated by 0.91/n1/2, n be-
ing the number of elements of the series. Dashed lines in
Fig. 3a corresponds to the 95% Kolmogorov-Smirnov uncer-
tainty bands for simple hypothesis (Benjamin and Cornell,
1970), roughly estimated by 1.36/n1/2. Figure 4 shows the
fit performed by the power law (Eq. 1) for the series of dis-
tances and for the same threshold magnitude. Dashed lines
of this figure are similar to those corresponding to Fig. 3a.

3.2 Events belonging to a seismic crisis

In relation to the seismic crises described in Sect. 2, two
types of series are considered: 1) interevent elapsed times
and distances; 2) elapsed times and distances from the first
(main) shock. Tables 3 to 6 summarise the values of the pa-
rameters and least square regression coefficients for seriesδT

andδD, both taking as reference the previous event of the
crisis and the mainshock of the seismic sequence. In some
cases, a combination of the power law (Eq. 1) and the loga-
rithmic law

P(x0 ≤ x) = α + β log(x) (3)

improves the modelling of the empiric distribution of dis-
tances and elapsed times. The parametersα andβ can be
easily determined by a least square regression in a linear-log
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Fig. 5. Power law and Weibull distribution for elapsed times of aftershocks referred to the main event(a) and between consecutive aftershocks
(b), both in the case of Adra. The case of Alborán for consecutive aftershocks(c) is well performed by the logarithmic law.
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Table 4. Parameters and least square regression coefficients for the power and logarithmic laws and the Weibull distribution of the elapsed
times in the case of consecutive events of a seismic crisis.tmax (days) represents the maximum time predicted by the logarithmic law.δT is
the time interval for which every model fits well empiric data. Bold characters foru andK correspond to estimations achieved by maximum
likelihood.

Power law Logarithmic law
Crisis a c ρ2 δT α β ρ2 tmax δT

Adra 4.765 0.825 0.980 0–0.07 0.955 0.177 0.902 1.3 0.07–8.0
Agrón 6.294 0.678 0.950 0–0.05 1.030 0.111 0.952 0.8 0.05–1.0

Alborán 0.644 0.104 0.993 30.7 0–20.0
Antequera 6.891 0.569 0.981 0–0.03 1.080 0.083 0.937 0.4 0.03–0.4

Loja 3.764 0.627 0.973 0–0.04 0.824 0.098 0.904 6.1 0.04–20.0

Weibull
Crisis u K ρ2

Adra 0.170 0.751 0.990
0.181 0.639

Agrón 0.056 0.701 0.975
0.061 0.603

Alborán 0.938 0.389 0.985
1.047 0.395

Antequera 0.020 0.701 0.975
0.023 0.599

Loja 0.196 0.507 0.962
0.226 0.413

Table 5. Parameters and least square regression coefficients for power and logarithmic laws in the case of distances from the mainshock to
every aftershock.dmax (days) represents the maximum distance predicted by the logarithmic law, except for the case of Agrón, for which a
power law performs well all available data.δd is the distance interval for which every model fits well empiric data.

Power Logarithmic
Crisis a b ρ2 dmax δd α β ρ2 dmax δd

Adra 0.001 2.311 0.985 2.0–20.0 0.389 0.156 0.890 50.2 20.0–50.0
Agrón 0.364 1.290 0.960 2.2 0.1-5.0

Alborán 0.004 2.031 0.967 3.0–15.0 0.463 0.142 0.916 43.9 15.0–50.0
Antequera −0.280 0.465 0.974 15.7 1.0–15.0

Loja 0.057 1.456 0.987 1.0–4.0 −0.090 0.411 0.988 14.2 4.0–22.0

scale. In a few cases, the best fit is given either by the power
or by the logarithmic law and the combination of both mod-
els does not perform better. As in Table 2, maximum elapsed
times and distances deduced either from Eq. (1) or Eq. (2)
are included in Tables 3 to 6 and bold characters foru andK

correspond to estimations derived by maximum likelihood.
As an example, Fig. 5 shows the elapsed times from the

mainshock and the interevent elapsed times for the seismic
crisis of Adra, with the power law and the Weibull distribu-
tion. The good fit of the logarithmic law for the Alborán cri-
sis interevent elapsed times is also shown. 95% uncertainty
bands have been estimated in terms of composite hypothe-
sis for the Weibull distribution. For the other three cases,
95% uncertainty bands derived from the simple hypothesis
have been represented. Figure 6 illustrates two examples of
the series of distances, as interevent distances and distances

from the mainshock. 95% uncertainty bands correspond to
the Kolmogorov-Smirnov test for simple hypothesis. If the
power law is assumed for the Adra seismic crisis, the law
itself manifests the necessity of a complementary logarith-
mic law to explain the distribution for the largest distances
and elapsed times. For instance, empirical data depart signif-
icantly from the power law for distances exceeding approxi-
mately 10 km (distances to mainshock) and 5 km (interevent
distances).

4 Discussion and conclusions

Some previous considerations have to be introduced for a
right interpretation of the results. The first point concerns
with the fact that the most robust estimation of the Weibull
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Table 6. Parameters and least square regression coefficients for power and logarithmic laws in the case of distances between consecutive
aftershocks of a seismic crisis.dmax (days) represents the maximum distance predicted by the power law, excepts for Adra and Loja, which
need for a combination with a logarithmic law.δd is the distance interval for which every model fits well empiric data.

Power Logarithmic
Crisis a b ρ2 dmax δd α β ρ2 dmax δd

Adra 0.038 1.345 0.979 0.2–2.0 −0.105 0.308 0.989 36.1 2.0–50.5
Agrón 0.230 1.228 0.924 3.4 0.1–9.0

Alborán 0.063 0.887 0.954 22.6 0.4–5.0
Antequera 0.049 1.174 0.967 13.1 0.6–16.0

Loja 0.028 1.579 0.951 0.5–3.0 −0.408 0.502 0.981 16.5 3.0–20.0

distribution parameters is that based on the maximum likeli-
hood. In spite of quite good values of the least square regres-
sion coefficient, the minimization process in a log(1-log(P ))
scale leads to small deviations for small elapsed times and
strong deviations for intermediate elapsed times. Second, pa-
rameters for the power and logarithmic laws can be assumed
as derived from graphical analysis (probability paper repre-
sentations), which lead to linear graphs in log-log and linear-
log scales. In these cases, the least square regression coeffi-
cient has to be carefully considered because it is not again the
best factor to decide the vicinity of empiric and theoretical
distributions. One more time differences between theoretical
and empiric distribution are not directly minimised. A third
point concerns the uncertainty bands derived from the simple
and composite Kolmogorov-Smirnov test hypothesis. For the
case of the Weibull distribution, Kolmogotrov-Smirnov test
with composite hypothesis have to be used, given that the
same empiric data is used for the test and for the parameter
estimation. Nevertheless, this kind of test seems to be un-
known for the power and logarithmic laws. Consequently,
simple hypothesis bands have to be assumed as a criterion to
decide if power and logarithmic laws are rejeced. Given that
these bands can be assumed wider than those derived from
composite hypothesis, empirical distributions within simple
hypothesis bands are not a guarantee that a power or loga-
rithmic law is the best representation of the distribution of
elapsed times or distances. Graphical analyses, least square
regression and simple hypothesis bands only suggest that
these laws could be a right model.

The analysis of the whole catalogue shows that the power
law reasonably explains the empirical distribution of dis-
tances and elapsed times when the threshold magnitude
varies. In spite of the fit is not perfect, it is much better than
those observed for the seismic crises. It has to be remem-
bered that, when fitting power laws, it is quite usual to detect
discrepancies between empiric data and the theoretical power
function for values of the cumulative probability very close
to 1.0. For example, it can be observed in Fig. 3a empirical
data out of the Kolmogorov-Smirnov simple band only for
cumulative probabilities exceeding 0.9. Therefore, it could
be assumed a universal law for both quantities and some kind
of fractal structure in reason to the mathematical character of

this law. In fact, by following classic definitions of fractal
dimension, such as those associated with rescaled analysis,
clustering dimension or correlation dimension (Grassberger
and Procaccia, 1983a, b; Korvin, 1992; Dicks, 1999), the pa-
rameterc, ranging from 0.4 to 0.7, should be considered the
fractal dimension of the series analysed. The Weibull distri-
bution for elapsed times also fits quite well the empiric data.
Nevertheless, empiric data are sometimes out of the 95 un-
certainty bands for some inter-event time interval, as Fig. 3b
manifests.

The analysis of the five seismic crises shows a more com-
plex behaviour and suggests the breakdown of the fractal be-
haviour for all cases where a power law is not sufficient to
perform empiric data. When the elapsed times are computed
from the first (main) shock, the best fit is furnished by the
combination of power and logarithmic laws and the transi-
tion from one law to another is observed close to 0.02 days
in all cases. It is worth of mention that, opposite to the case
of the whole catalogue, elapsed times of the order of 0.02
days are not associated with cumulative probabilities close
to 1.0. As an example, the case of Adra crisis (Fig. 5a) is
characterised for the necessity of changing to a logarithmic
behaviour for cumulative probabilities exceeding 0.3. This
elapsed time of transition would be the value from which the
approach of the cumulative gamma distribution to a power
law (Arfken, 1985; Abramowitz and Stegun, 1970) becomes
inaccurate. Once more, the Weibull distribution offers a sim-
ilar satisfactory fit for empirical series, when comparing with
the other two laws. Nevertheless, the Loja crisis seems to be
much better reproduced by the Weibull distribution than by
the combined power and logarithmic laws.

For the interevent times, in some cases the fit with one law
performs better (see for example the case of the Alborán cri-
sis, which is very well-fitted by the logarithmic law). When
the combined laws are necessary, the elapsed time of transi-
tion (0.03–0.7 days) is quite similar to that obtained for times
referred to mainshock. Once more, the Weibull distribution
offers quite similar fits. Moreover, assuming that, as in the
case of the whole catalogue, parameterc could represent the
fractal dimension of the series, estimated now by only con-
sidering the range for which the power law performs well, it
is observed that this dimension does not change remarkably
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from one crisis to another. Nevertheless, notable changes are
detected when comparing cases corresponding to times from
mainshock and interevent times. Additionally, it is worth of
mention that only fractal dimensions for Adra, according to
Tables 3 and 4, are notably different to those obtained for the
whole catalogue and the four threshold magnitudes.

Concerning the analysis of distances, when they are com-
puted from the location of the mainshock, the combination of
power and logarithmic laws is not always necessary and the
transition from one law to another varies remarkably from
4.0 to 20.0 km. The series of distances for Antequera crisis
is well performed by only a logarithmic law and Agrón series
by only a power law. When distances are computed between
consecutive aftershocks, the logarithmic law is not necessary
for three crises (Agŕon, Alboŕan, Antequera) and fits offered
by the power law are reasonably good. Due to only two
examples can be revised, nothing can be safely stated with
respect to distances for which the transition from power to
logarithmic laws is observed. With respect to the fractal di-
mension, the parameterc for the whole catalogue reaches
values (0.5 to 0.7) clearly lower than those derived for the
seismic crises. Additionally, whereasc ranges from 0.9 to
1.6 for distances between consecutive aftershocks, the frac-
tal dimension increases up to 1.3–2.3 for distances referred
to the mainshock.

In short, different behaviours have been observed for se-
ries derived from the whole seismic catalogue and from sub-
sets of seismic crises. Nevertheless, a single power law with
changing parameters could explain more or less satisfactorily
in some cases the distribution of elapsed times and distances.
The most relevant difference is the necessity of a logarithmic
law to complement elapsed time and distance distributions
derived from seismic crises. The elapsed time for which the
change from the power to the logarithmic law takes place is
always within a narrow time interval from 0.02 to 0.07 days.
In this way, a different behaviour in the seismic crises for rel-
atively short and long waiting times could be assumed. This
behaviour in the case of distances could be in some way jus-
tifiable if we imagine a rough division between aftershocks
near or away from the mainshock. Unfortunately, nothing
can be safely stated concerning the transition from power to
logarithmic laws for the case of seismic crises and distance
distributions. In the case of elapsed times, it seems to be
sometimes a distinction between aftershocks close and re-
mote in time to the mainshock.

In spite of the necessity of an upper bound for the argu-
ment of the power and logarithmic laws, this fact should
not be a shortcoming. Firstly, there is a maximum empiri-
cal distance imposed by the geographical extension covered
by the seismic crisis or the whole catalogue. Secondly, it is
meaningless to expect elapsed times tending to infinite for
the whole catalogue. It would imply the finish of the activity
in the seismotectonic area covered by the catalogue. Only in
the case of the seismic crises, it could be partially justified
in terms of the time decay of aftershocks, quantified by the
Omori’s law. From this point of view, although the Weibull
distribution for elapsed times would be sometimes a better
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Figure 6. 

Fig. 6. Distribution of distances from the mainshock to the after-
shocks(a) and distances between consecutive aftershocks(b).

statistical option than the power law, a shortcoming should
be that of an argument extended to infinite.

Finally, the set of results concerning functions used to
modelling the elapsed time and distances between seismic
events have to be considered as a contribution to the theory
of continuous time random walks (CTRW), which is usually
described in terms of Ĺevy distribution functions and tries
to explain distribution of waiting times and localisation of
hypocenters in a seismotectonic region. The results derived
here for the Southern Iberian Peninsula should be considered
for future CTRW models concerning space-time diffusion of
the seismic activity. It could be especially useful for the anal-
ysis of the whole seismic activity of Southern Iberia, due to in
this case simple power laws seem to be sufficient for a quite
good description of waiting times and distances. The case of
the seismic crises is a bit more complex, due to sometimes
combined power and logarithmic laws are necessary.
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