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Abstract. Probabilistic aspects of regional ocean model pre-
dictability is analyzed using the probability density function
(PDF) of the irreversible predictability time (IPT) (calledτ -
PDF) computed from an unconstrained ensemble of stochas-
tic perturbations in initial conditions, winds, and open
boundary conditions. Two-attractors (a chaotic attractor and
a small-amplitude stable limit cycle) are found in the wind-
driven circulation. Relationship between attractor’s resi-
dence time and IPT determines theτ -PDF for the short (up
to several weeks) and intermediate (up to two months) pre-
dictions. Theτ -PDF is usually non-Gaussian but not multi-
modal for red-noise perturbations in initial conditions and
perturbations in the wind and open boundary conditions. Bi-
furcation ofτ -PDF occurs as the tolerance level varies. Gen-
erally, extremely successful predictions (corresponding to
the τ -PDF’s tail toward large IPT domain) are not outliers
and share the same statistics as a whole ensemble of predic-
tions.

1 Introduction

Estimate of predictability skill of regional ocean models is
important but difficult. The regional ocean dynamics is sen-
sitive to variability of external forcing such as winds, fresh
water discharge, buoyancy flux, and to multi-scale interac-
tions between shelf and abyssal currents (Robinson et al.,
1996; Lozano et al., 1996; Jiang and Malanotte-Rizzoli,
1999; Chu et al., 1999a, b, c, d, 2001; Auclair et al., 2003
among others). Bathymetry, coastlines, and physical pro-
cesses such as wind bursts, fresh water discharge, tides,
storm surges, shelf waves, and nonlinear processes affect
coastal and abyssal currents and may cause multi-attractor
circulation in marginal seas where robust circulation regimes
(attractors) are more complicated than simply periodic or
even quasi-periodic ones.

Correspondence to:L. M. Ivanov
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Multiple attractors in atmospheric models are used by sev-
eral investigators to understand the dynamics of planetary
flow regimes (Charney and De Vore, 1979; Molteni, 1996).
Multi-modality is found in wind-driven ocean circulation
models (Schmeits and Dijkstra, 2000) such as the Kuroshio
path variation south of Japan (Masuda et al., 1999). The
multi-modality in the probability density function (PDF) of
prediction error is caused by the spatial phase organization
of the local error growth rate (Miller and Ehret, 2002). Usu-
ally, the multi-modality leads to the intermittency of the pre-
dictability of atmospheric and ocean models and the forma-
tion of non-Gaussian PDF of the prediction error.

Even for prediction error with initial Gaussian PDF, the
PDF of predictability time scale is often non-Gaussian with a
tail stretching into large predictability time scale values (Chu
and Ivanov, 2002, 2005a1, b2; Chu et al., 2002a, b; Denholm-
Price, 2003). Rare forecasts of enhanced predictability dom-
inate these tails. Obviously, if the occurrences of these pre-
dictions increase, the ensemble prediction will be improved.

In this study, a wind-driven circulation model based on
the barotropic version of Princeton Ocean Model (POM)
(Blumberg and Mellor, 1987) is implemented for a semi-
enclosed rectangular basin with flat bottom to reproduce the
multi-attractor regime and to study the variability of model
predictability-skill with uncertain initial conditions, external
forcing (wind) and open boundary conditions. A recently
proposed irreversible predictability time (IPT)τ (Ivanov et
al., 1994; Chu et al., 2002a, b) is taken as a quantitative mea-
sure of model predictability skill.

There are three major tasks in this study: (1) to find mech-
anisms for the formation of non-Gaussian PDF of IPT (called
τ -PDF) with a tail stretching into large IPT domain, (2) to de-
tect the effect of stochastic perturbations in external forcing

1Chu, P. C. and Ivanov, L. M.: Some considerations on stochas-
tic stability of regional oceanic models with perturbed initial condi-
tions, Tellus, revised, 2005a.

2Chu, P. C. and Ivanov, L. M.: Some considerations on stochas-
tic stability of regional ocean models with perturbed external forc-
ing, Tellus, in revision, 2005b.
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Fig. 1. Two areas for the POM integration: (a) domain-A with three rigid boundaries 
and one open boundary 'Γ , and (b) domain-B with four rigid boundaries.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two areas for the POM integration: domain-A with three
rigid boundaries and the open boundary0′ (upper panel), and
domain-B with four rigid boundaries (lower panel).

on the model predictability, and (3) to identify the control
parameter (or control parameters) for the variability or bifur-
cation of the model predictability skill such as the change
of symmetricτ -PDF into asymmetricτ -PDF with a long
tail toward large IPT domain. Fulfilling of these tasks may
improve our understanding of the following problems. Do
extremely successful predictions (long IPT) share the same
statistical properties as predictions of short and intermediate
durations? How do the stochastic perturbations in external
forcing switch the attractors (noise-induced escapes)? How
do they affect a multi-attractor system? What is the most
important parameter to determine theτ -PDF characteristics?

The paper is organized as follows. Section 2 describes
the reference solution presenting two circulation attractors:
a small-amplitude stable limit cycle and a chaotic attractor.
Section 3 discusses the method for generating unconstrained
ensembles of perturbations added to the initial conditions,
wind forcing, and open boundary conditions. Sections 4 and
5 discuss the first and second kinds of predictability. Sec-
tion 6 presents the conclusions.

2 The reference solution

2.1 Numerical modeling

2.1.1 Two domains

Consider a semi-closed basin with the flat bottom centered
at 35◦ N and bounded by three rigid boundaries (Domain-
A in upper panel of Fig. 1). This basin expands 1000 km
(1050 km) in the north-south (east-west) direction. The
northern, southern, and western boundaries are rigid, and the
eastern boundary is open. The Cartesian coordinate system is
chosen with the origin at the southwest corner. The x- and y-

axes point towards the east and north, respectively. The east-
ern boundary of Domain-A is connected to a domain with
four rigid boundaries forming a closed rectangular domain
(lower panel of Fig. 1), called Domain-B (Chu et al., 1997).

The circulation reproduced in Domain-B was used to spec-
ify open boundary and initial conditions for control run in
Domain-A.

2.1.2 Integration over the closed domain (Domain-B)

The POM model was integrated for Domain-B with four rigid
boundaries from rest and zero surface elevation (ξ̂ ),

(û, v̂, ξ̂ ) = 0, (1)

and forced by the zonal surface pseudo wind stress varying
with latitude

WS = −w0 cos

(
πy

Ly

)
, (2)

wherew0=10−3 m2 s−2. The time step is chosen as 2 min.
The horizontal resolution is 50 km. The horizontal mixing
and bottom stress are parameterized by the bi-harmonic op-
erator and the quadratic drag relation, respectively.

2.1.3 Integration over the open domain (Domain-A)

We integrate the POM over Domain-B with four rigid bound-
aries (non-slip boundary conditions) from the initial condi-
tions (1) and surface forcing (2) and take the solution along
the middle of Domain-B (x=1050 km)(
ū, ξ̄

)
b

=

(
û, ξ̂

)
b
, (3)

as the open boundary condition for the Domain-A integra-
tion. The velocity atx=1050 km for the Domain-B run is
nearly zonal. The solution for the Domain-B integration at
day-10 is taken as the initial and open boundary conditions
for the control run in Domain-A,(
ū, v̄, ξ̄

)
t=t0

=

(
û, v̂, ξ̂

)∣∣∣t=10day . (4)

The model for Domain-A is integrated with the same dissi-
pativity, the wind forcing (2), open boundary condition (3),
and from the initial condition (4) for another 750 days. The
initial condition is an unclosed single gyre with velocities
under 0.35 m s−1 and sea surface elevation around 0.05 to
0.1 m (Fig. 2a). Figure 2b shows the normal velocity along
the open boundary. The circulation reproduced in Domain-A
presents the reference solution.

2.2 Two-attractor circulation

Two different attractors in the numerical solutions with the
same external forcing and dissipation are detected by the
temporal variability of total kinetic energy, Lyapunov dimen-
sionality, and local Lyapunov exponents (Anishenko, 1997).

An attractor can be detected either in the state space
(Berloff and McWilliams, 1999) or in the phase space. As
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               Fig. 2.  Initial condition for modeling (a) and open boundary condition bu   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Initial condition(a) and open boundary condition̄ub (b) for
the control run.

indicated in Appendix A, the compressible flow (u, v) with
small sea surface elevation can be represented approximately
by the geostrophic stream function9 (see Eq. A2),

9(x, y, t) = 9H (x, y) +

K∑
k=1

Zk(t)9k(x, y), (5)

where9H is the harmonic function explained in Appendix
A.

The orthonormal functions{9k} (modes) generate a K-
dimension phase space. The series (5) is truncated atK=100.
An attractor is characterized by its basin volume and stabil-
ity.

2.2.1 Basin volume

If the model dynamics is high-dimensional and dissipative,
it is expected that generally the attractor basin is not a
smoothly connected object and has fractal or riddled struc-
ture (Guchenheimer and Holmes, 1983). Accordingly to
Kaneko (1998), the basin volume of an attractor is estimated
as the portion of the randomly selected initial points that are
attracted to it. After model integration over 100 days with
10 000 initial conditions, the attractor is identified, on which
the model trajectory falls. Perturbed model trajectories are
approximately distributed between two attractors in the pro-
portion as 1/9.

A manifold of initial conditionsZ̃k(t0) corresponding to
one of the attractors with the basin volume occupied approx-
imately 10% of phase space (the attractor is identified below
as a small amplitude limit cycle) can be specified through
smoothing (filtrating) initial conditions accordingly to

Z̃k(t0) =
λ2

k

λ2
k + χ2

k

Zk(t0), (6)

where the functionχk is defined by

χk = χ0 max|Zk(t0)| /Zk(t0),
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Fig. 3.  Typical  IPT landscape projected onto error phase space 
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Fig. 3. Typical IPT landscape projected onto a plane
{
Z0

1, Z0
2

}
in

phase space:(a) chaotic attractor and(b) limit cycle.

and χ0 is the filter parameter;λk is the eigenvalue corre-
sponding to the basis function9k(x, y). Chu et al. (2003)
demonstrate that the filter (6) removes high-order modes and
low-order small-amplitude modes.

2.2.2 Measure of attractor stability

To estimate attractor stability in forecast metrics

J (t) =

∥∥∥9 ′

∥∥∥2/∥∥∥9̄∥∥∥2
, (7)

9 ′(x, t) = 9(x, t) − 9̄(x, t), 9(x, t0) = 90, (8)

where (x, t) denotes the spatial and temporal coordinates;
9̄(x, t) and9(x, t) are the reference solution and an indi-
vidual prediction, respectively;‖‖ is the Euclidian norm, we
use the irreversible predictability time determined as

τ = min
(
t

∣∣∣J (t) > ε2
0

)
, (9)

whereε0 is non-dimensional tolerance level (accepted pre-
diction accuracy).

IPT differs from the e-folding time (τe) or doubling time if
prediction error is oscillatory or stochastic. For example, the
mean IPT over an ensemble of initial conditions is defined
by

〈τ 〉 =

〈
min

(
t

∣∣∣J (t) > ε2
0

)〉
. (10)

However, the e-folding time is determined by

〈τe〉 = min
(
t

∣∣∣〈J (t)〉 > ε2
0

)
. (11)

with the correspondingε2
0.

Clearly, unique correlations exist among the landscape of
IPT (dependence of IPT on magnitude and orientation of the
initial error), the local Lyapunov exponents and the attrac-
tor types. Chu and Ivanov (2005a, b)1,2 pointed out that
the signs of the local Lyapunov exponents can be determined
from the analysis of IPT landscape.
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Fig. 4. The chaotic attractor: (a) mean kinetic energy normalized by the value of 
maximum mean kinetic energy of limit cycle 0E ; (b) snapshot of stream function 
corresponding to a maximum energy state of attractor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The chaotic attractor:(a) mean kinetic energy normalized by
the value of maximum mean kinetic energy of limit cycleE0; (b)
snapshot of stream function corresponding to a maximum energy
state of attractor.

For a chaotic attractor with at least one positive exponent
and one negative exponent, the IPT landscape has a crest-
like structure (Fig. 3a). Here, the leading Lyapunov vector is
in {Z0

1 = Z1(t0), Z
0
2 = Z2(t0)} plane. If the initial error is

oriented perpendicular to the crest, the prediction error grows
exponentially. If the initial error is oriented along the crest,
it decays or stagnates. A hill-like landscape corresponds to a
stable limit cycle (Fig. 3b).

2.3 Attractor patterns

2.3.1 Chaotic attractor

After integrating the model from initial condition (4)
(Fig. 2a), the attractor is characterized by a-periodic behav-
ior of kinetic energy (Fig. 4a). The streamfunction with a
maximum energy value (Fig. 4b) shows a strong cyclonic
basin-scale gyre with size of about 350 km (left upper cor-
ner) and speed of about 0.9–1.0 m s−1. Several smaller size
(secondary) eddies occur near the rigid boundary and in the
center of the basin. The highest surface elevation reaches
1 m.

The nonlinear regime is identified in the basin by two non-
dimensional Rossby numbers (Pedlosky, 1987),

Ro1 = max(
U

f L
) ∼ 0.1, Ro2 = max(

1

f T
) ∼ 0.12 (12)

wheref ∼10−4 s−1 is the Coriolis parameter;U∼1 m s−1 is
the characteristic velocity in the basin;L∼100 km andT ∼1
day are the characteristic spatial and temporal scales of the
flow, respectively.

Temporal variation of the kinetic energy averaged over
the whole basin (Fig. 4a) shows a-periodic oscillations and
transitions between meta-stable states. These oscillations are
caused by interactions between the basin-scale cyclonic gyre
and the secondary eddies which are generated by barotropic
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Fig. 5. The small-amplitude limit cycle: (a) mean kinetic energy normalized by its 
maximum value 0E ,  (b) snapshot  of   stream function averaged over time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The small-amplitude limit cycle:(a) mean kinetic energy
normalized by its maximum valueE0, (b) snapshot of stream func-
tion averaged over time.

instability of the gyre when the circulation velocity exceeds
0.7–0.8 m s−1. The instability produces the secondary eddies
disposing along the rigid boundary and in the center of the
basin and periodically dissipating due to viscosity damping.
Note that for zero horizontal viscosity the chaotic attractor
does not develop. Instead an unstable dynamical regime oc-
curs. This case will be discussed in Chu and Ivanov (2005a,
b)1,2.

The analysis of IPT landscape demonstrates the existence
of at least one positive and one negative Lyapunov exponent.
It identifies the observed dynamical regime as a chaotic at-
tractor.

2.3.2 Stable limit cycle

If the nonlinear filtration procedure (6) is applied to the ini-
tial condition (4), an oscillated stable cyclonic gyre quickly
develops for the semi-enclosed basin. Figure 5a shows the
temporal variation of the kinetic energy averaged over the
whole basin. The oscillation period is about 150 days. The
nondimensional amplitude of the oscillation is around 0.1.
Figure 5b shows temporally averaged stream function.

Such a circulation pattern is represented as a stable limit
cycle (small amplitude) in the phase space. This limit cy-
cle is identified using the method proposed by Meacham and
Berloff (1997).

3 Unconstrained ensemble of perturbations

Since the barotropic model is computationally efficient, the
stochastic stability of the reference solution to unconstrained
perturbations of the initial condition, open boundary con-
dition, and wind forcing is studied using the Monte-Carlo
method with 1000 ensemble samples.

Atmospheric ensemble modeling shows that for small
samples the initial error can not cover the phase space
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homogeneously. It leads to an unrealistically-weak growth
of prediction error variance. Therefore, for short period pre-
dictions it requires the best possible knowledge of the ini-
tial state in the sub-region of the phase space where the
prediction errors are most likely to grow. In different fore-
cast centers, such as the European Centre for Medium-Range
Weather Forecasts and the National Centers for Environmen-
tal Prediction, the directions corresponding to the maximum
error growth in phase space are identified by the singular vec-
tors (Buizza et al., 1999) and the breed vectors (Toth and
Kalnay, 1997), respectively.

This study utilizes a simple Monte-Carlo technique for the
three reasons. First, little difference in the statistics is found
among ensembles of 1000, 5000, 10 000 and 20 000 sam-
ples. The numerical experiments with 1000 ensemble sam-
ple are reliable. Second, a Latin hypercube sampling pro-
cedure (LHST, 2001) is used to increase the degree of uni-
form coverage of the phase space by initial errors. Third, a
non-parametrical technique using the Epanechinikov kernel
is used to reconstruct PDF from histogram. Details of such a
reconstruction can be found in Good (1996).

3.1 Perturbations to initial condition

Sensitivity of the reference solution to Gaussian-type pertur-
bations is commonly studied in the atmospheric and oceanic
applications (Robinson et al., 1996). In this study, 2-D
stochastic perturbations with the correlation function

G(r − r ′) = I2 exp

[
−

(
r − r ′

)2
R2

]
(13)

are used. Here,r=xi+yj , is the displacement vector; (i, j )
are unit vectors along x and y axes; (R, I ) are the correlation
radius and intensity of the noise. The technical details of
generating these noises can be found in Sabel’feld (1991).

3.2 Perturbations to wind forcing

Surface winds are perturbed by

u′
≡ [u′(x, y, t), v′(x, y, t)] = [µ1(t), µ2(t)]g(x, y), (14)

whereµ1 andµ2 are independent white noise processes with
zero mean and variance ofσ 2. In numerical integration, the
noises (µ1,µ2) are introduced every hour. The spatial struc-
ture function of errors,g, is parameterized by,

g(x, y) = α

[
πλxλyerf

(
Lx

2λx

)
erf

(
Ly

2λy

)]1/2

exp

(
(x − x0)

2

λ2
x

+
(y − y0)

2

λ2
y

)
, (15)

which describes the impact of the localized atmospheric eddy
activity near (x0, y0) on the surface wind perturbations (Sura
et al., 2001). Here, erf is the error function;α is a scaling
parameter; (λx , λy) are the de-correlation scales. Noise in
surface winds withσ 2=28 m2 s−2 corresponds to observed
typical atmosphere conditions in the North Atlantic region
(Wright, 1988).
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Fig. 6. τ -PDF  for  the predictability of the first kind with  white initial noise  (curve-
2),      and red noise with the correlation radius of 14 km (curve-1)  and 70 km (curve 
3 ). Here, 2I =0.01 m2/s2 and 2

0ε =0.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. τ -PDF for the predictability of the first kind with white
initial noise (curve-2), and red noise with the correlation radius
of 14 km (curve-1) and 70 km (curve-3). Here,I2=0.01 m2/s2 and
ε2
0=0.5.

3.3 Perturbations to open boundary condition

The normal velocity along the open boundary (ub) is per-
turbed by

u′

b = B(t) sin(πy/Ly), (16)

whereB(t) is white noise with zero mean and variance of
δ2. The velocity perturbation (u′

b) affects inflow and outflow
across the open boundary.

4 Predictability of the first kind

Keeping wind forcing (2) and open boundary condition (3)
accurate, and perturbing initial condition (4) with white or
red noise represented by two parameters (variance of initial
error I2 and correlation radiusR), the predictability of the
first kind can be investigated with various combinations of
(I2, R, ε2

0). In all our numerical studies here and hereafter,
perturbed model trajectories start from the basin of chaotic
attractor, i.e. from the original initial condition (4).

For a given tolerance levelε2
0 (0.5), theτ -PDF is close

to Gaussian shape (skewness and kurtosis equal to 0.08 and
2.95, respectively) for the white noise (R=0, curve-1 in
Fig. 6). Clearly, any model trajectory starting from the at-
tractor basin does not leave the attractor and the IPT statistics
is only determined by the stability of this chaotic attractor.

When the correlation radiusR increases, the volume in
the phase space covered by the initial error increases (Chu
and Ivanov, 2005a1), and the two-attractor structure of the
reference circulation occurs. For a given error intensity,
I2=0.01 m2 s−2, the τ -PDF is near Gaussian (curve-1 in
Fig. 6) forR=0 km, non-Gaussian (curves-2 in Fig. 6, skew-
ness of 0.58) forR=14 km, and non-Gaussian with a tail
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Fig. 7. τ -PDF  for  the predictability of the second  kind (wind forcing) with a given 
wind error intensity ( 2σ = 42 m2 s-2) and various tolerance levels ( 2

0ε ):  (a) small 
tolerance levels: 0.005 (curve-1) , 0.01 (curve-2), and (b) intermediate and large 
tolerance levels: 0.05 (curve-1) , 0.1 (curve-2) and   0.5 (curve-3). 
 
 
 
 
 
 

Fig. 7. τ -PDF for the predictability of the second kind (wind forc-
ing) with a given wind error intensity (σ2=42 m2 s−2) and various
tolerance levels (ε2

0): (a) small tolerance levels: 0.005 (curve-1) ,
0.01 (curve-2), and(b) intermediate and large tolerance levels: 0.05
(curve-1), 0.1 (curve-2) and 0.5 (curve-3).

stretching to large IPT domain (curves-3 in Fig. 6, skewness
of 0.80) forR=70 km.

5 Predictability of the second kind

Keep the initial condition (4) accurate, and perturb the wind
forcing (2) or open boundary condition (3) with white noises.
The noise intensity isσ 2 for the wind forcing andδ2 for the
open boundary condition. The second kind of predictabil-
ity (Lorenz, 1982) can be investigated with various com-
binations of (σ 2, ε2

0) and (δ2, ε2
0). Since the predictabil-

ity of high-resolution regional models depends crucially on
the wind forcing (Robinson et al., 1996; Chu et al., 1999a,
b, c; Burillo et al., 2002 and others) and the specified nor-
mal velocity at the open boundaries, and since errors in the
open boundary condition cause a rapid decrease of model
predictability skill (Chu, 1999; Jiang and Malanotte-Rizzoli,
1999), investigation of the second kind of predictability is of
great importance for regional ocean modeling.

5.1 Residence time andτ -PDF

In contrast to the predictability of the first kind, analysis of
the second kind of predictability is more difficult because of
the multi-attractor system. “Noise induced escape” occurs
when a model trajectory switches over attractors (Anishenko,
1997). Therefore, in addition to IPT, the residence time (τres)

should be used with the definition of a maximum time period
for a perturbed trajectory keeping in the same attractor.

In general, the residence time depends on the basin volume
of the attractor, initial position of model trajectory at the at-
tractor, dynamical attractor stability and noise intensity (σ 2

or δ2) (Kaneko, 1998). Since there is no common method to
estimateτres on the attractor for a high-dimensional dissipa-
tive dynamical system (Kaneko, 1998), a phenomenological
analysis of relationship betweenτ andτres is suggested.

For a smallε2
0, it is expected that

τ < τres,

which shows that the model losses the predictability skill be-
fore the model trajectory leaves the occupied attractor. The
τ -PDF is determined by the stability of a single attractor and
probably should be near Gaussian type.

For a sufficiently largeε2
0, it is expected that

τ > τres,

which shows that the model keeps the predictability skill af-
ter the model trajectory leaves the occupying attractor. This
leads to the change of theτ -PDF structure. Therefore, switch
among attractors can be identified through analyzing the
change ofτ -PDF structure with increasingε2

0.
The proposed methodology, of course, can not determine

the residence timeτres and the number of trajectories switch-
ing among attractors. However, it determines the change of
theτ -PDF structure that links to the duration of the perturbed
trajectory along different attractors. Besides, it uniquely
identifies the trajectory switching from the chaotic attractor
to the limit cycles when the stochastic perturbation is added
to external forcing.

5.2 Perturbations to wind forcing

The two parametersσ 2 andε2
0 determine theτ -PDF struc-

ture. For small tolerance level (ε2
0<0.01) and strong wind

perturbations (σ 2>40 m2 s−2), theτ -PDF is nearly symmet-
ric with large variance of IPT. The kurtosis and skewness are
approximately 3.1 and 0.1 (Fig. 7a).

With increase ofε2
0 (>0.025), theτ -PDF becomes asym-

metric with smaller IPT variance and a long tail stretching to
large IPT domain (Fig. 7b). The skewness is 0.60 for curve-1
and 0.75 for curve-3. This shows that the tolerance levelε2

0 is
a controlling parameter for model predictability skill. Theτ -
PDF is symmetric for smallε2

0 and asymmetric for largeε2
0.

For a relatively large tolerance level (ε2
0≥0.05), the asymme-

try of theτ -PDF structure increases (longer tail toward large
IPT domain) with the increase of noise intensityσ 2 (Fig. 8).



P. C. Chu and L. M. Ivanov: Statistical characteristics of irreversible predictability time in regional ocean models 135

 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  τ -PDF  for  the predictability of the second  kind (wind forcing) with a given 
tolerance level 2

0ε =0.1 with various wind error intensity:   2σ =  14 m2 s-2 (curve-1),  
28 m2 s-2 (curve-2)  ,  42 m2 s-2 (curve-3) , and  56  m2 s-2 (curve-4).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. τ -PDF for the predictability of the second kind (wind forc-
ing) with a given tolerance levelε2

0=0.1 with various wind error

intensity:σ2=14 m2 s−2 (curve-1), 28 m2 s−2 (curve-2), 42 m2 s−2

(curve-3), and 56 m2 s−2 (curve-4).

The extra-successful predictions (Chu et al., 2002c) corre-
sponding to the PDF tail (toward the large IPT domain) are
not outliers since they share the same statistics with other
predictions with short and intermediate IPTs.

Another important result is that the multi-attractor struc-
ture of the modeled circulation does not necessary lead to the
multi-modalτ -PDF since the perturbed trajectory can switch
among different attractors. This is different from a recent
result reported by Miller and Ehret (2002) that if the initial
error co-variances are large enough such that a given per-
turbed trajectory has high possibility to start from different
basin attractions, the initial Gaussianτ -PDF will evolve into
a bimodalτ -PDF.

Existence of a tail stretching into large IPT domain is the
most common feature ofτ -PDF for short and intermediate
forecasts (Fig. 8). Growth of the noise intensityσ 2 increases
the asymmetry of theτ -PDF. For example, the skewness is
0.38 forσ 2=14 m2 s−2 (curve-1) and 0.96 forσ 2=56 m2 s−2

(curve-4). Chu and Ivanov (2005a)1 pointed out that the
Weibull distribution is the best fit for theτ -PDFs illustrated
in Fig. 8. Therefore, the extremely successful predictions
(Chu et al., 2002b) corresponding to theτ -PDF tails are not
outliers since they share the same statistics with the usual
predictions.

The τ -PDF is nearly symmetric for smallε2
0 and asym-

metric for largeε2
0. Loss of theτ -PDF symmetry occurs as

ε2
0>0.025. This indicates that variation of the tolerance level

ε2
0 may lead to a drastic change of statistics for measuring

the model predictability skill. A set of structural change of
theτ -PDF with the increase ofε2

0 may be considered as the
one-step bifurcation sequence:

τ -PDF symmetry→ τ -PDF asymetry. (17)
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Fig. 9. τ -PDF for the second kind of predictability (open bound-
ary) with a given open boundary error intensity (δ2=0.2 m2 s−2)

and various tolerance levels (ε2
0): 0.005 (curve-1), 0.01 (curve-2),

0.1 (curve-3) and 0.5 (curve-4).

5.3 Perturbations to open boundary condition

For small tolerance level (ε2
0≤0.01), theτ -PDF is already

asymmetric with a maximum value at small IPT domain
(about 5 days, i.e., the most probable IPT) and a tail stretch-
ing to large IPT domain up to 40–50 days (curves-1 and
curve-2 in Fig. 9). The skewness is 3.8 forε2

0=0.005 (curve-
1) and 3.9 forε2

0=0.01 (curve-2). The estimated mean res-
idence time is about 10 days, the perturbed model trajecto-
ries departure quickly from the chaotic attractor to the small
amplitude limit cycle. With increase ofε2

0 (>0.025), the
IPT variance and the degree ofτ -PDF asymmetry reduces
(curves-3 and curve-4 in Fig. 9). The skewness decreases to
0.7–0.8. This is caused by the perturbed trajectories having
time to return to the chaotic attractor from the limit cycle.

For some values of (ε2
0, δ2), there exist “outliers” – predic-

tions with statistical properties differing considerably from
those of the prediction ensemble. For example, whenε2

0=0.1,
δ2

=0.3 m2 s−2, theτ -PDF shows a complex structure with
two distinct features forτ<40 day andτ>40 day (Fig. 10a).
Theτ -PDF in Fig. 10a can be represented as the combination
of two τ -PDFs: (a) uniform distribution (shown in Fig. 10b)
for 12 h≤τ≤39 days and (b) near Gaussian distribution with
the mean and variance equal to 50 day and 7.5 day2, respec-
tively. Therefore, the predictions forτ<40 day may be iden-
tified as outliers.

A set of structural change of theτ -PDF with the increase
of ε2

0 may be considered as the two-step bifurcation se-
quence:

asymetricτ -PDF with large variance→

→ symmetricτ -PDF+ outliers→

→ asymetricτ -PDF with small variance. (18)

Existence of bifurcation sequences (17) and (18) should be
checked in atmospheric and oceanic models.
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Fig. 10   “Outliers”-  forecasts with 2δ = 0.3 m2 s-2, 2

0ε =0.1: (a) τ - histogram 
computed for the perturbed open boundary, (b) best fit to the homogeneous 
distribution for τ < 40 day,  and (c) best fit to Gaussian distribution for τ > 40 day.   
 
 
 
 
 
 
  
 

Fig. 10. “Outliers” – forecasts withδ2=0.3 m2 s−2, ε2
0=0.1: (a) τ -

histogram computed for the perturbed open boundary,(b) best fit
to the homogeneous distribution forτ<40 day, and(c) best fit to
Gaussian distribution forτ>40 day.

6 Conclusions

(1) Several predictability regimes in two-attractor circula-
tions (the chaotic attractor and small-amplitude limit cycle)
reproduced by a numerical model have been identified in
a semi-closed basin with flat bottom. Theτ -PDF is non-
Gaussian for intermediate and large amplitude prediction er-
rors, and near Gaussian for small amplitude prediction errors.

(2) For the predictability of the first kind, the error evolu-
tion depends strongly on the correlation radius of the initial
error and its variance. If the initial co-variances and correla-
tion radius are large enough so that there is large possibility
that a given perturbed model trajectory does not start from
the same attractor basin as the mean ensemble one, theτ -
PDF is asymmetric (non-Gaussian) with a tail stretching into
large IPT domain.

(3) The stochastic perturbations added to the wind forcing
and open boundary condition lead to switch of the perturbed
model trajectories over attractors (i.e., the noise-induced es-
cape). It is found that the perturbed model trajectories switch
from the chaotic attractor to the limit cycles and switch
back. Relationship between the residence time at the attrac-
tor and IPT determines the shape ofτ -PDF. Forτ<τres per-
turbed model trajectories do not have time to switch from the
chaotic attractor to the limit cycle. This causes theτ -PDF
near Gaussian. Forτ∼τres the perturbed model trajectories
can be either in the initial chaotic attractor or in the limit cy-
cle. This causes the bimodal (not often) or asymmetric non-
Gaussian (more often)τ -PDF. Forτ>τres , the perturbed tra-
jectories have sufficient time to switch to the limit cycle, and
cause asymmetricτ -PDF.

(4) The perturbed model trajectories attracted to the limit
cycle share the same statistical properties as the trajectories
still along the initial chaotic attractor. In general, the numer-
ical computations do not indicate the outlier feature of pre-
dictions except for some forecasts realized for specific com-

binations of the tolerance level and variance of perturbations
added to the open boundary condition.

(5) Two different bifurcation sequences in changes ofτ -
PDF are found with increase ofε2

0. For uncertain wind forc-
ing, one-step bifurcation is found with symmetricτ -PDF
changing to asymmetricτ -PDF. For uncertain open bound-
ary conditions, a more complicated two-step bifurcation is
found in the model predictability skill.

Appendix A

Spectral decomposition

A two-dimensional compressible circulation (u, v) can be
represented by

u = −
∂9

∂y
+

∂8

∂x
, v =

∂9

∂x
+

∂8

∂y
, (A1)

where9 and8 are the geostrophic streamfunction and ve-
locity potential, respectively. Let (0, 0′) be the rigid and
open boundaries. The geostrophic streamfunction9 is de-
composed into (Eremeev et al., 1992; Chu et al., 2003)

9(x, y, t) = 9H (x, y, t) +

∞∑
k=1

Zk(t)9k(x, y), (A2)

where{9k} are the eigen-functions of the spectral problem ,

19k (x, y) = −λk9k(x, y), 9k |0∪0′ = 0, (A3)

with λk the eigen-values of the horizontal Laplacian (1).
The component9H is the harmonic function satisfying the
boundary conditions

9H |0 = 0 , 9H |0′ = 9b, (A4)

where9b is computed from knowledge of the normal veloc-
ity at open boundary.

The velocity potential8 is decomposed into

8 =

∞∑
m=1

Bm(t)8m(x, y), (A5)

where{8m} are the eigen-functions of the spectral problem

18m (x, y) = −µm8m(x, y),

8m |0′ = 0,

n · ∇8m |0 = 0, (A6)

wheren is the unit vector normal to0′; {µm} are the eigen-
values.

The basis functions{9k, 8m} generate the phase space
which can be used for the spectral analysis of ocean circu-
lation in a basin with real coastlines. Since the surface eleva-
tion is small comparing to the water depthH ,

ζ/H � 1

the quasi-geostrophic approximation is reasonable for the
flow reproduced in the present study (Pedlosky, 1987). Thus,
in the main text, only the geostrophic streamfunction9 is
considered.
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