Nonlinear Processes in Geophysics (2005) 12: 206— 4 "* .
SRef-ID: 1607-7946/npg/2005-12-195 GG Nonlinear Processes

European Geosciences Union in Geophysics
© 2005 Author(s). This work is licensed -

under a Creative Commons License.

Observing extreme events in incomplete state spaces with
application to rainfall estimation from satellite images

A. A. Tsonis! and K. P. Georgakako$' 3

IDepartment of Mathematical Sciences, Atmospheric Sciences Group, University of Wisconsin-Milwaukee, Milwaukee, WI
53201-0413, USA

2Hydrologic Research Center, 12780 High Bluff Drive, Suite 250, San Diego, CA 92130, USA

3Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0224, USA

Received: 11 August 2004 — Revised: 22 December 2004 — Accepted: 23 December 2004 — Published: 2 February 2005

Part of Special Issue “Nonlinear deterministic dynamics in hydrologic systems: present activities and future challenges”

Abstract. Reconstructing the dynamics of nonlinear systems In all such cases, the observables depend on a portion of
from observations requires the complete knowledge of itsthe state vector of the system flow, while the response does
state space. In most cases, this is either impossible or at beabt necessarily depend on the same portion of the state vec-
very difficult. Here, by using a toy model, we investigate the tor. The point is whether the observational problem as de-
possibility of deriving useful insights about the variability of scribed leads to useful data and response estimates. The un-
the system from only a part of the complete state vector. Wederlying state vector is not known but it may allow regions
show that while some of the details of the variability might in state space where the system flow evolves about strange
be lost, other details, especially extreme events, are succesattractors. Thus the question posed is: For a nonlinear sys-
fully recovered. We then apply these ideas to the problenmtem with chaotic dynamics, are indirect observations of a part
of rainfall estimation from satellite imagery. We show that, of the system state vector adequate to identify desired char-
while reducing the number of observables reduces the coracteristics of the system response such as extreme response
relation between actual and inferred precipitation amountsyariability? We will approach this problem first by consid-
good estimates for extreme events are still recoverable. ering a known dynamical system and then by extending the
methods developed to observed data related to delineation of
rain amounts from satellite images.

1 Introduction

In inference problems concerning spatially extensive phys—2 Mathematical formulation

ical systems, it is often the case that available remotely- . : .
y . . X YWe start with the mathematical formulation of the problem,
sensed spatially-extensive data do not directly measure sys- .~ . . . .
. 7 which is demonstrated and explored with a simple nonlin-

tem state variables. In such cases, a complete characteriza- ; . . .
) : ; . ear dynamical system described by the following equations
tion of these systems in state space is not available and es E

. .(Lorenz, 1963). This well-studied system approximates the

mation of system response must be done through the avai . . o . .
) ehavior of a layer of fluid of infinite horizontal extent, which
able state measures. Along these lines, remotely-sensed ob-" " . : :
. ) S IS subject to a temperature-difference forcing\df (>0) be-

servations are combined with in situ or remotely-sensed ob- i
. . tween the lower and upper surface. As the fluid is heated
servations of system response to form observation-response . ol

. . : . In contact with the warmer surface it rises and creates con-
relationships (typically based on regression analyses). These ; .

. . . . vection. The system governing equations are shown next for
relationships are then used in areas and spatial scales where

. ) . establishing notation.
response observations are non-existent to estimate system ré-

sponse. For example, in the atmosphere, infrared (IR) ang; x

visible (VIS) observations have been used in this manner to;~ = —0X + 0¥ @)
estimate response, such as surface precipitation (e.g. Scofield

and Oliver, 1977; Tsonis and Isaac, 1985; Arkin and Meis-dY

ner, 1987; Adler and Negri, 1988). gy = XV ArX-y @

Correspondence toA. A. Tsonis a7z

(aatsonis@uwm.edu) o= XY —-bZ, 3)



196 A. A. Tsonis and K. P. Georgakakos: Observing extreme events in incomplete state spaces

1 ‘ 1.00 — S N S S R N e
(\ I —O— EXCEEDANCE FREQUENCY I* Q
L " " (@)
0.95 oo 08 m
0.95 8 P m
O— : \O\ o g
O— O ___O/ 0.90 F \O\ ,/?—-—-— ] 0.6 %
i | i S ] m
0.9 / N@ [ o , \j\ ] %
Naa 0.85 | e , 04 m
c/[r ? ~0 ] Q
0.85 [ ] i
0.80 {-.@-.2 0.2
el i 0.75 L L i Lo 0.0
01 2 3 45 6 7 8 9 1011
Y
0.75 ¢

05 0.4 0.3 02 0.1 0
Response Exceedance Frequency Y > Y . ) . .
¢ Fig. 2. Regression correlation coefficient and response exceedance

. . ) . . frequency as functions of parametér.
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as functions of response exceedance frequency.

a uniform distribution function in the intervg-2, +21,
whereX, Y, andZ are the state variables witti being pro- with Y=Y, an<_jD ‘?‘Sca'e paramet_e " .
Other combinations of observation and response functions

portional to the intensity of the convective motidn,being ble with it I o th btained f
proportional to the temperature difference between the as2re possibie with results analogous to those obtained from

cending and descending currents, @dtbeing proportional tEhe S4€t (Egs.l ). NOIE also t(;]at’ elthet: both t(')r only ort1.e Oft
to the distortion of the vertical temperature profile from lin- g. @) or Eq. ©) may be used as an observation equation to

earity. It is known that fow =10, »=8/3 andr in the range estimate the respong@as defined in Eq ).
24.74 to 31.10, the Lorenz system possesses chaotic dynam-

ics and a strange attractor for large integration times (Berg% Numerical experiments

etal., 1984).

The observation problem may be stated as follows (Geornymerical experiments were performed by numerically sim-
gakakos and Tsonis, 2001): Given observations, possibly)jating the Lorenz system (Eqs-3). For givenVa, Vs, D,
noisy, of one or two of the states of the Lorenz system, esynqy,, observation®), and O; are simulated using Eqd)
timate system response which may be a function of one oinq Eq. §) and response valudsgreater than zero are simu-
more states (some unobservable). In the simplest case, Wgted using Eq.§). It is supposed that there is no knowledge
postulate observations that are linear functions of certain syspf the underlying nonlinear system in real cases, and we wish
tem states to estimate the response from the observations. As it is of-
0, = eX + vy 4) ter_w the case in praqtice, a multiple linear regression relation-

ship is then established betweénand ©,, O;), and the
0; =87 + v, (5) regrgssion (?o_rrelqtion coeﬁipiem, is rt_acorde@ (the square
of this coefficient is the portion of variance in the response
wheree ands are coefficients, and; andv; are independent  €xplained by the observations). The relationship used for our
random processes with uniform distribution functions in the analysis is:
intervals [-V1, +V1] and [- V>, 4+ V7], respectively. We also
postulate a positive response function, which is a linear funct’ = ®10v +@20i + a0 +e. @

tion of the remaining system state: whereag, a1, andas are regression parameters anis the

P=c¥ +w: c3>0 Y=Y, (6) regression error. _The above form_ulation is des_ignegl to mimic

several observational problems in atmospheric sciences, for
with w possessing a uniform distribution function in the in- example, rainfall estimation from space, where rainfall is es-
terval [- P2, + P2]. The noise term®1, v1, and w represent timated from a combination (typically linear) of a few ob-
the effects of non-modeled components in the observatiorservables of the climate system (such as visible and infrared
process and the system response function. The only assumpnages, Kidder and Vonder Haar, 1995). The analysis is done
tion we will make for the response noiseis that P, is in- for various threshold valuegr for which P> Py in order
versely proportional ta for large Y. That is, the contri- to probe the reliability of estimating extreme values Rof
bution of non-modeled effects diminishes for high responseThe sensitivity analysis examines the behaviofidfwhen
and, for such a regime, the Lorenz system is largely drivingvarying the quantitiesVi, V>, Y., and Pr. The constant co-
the response function. It is then postulated thgiossesses efficients used in the simulations are=10, b=8/3, r=28,
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£=13,6=5, c2=3.5. We note here that the correlation coeffi- 504, considered individually as observables. It is notable
cient measures linear dependence. However, in many nonling,a¢ the results in this case are much worse than those ob-

ear problems, for example, evaluation of linear and nonlineakined when bothy, and O; were used as observables (at
prediction, the correlation coefficient between actual and preq ot only about 40% of the response variance is explained

dicted is a common measure of performance (Sugihara ang the present case). Als@), is a much more suitable ob-

May, 1990; Tsonis, 1992). servable tharO; for cases when a single observable is used
Figure 1 shows%? as a function of the response ex- to reproduce the system resporseAdditional results were
ceedance frequency for the caseé/gfV,=P,=0 andY.=5. It optained (but not shown) for a number of values of the pa-
is evident that as the exceedance frequency decreases the gmeters. It was found that the character of the results in

servablesD, and O; explain a larger portion of the response Fig. 4 is preserved for other values of the parameters.
variability (from 85% to 92% of response variance). Depen-  Next we investigated the effect of noise on the results. Fig-
dence of the result ori- may be discerned from Fig. 2, which ;re 5 shows the dependences? on the observation noise
shoyvs‘ﬂ2 asa functlc_)n of.. The gxceedance frequency re- parameter$/;=V> for two values of the response noise scale
sulting from a certain value of, is also shown. For the parameterD (D=0 on top, D=200 on bottom) and for two
results shown in Fig. 2, the rest of the parameters were set tQ;|es of the response threshdig=0.1 (circles) andP;=50

the values used to produce the results of Fig. 1, With0.1. (squares). These noise ranges cover a range of noise from
The increase of the explained portion of response variancgqrg noise Y1=12=0, D=0) to rather large noiseV{—>30

with increasingt. is evident (from about 87% to about 92%). V,—>30, D=200). The results correspond to the set of ob-

This result corroborates that of Fig. 1 in that in both cases forggyaples and response defined in E45-(6). We observe
a fedUC“Qg of response exceedance frequency there is an igyat increased observation noise results in deterioration of re-
crease offt”. sponse reproduction by the observables (negative slope of
The character of the results (better reproduction of the syscurves). We also observe that large response noise domi-
tem response by the observables for extreme cases than othates the estimation of the response by the observables, with
erwise) was preserved when other response functions and olyery different values ofP; producing similar results (bot-
servables were used. For example, when the respPwe&s  tom). Thus, the introduction of moderate noise does not
defined as a linear function of the system stgf®vith Z>Z.  influence the results of the above experiments greatly but
in analogy to Eq. (10), and the observablgwas defined as it does reducei? somewhat, especially for the higher ex-
alinear function of, in analogy to Eq.§), the analysis pro-  ceedance frequencies. However, the presence of high noise
duced the results shown in Fig. 3 (analogous to Fig. 1). in observations or response due to non-modeled effects sub-
In cases with single observables (either on®gfor 0;), stantially deteriorates the ability of observables to reproduce
the reproduction of the response may be shown to be poosystem response variability. This is attributed to the substan-
throughout the range of response magnitude, and especiallyal change (caused by the presence of high noise) in the mor-
for the extremes. Figure 4 shows results for the case of singl@hology of the flow on the strange attractor when mapped
observables. The parameter values usedVareV,=0, D=0, onto the response-observables space (for more details on the
Y.=5. As Py increases, the exceedance frequency of the reeffect of noise on the results see Georgakakos and Tsonis,
sponse decreases. There are two curves correspondihg to 2001).
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and infrared images are very important in estimating rain
amounts over areas of the globe where conventional radars
cannot be used. We assume that rainfall amount, radiation in
the visible (VIS), and radiation in the infrared (IR) are three
of the variables of the climate system, which is high dimen-
sional. By trying to estimate rainfall from only visible and in-
frared images, in effect we are trying to estimate a response
from information from just a few other observed variables
of the climate system. Truly enough, the amount of rain-
fall is related to how thick the clouds are (visible count) and
how tall the clouds are (infrared count). However, precip-
itation depends on many other factors. As such, estimating
precipitation from information in the visible and infrared fre-
quency domain only represents estimation in a much lower
state space.

The data used here are the same as the data used in Tsonis
0 L et al. (1996). This data set includes visible (0.54—Q.i0)

0 5 10 15 20 25 30 and infrared (10.5-12,6m) images over the Des Moines
River basin (an area of about 15000%nas well as exten-
sive and prototype real-time hydrometeorological database
1 ‘ ‘ ‘ : : : (a network of 29 rain gauges), which can be used to compute
mean areal rainfall amounts. The spatial resolution of the
satellite data is 44 km. The temporal resolution is 30 min
0.8 | D=200 - but we only consider images every three hours to ensure that
successive images will not be correlated (Tsonis and Isaac,
1985). The period for which data were available to us is
May—-September 1982-1988. For each pair of VIS/IR im-
ages, their bivariate distribution is obtained and based on
this distribution and the Tsonis and Issac (1985) approach, a
given pair is classified as rainy or non-rainy. Note that, since
visible information is involved in the estimation of rainfall,
only images during daylight can be used. This introduces
errors because if the rain falls at night, the satellite rainfall
amount estimation will be underestimated. In order to mini-
mize these errors, only days with at least three VIS/IR pairs
available were considered (for more details on the data, see

Squared correlation coefficient

V1i=Vv2

0.6 7 r

Squared correlation coefficient

0 T Tsonis et al., 1996). Once this has been done the daily mean
0 > 10 15 20 25 30 areal rainfall amount was regressed with six variables, which
Vi=V?2 relate to certain properties of the images (Tsonis et al., 1996).

Fig. 5. Sensitivity of regression correlation coefficient with respect These six variables are: 1) the daily mean rain area as esti-
to observational noise strengih=V>, for two values of the re- mated from the images according to Tsonis and Isaac (1985),
sponse noise scale paramefei(D=0 on top, D=200 on bottom)  2) the daily mean relative frequency of the peak in the bivari-
and for two different exceedance threshdtg, Pr=0.1 (circles)  ate distribution, which corresponds to raining clouds, 3)—4)
and Pr=50 (squares). the daily mean coordinates of that peak in the VIS/IR do-
We conclude that for this known dynamical system, even™ain, 5) the daily mean narrowness of that peak, and 6) the
in a reduced state space (two out of three variables), googlally mean clouq area (T_sonls et aI.,.1996). T'hg multivariate
estimates, especially for extreme values, can be obtainedn©del resulted in a multiple regression coefficient of deter-
When the state space, however, is reduced too much (one ofiination between actual and predicted rainfall amounts of

: ) 2 2 :
of three variables) even the extremes may not be estimatetf =0-70 for all events i< gives the amount of variance of
with any desired accuracy. the daily mean rainfall amount (estimated by the rain gauge

network), which is explained by the regression model. When
instead we consider only the upper half (in intensity) events
4 Application to rainfall estimation from satellite im- %2 is increased to 0.81. In contrast, when only the lower half
ages (in intensity) events are considergd drops to 0.52. Thus,
while we get a good overall correlation, the correlation is
We are now considering the problem of estimating rainfall much stronger when only strong events are considered. This
amounts from satellite visible and infrared images. Visible will indicate that in our lower VIS/IR state space significant
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information about extreme events is recoverable. . . . N
. . Table 1. Multiple regression coefficient of determinatidi?, be-

So, what will happen if we de(_:re_ase our state SPace eVeRl aen the actual and inferred rain amount by a regression model
further? In order to address this Issue,_ we ConSIde_red th%sing VIS and IR information and a regression model using only
same problem but now we used only IR images. In this Cas§R information. %2 gives the amount of variance of the daily mean
the daily mean areal rainfall amount is regressed with fourrainfall amount (estimated by the rain gauge network), which is ex-
variables relating to infrared images alone (Lehnes, 1996)plained by the regression model. This table indicates that some in-
These variables are: 1) the daily mean rain area as delinformation, especially for strong events, exists even in low dimen-
eated by an optimum infrared threshold, 2) the mean relativesional state spaces (see text for details).
peak of the univariate distribution in the infrared domain, 3)
the mean coordinate of that peak in the infrared domain, and VIS/IR IR
4) mean the narrowness of that pgak. Novy Fhe muItlvar|a'Fe All events 070 052
model results in a multiple regression coefficient of de.terml— Upper half intensity events ~ 0.81  0.62
nation of%t?=0.52 for all events. When the upper half (in in- Lower half intensity events ~ 0.52  0.40
tensity) events are considertid is increased to 0.62. When
the lower half is considere@t? drops to 0.40. These results
are not as impressive as those in the VIS/IR domain (they
represent a loss of 18%, 19% and 12% in variance explained,
respectively) but still it appears that some information (es-
pecially for the extremes) exists. All the above results are
summarized in Table 1. By extending these ideas to the problem of estimating

While the above results may have been anticipated, thigainfall from satellite imagery, we were able to show that
study looks at the problem of rainfall estimation from Spaceestlmatlng extreme values of response from limited informa-

from the dynamical systems point of view. The reduction in tion is rgther adequate. This is consistent with the general
onclusion that the atmosphere, even though very complex,

2 . . . .
% seen when only IR images are considered is conS|stenE1ay exhibit low dimensional attractors (Tsonis, 1996,

with the reduction observed in our simple dynamical systemsqg1 . sjvakumar, 2004). The existence of these attractors,
when the dimension of the state space becomes t00 smalkan therefore aid us, if utilized properly, in studying and

Here as well, it appears that while some rainfall informa- estimating the properties of extreme events. Thus, seeking
tion exists in a very low dimensional space, when it comes toand understanding the properties of these attractors should
studying the variability of rainfall from satellite images the be encouraged.

best bet is to study extreme variability. For weak events the

properties of rainfall may not be adequately resolved.

(scalar) cannot reproduce extreme variability of system
response.
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