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Abstract. In the present paper we discuss the motion ofin the vicinity of anO-type neutral line was studied numer-
charged particles in three different regions of the Earth magically in Martin et al.(1991 and analytically inLarson and
netotail: in the region with magnetic field reversal and in the Tracy (1993.

vicinities of neutral line ofX- and O-types. The presence It is known that for a wide range of parameters the mo-
of small parameters (ratio of characteristic length scales inion of charged particles in the magnetotail is chao@ibén

and perpendicular to the equatorial plane and the smallnesgnd Palmadessd986 Biichner and Zelenyil 989, see al-

of the electric field) allows us to introduce a hierarchy of mo- so Chen (1992 for a review. It was shown biichner and
tions and use methods of perturbation theory. We propose @elenyi(1989, that in the domain where the Larmor radius
parameter that plays the role of a measure of mixing in theof charged particles is much larger than the smallest radius
system. of curvature of magnetic field lines the jumps of an adiabatic
invariant lead to chaotic behaviour. In closed systems chaotic
behaviour necessarily leads to complete mixing in the acces-
sible part of the phase space. However, in the real magne-
totail the electric field accelerates particles, thus limiting the
pime they spend in the magnetotail, which, in turn, defines

linear dynamics of charged particles in various regions of oW much mixing can happen before the particles leave the

the earth magnetotail. This research started with the pa_system. ] o
pers Northrop 1963 Speiser1965 1967 Sonnerup1971 One of the standard methods of studying the chaotization
Lyons and Speise982. Since then, the motion of particles &nd mixing (in both analytical and numerical approaches) is
in the magnetic field reversal configurations was studied byt© 100k at the behaviour of approximate invariants of a sys-
different authors, both numerically and analytically for quite ©8m- The action variablé; (the action variable of the mo-
different approximations of the magnetic field geometry. Thetion perpendicular to the equatorial plane), that is a standard
most basic, one-dimensional, approximation was discusse@ction variable of the Hamiltonian dynamics and analogous
in many publications (se@hen(1992 and references there- 0 th_e the magnetic momeptin the g_wdlng center theory,
in). Longitudinal variations of the magnetic field were first Was introduced b$peise(1970. The important role played
taken into consideration analytically Zelenyi et al (1999 Py I was first recognized bgonnerug(1973. That single
and numerically irkarimabadi et al(1990), where the prob- ~ action variable is, nat.urglly, not sufﬁu_ent.for a complete (;Ie—
lem was considered for a variety of configurations of mag-Scription of more realistic models, which include both varia-
netic field. tions of parameters of the magnetic field along the equatorial
The motion of particles in the vicinity of afi-type neu- plane and the influence of the electric field.Zelenyi et al.
tral line was studied theoretically and numericaligagtin, (19909 néw results were obtained by introducing an addition-
1986 Burkhart et al, 1991, Moses et a].1993, numerically &l longitudinal, adiabatic invariant, that is analogous/fo.
by (Bruhwiler and Zweibel 1992 Smets et a).1993 No-  (the action associated with the motion along a magnetic field
cera et al.1996. The impact of the electric field was studied !In€) in the guiding center theory. This approach proved to be
analytically and numerically ifDeeg et al(199) and nu-  guité useful and allowed the authors to obtain important es-

merically in Petkaki and Mackinno(1994. The dynamics timates of the particles’ acceleration. The method was based
on two consecutive averagings of the equations of motion,

Correspondence tdD. L. Vainchtein and the validity of the approach, that may be non-trivial (be-
(dmitri@engineering.ucsb.edu) cause of separatrix crossings, even the adiabatic invariant of

1 Introduction

In recent years there has been much interest in the no
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the fastest motion/,, is not well-conserved) were not dis- we discuss the properties of the fastest (perpendicular to the
cussed. The situation here is quite different from the casesquatorial plane) motion. We show that dynamics is exactly
when the guiding center theory works. In the latter casethe same for MFR and XO problems. In Sect. 4 we illus-
two consecutive averagings of the equations of motions ardrate the averaging method and provide the description of the
clearly valid and the adiabatic invariants are preserved fomphase portraits of the averaged system. In Sect. 5 we describe
timescales growing exponentially with the magnetic field in- the long-time properties of the particles’ dynamics (on times
tensity (sedenettin and Sempjd 994). of order of the lifetime of particles in the magnetotail) and in-

In the present paper we consider the motion of chargedroduce a parameter that can be used as a measure of mixing.
particles in three distinct regions of the Earth magnetotail:In Sects. 6 and 7 we derive the acceleration rates in the adia-
in the region with magnetic field reversal (MFR), taking in- batic case in the MFR antllO problems. Section 8 contains
to consideration the longitudinal variations of the magneticconclusions.
field, and in the vicinities of neutral lines &f- and O-type
(XO). In all three regions the magnetic field was considered ) i
two-dimensional (no cross-tail component) and the presencé Main equations
T e e oCeouTt. T o st it dervaton ofthe Harilonian of 8 chargec
is to define what results obtained for uniform .normail compo-partlcIe n dn‘fert_anF reglons of the Eafth m_agnetotan._ We

L . separate three distinct regions: the region with magnetic field
nent of the magnetic fields,,, are applicable fox-dependent

B. and what phenomena are qualitatively different SeCondreversal (referred as MFR below), and the vicinities of neu-
Wne would Iikepto obtain the cor?ditions un)c/jer which .the mix- tral lines of X- and O-types. The descriptions of the motion
of charged particles near the neutral lines of two types are

ing in the phase Space Is not too strong. _We propose a neVr\{wathematically very similar. We denote by XO the equa-
parameter that describes the extent of mixing in the system

. . tions applicable to the dynamics near either neutral line and
e e v armter depenson he magniuce B n separtecescrptions when necessay
L i ; We use the following models of the magnetic field:
magnetic field. Depending on the value of this parameter, the
jumps of the adiabatic invariants destroy original structuresg — — g~

& + Bu(x)e; (MFR),

in the distribution function or particles accelerate and leave z

the tail quickly enough to keep the distribution function rel- (1)
atively intact. And finally, we use the technique developedg _ sBiex + Biez (X0).

in Buchner and Zeleny(1986 1989; Zelenyi et al.(1990 L, Ly

to study the motion of charged particles near neutral lines ofin Eq. (1), e are the unit vectors of a Cartesian coordinate

X-andO-types in order to understand the impact of process-system in which the x-axis is directed towards the earth, the

es that occur in the vicinities of neutral lines on the overall y_axis is in the equatorial plane and is directed from dusk to

picture of particles acceleration. dawn and the z-axis is perpendicular to the equatorial plane
There are two basic phenomena that may affect the picand is directed from south to north; andL. are the charac-

ture constructed in the present paper: the time-dependengristic length scales in- andz-directions, respectively; is

perturbations (like electromagnetic waves) and the presencg parameter that is equal4el for the problem for aX -line

of the additional cross-tail component of the magnetic field.and is equal to-1 for the problem for ar-line.

The impact of the electromagnetic waves on the dynamics The electric field is induced by the solar wind and has the

of particles in the magnetotail was studied startedCat-  form

tell et al. (19995; Ma and Summer§1998. A range of pa-

rameters for which the structure obtained for stationary field E=Ee,.

configurations survive in the presence of the electromagnetitfn the magnetotailE can reach the values of order of
waves was obtained analytically Wainchtein et al(2004. 4 1 y\/m. These values df correspond to a total potential

The role of the cross-tail component of the magnetic fielddrop of order of 25kV. The latter quantity gives the upper

in the MFR region was first discussgd Karimabadi et_al. boundary for the energy that a particle can gain in the mag-
(1999 and later studied, both analytically and numerically, netosphere due to the acceleration in a dawn-dusk electric
in many papers, includinBuchner and Zelenyil991); Zhu field

and Park{1993; Chapman and Rowlandd998§; Ynner- For the MFR problem the specified configuration of the

;nan et al.(2000; Tsa;lar;s et a_1|(20(f)])r.] It was lsholwn th?th electromagnetic field is schematically shown in Fig. 1a and
or a certain range of the ratios of the typical values of the 'y o qescribed by a vector potential

components of the magnetic field the structures obtained for

two-dimensional model stay qualitatively the same even in x 72

the presence of the third component. A= (0? / By(§)d§ — B — — cEt; O) ’
The structure of the paper is as follows. In Sect. 2 we "

describe the basic models for all the configurations of elec-wherexg is an arbitrary constant (it corresponds to an ambi-

tromagnetic fields that we use the rest of the paper. In Sect. uity in choosing a vector potential)is the time and is the

0 b4
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Fig. 1. Characteristic configuration of electromagnetic figk). In the MFR region(b) in the vicinity of a neutral line o type, and(c) in
the vicinity of a neutral line oD type.

speed of light. In the specified gauge, the Hamiltonian of a
charged patrticle is

2
1 5 e x2 22 2
H=—|P P,—-|sB— —B— —CEt P-1.(3
m ~*+<) c(s T T RS

1 e [— X ZZ 2
=5 P+ (Py — (Bn/ p&)d¢ — B~ —CEf>) +P2|, In Egs. @ and @), P=(Px. Py, P;), m ande are the gen-
0 ) eralized momentum, the mass and the charge of a particle
(2) respectively. ASH does not depend onexplicitly, Py is an
integral of motion:P,=P, g=const.

where B, is some typical value of B,(x) and Introduce dimensionless variables
BX)=By(x)/By. X1 =X/ pLL;, PL=P/mv, 1 =tv/\/pLL;, h= H/mvz, (4)

Note, that the time dependence B) is just a standard pay
off for using a vector potential and the Hamiltonian form of wherev is a typical velocity of a particle angd, =cmv/eB
equations of motion (see elgandau and Lifshitz1959 and  is the Larmor radius. Introduce a scaled time:
is not related to time-dependent field reversal configurations
similar to those considered i@hapman(1994); Chapman
and Watking1996. wheree is the normalized electric field:

The configurations of electromagnetic fields in the vicinity
of X- andO-lines are shown in Figs. 1b and c, respectively. £ = cf (MFR), e = f L
The vector potential can be written as vB, vB /L.prL

Estimates of the magnitude o{based on representative val-
) ) ues of E=0.1 mV/m, B,=1nT, andv=700km/sec, see e.g.
A= (0; X _ gt _ CEr: O) ’ (Kivelson and RussellL995) yield 1/10<s_<_1/3. Note, that
2Ly 2L, although the values efare not too small, it is the product of
the normalized magnitude of the electric fieddand the pa-
and the Hamiltonian of a charged particle is rameter of the nonuniformity of the— component of the

T = ¢t + Py 0,

(X0).
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magnetic field ¢ for MFR problem, for the XO problem, For the parametar introduced in {) we havec?=p./pr,
see below) that defines the ratio of the characteristic timewhere isp,. is a characteristic minimal curvature radius of a
scales. And those products are sufficiently small. There-magnetic field line. Recall, that to defireve used some the
fore, the new time can be considered to be slow. In the new quantity B,,, which is typical value of the,, (x) for a region
variables Hamiltonian22j and @) have the form where the motion is localized. Therefore,s constant. It
) was shown byWagner et al(1979, that if «>>1, the parti-
2 A 1, 2 cles are magnetized and their motion can be described by the
h =3 Py + (" /mﬂ@)dé“ - 221—“) + Py | (MFR), (5) guiding center theoryGCT). In the magnetotail, electrons
L ' are always magnetized, except for the very close vicinity of
1[ 1 1 2 the X-line. The value of for ions strongly depends on what
h=Z|P%+ (szﬂxf - Ezf - r) + Pzzl} (X0). (6)  part of the tail we study and can be anywhere frogal in
L the distant tail tac>>1 near the earth with all the stops in
In (5) and 6), between. Like electrons, ions are magnetized3f1. Up
to the best of our knowledge, there is no complete analytical

B, picture of the dynamics it~1 (see e.g.[Pelcourt and Mar-
K=75V L:/pL (MFR), () tin, 1999 and references therein for progress in research in
that region). We are interested in the casel with other
and parameters satisfying the following conditions:
2 _ L;
AZL_X (X0). V<K<Kl ex1l

Parameters and 1, that is equivalent td, from Burkhart ~ The physical meaning of<« is thatB, (x) does not change
et al.(1991), play a crucial role in the description of the dy- t00 much over the amplitude of themotion. In particular, it

namics of charged particles. excludes from the consideration all the trajectories that come

Now let’'s consider two prob|ems Separate|y‘ too close to the earth. These inequalities are valid approx-
imately further then 1®g from the earth, wher®g is the

2.1 The Hamiltonian in MFR. radius of the earth. In this approximation there is a hierarchy
of motions. The fastest motion is on te P;) plane (i.e. the

Let us start with the MFR problem. For constaBi,  motion perpendicular to the equatorial plane), the motion on

the Hamiltonian is time-independent in the moving coordi- the (x, P,) plane (the motion towards — away from the earth)
nate framec=x—tcE /B, (de Hoffman — Teller substitution, s slower and on thér, h) (acceleration) is the slowest.
de Hoffman and Teller1950. One of the main objectives  |et us now comment on the approximations used in the
of the present paper is to define what results obtained fObresent paper. First, we neg|ected the cross-tail compo-
uniform B, (seeBiichner and Zelenyl989 Zelenyi etal,  nent of the magnetic fieldg,, which was first discussed in
1990 are applicable fox-dependenB, and what phenom-  Karimabadi et al(1990 and later studied, both analytical-
ena are qualitatively different. ly and numerically, in many papers, includiBgichner and
If B, depends orx smoothly then the Hamiltonian de- zelenyi(1991); Zhu and Park$1993; Chapman and Row-
pends smoothly on time. I8, does not change the sign, we |ands(1998; Ynnerman et al(2000); Tsalas et al(2001). It
can introduce was shown that for a certain range of the ratios of the typi-
X1 cal values of the components of the magnetic field the struc-
X2 = / B(&)dg tures obtained for two-dimensional model stay qualitatively
*1.0 the same even in the presence of the third component. One

as a new variable. Define a dimensionless parameter Way t0 takeB, into account is to modify the definition af
which Crlaracterizes the smoothness B)f(x) such that to
Bvx2)=pB(x) and(1/B8)(3B(vx2)/d(vx2))~1. Hamiltonian

— 3/4
(5) gets the form B B, 2
k=—yL;/oL 14+ | = .
B B,

1| 5.5 2 , z For realistic values o, (of order of B,) the value of«x

h = 2 Pepo(vx) + P+ | ¥ — 2 ’ (8)  would increase approximately twice, remaining smaller than
unity. However, further increase @&, does result in chaoti-
zation of ion dynamics — the way it should be foof order 1.

where For even larger values d,, the ions are magnetized and we
¥ =k(x —1). (9) could use guiding center theory instead of the quasiadiabatic
theory.
In Eqg. @) and below, we do not write subscriptsxafP, and Another nuance is that definitio){ derived inBlichner

z, P,. and Zelenyi(1989 for thick sheetsk,>p;) should be used
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Fig. 2. Characteristic phase portrait of themotion for (a)x’>0 and (b)x’<0.

with care for thin sheetsl(>p;). As was shown in later
papers $avenkov et a].1991 1997) for thin sheets the def-
inition of x becomesx=B,,/B. Hence, as it was pointed by

Chen (1992 the dynamics of ions depends on two param-
etersB, /B and L,/p;. The latter parameter contains the

energy of particles, H, and whe#— oo, L./p.—0, but the
value of stays at a fixed value=B,,/B. In this case one

Hamiltonian of thez-motion,

1P2+’Z22
2| ¢ 2]

is the same for MFR and XO and coincides with the Hamil-

he = (11)

could use a bilinear model of tail field, where particle mo- tonian considered byelenyi et al.(1990; Burkhart et al.
tion is easily integrable. However, the methods used in the(199J).

present study are applicable for either definitior oh other
words regardless of the relation betwdenandp; .

2.2 The XO Hamiltonian

The motion of charged particles in the vicinity of the neutral

lines of X- andO-types is described by Hamiltonia@)( The
typical values ofr are of orden.! and the typical values of
z are of order 1. Following/artin (1986, we assume to be

of order of 01-0.2, which does not contradict to available

Characteristic phase portraits of thenotion are shown
in Fig. 2a forx’>0 and in Fig. 2b forr’<0. The separatrix
S, in Fig. 2a is specified byzzhz,seﬁ(x’)z/z. The action

variable,
1¢pd
2 264

is equal to the normalized byr2area inside a phase curve
on the(z, P;) plane. The value of, is given bySonnerup

I

experimental data. Therefore, we have the same hierarchy o(flgm; Blichner and Zeleny1989; Burkhart et al(1991):

motions as in the MFR case. For XO we denote
1
x =522 1,
2

and Hamiltonian§) takes the form

1 2 2
2 2 z
h_—Z‘PX+PZ+(x/——2> ‘

For particles residing ne&f-line, a similar Hamiltonian was
considered irMartin (1986; Moses et al(1993 and (with-
out the electric field) iBBurkhart et al(1991).

(10)

3 The motion on the(z, P,) plane

The ratio of typical frequencies far andx-motion is of or-
der 1/k>>1 (MFR) (in the part of the tail we are interested
in) or of order ¥A>>>1 (XO). Therefore, when studying the
z-motion, we fix the values of, P,, t andh. Therefore, the

8 8
&=—¢=§@m“f®,

o (12)

fok)= (1K) K (k) + (A2 - 1) E (k) , k<1,

f(k)=l

In (12), the subscripa corresponds to the motion in the do-
main with;>h_ s, and the subscrigi corresponds to the
motion in one of two domains with; <h; s, (in what fol-
lows, we also use the notatiarandb to denote the respective
region);

forl)=3(2(1- k) kK (k7Y) + (%2 - 1) kE (k1) k> L.

K2 = % (1+ X' (2hz)*1/2) ;

E(k) and K (k) are complete elliptic integrals. It is conve-
nient to usel/, which is just a constant multiple af, in
order to avoid repeating appearances of the factdn 8
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10

Fig. 3. Phase portraits on tha’, P, 8) plane for the MFR problem(a) h=hg, phase curves are lines of constanttheUC is a semi-circle
(x’)2+ (PcB)2=2h, x'>0, of two marked trajectories;>hz; (b) I,=I, o, phase curves are lines of constanthe UC is a straight line

x'= (17)%3, of two marked trajectories, 1 <. .

4 The motion on the(x, P,) plane.

The action variablel, is the adiabatic invariant of the-
motion. Substitutingi.=h (I, x’) into (8) or (10), in other
words, averaging the equations of motion oy@scillations,
we obtain the Hamiltonian of the-motion possessing—%]de-
grees of freedom:

h= %szﬂz (x) + he (LX) (MFR),
(13)

h= %PXZ +h, (I,x) (XO0).
The slow time,r, appears in13) via the dependence af
on . Note, that in {3) the functionk, is the same for the
MFR and XO problems. But as depends or and< differ-
ently for two problems, properties of themotion are also
different.

We start our description of the motion with the construc-
tion of phase portraits.

4.1 Phase portraits for MFR.

There are two ways to plot a phase portrait on te P, 8)

When a phase point moving along a phase curve on the
(x’, P,B) plane arrives af, the corresponding phase curve
of thez-motion resides ol;. In Fig. 3a theJC has the form

of a semi-circle:

(<) + (Pp)? =20, x>0,
and it is a straight line in Fig. 3b:

X = (1),
The fixed pointC is the point of maximum off (k). At the
maximumk=k, ~ 0.91 andf (k.) =f. ~ 1.16. Hence

xl = (2n)~12 (2k§ _ 1) ~047"Y2inFig.3a  (14)

%7 in Fig. 3h

x= (1/£)7° (262 - 1) ~ 0.59(1) (15)

In Fig. 3a the outer orbits correspond to the smaller values of
I, while the inner orbits correspond to the larger values of
1}, with I/ reaching its maximum value df .= f. (21)¥*
atC. Similarly, in Fig. 3b the outer orbits correspond to the
larger values of:, while the inner orbits correspond to the
smaller values of. On both phase portraits there is a unique

curvel that is tangent t&. It divides the phase plane into

plane. One can either sethg and plot phase curves as lines

of cl_onstar}tlz (Fig.;a)l,:_or S3ebfz=_ll_zh,0 ar:id plot phasef Eur\r/]esf I". All the trajectories residing in the regidhdo not cross
as lines o consta} (Fig. 3b). Jhe a vantages of both o S, and all the trajectories residing in the regierosss.
these methods will become quite clear later (see Sect. 5 be-

low). Every point on the(x’, ;) plane corresponds to a 4.2 Phase portraits in the vicinity of aftline
unigue closed phase curve on fae P,) phase plane.

Figure 3a is very similar to what is shownBuchner and  As Hamiltonian 6) depends on the parameterthe phase
Zelenyi(1989. The difference is that in Fig. 3a the vertical portraits of thex-motion in the vicinities of neutral lines of
axis is P, instead ofP,. The very similarity proves that X- and O-types are significantly different. The behaviour
by appropriate transformation of variables the problem withof particles in the vicinity of arX-line was studied in sev-
varying B, (x) can be reduced on some time scale to that oferal papers (see e.flartin, 1986 Burkhart et al. 1991). In
Buchner and Zeleny(1989. This fact may not be immedi- Burkhart et al.(1991) the phase portraits were numerically
ately obvious from the original Hamiltonian structug.( constructed as surface of sections of trajectories of the orig-

The special curveS (an uncertainty curve JC, seeWis- inal system. Contrarly to that, the phase portraits presented
dom, 1985 corresponds to the separatrix of thenotion. below are constructed purely analytically using the method

two regions: the regioi outsidel" and the regiorB within
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Fig. 4. Phase portraits on th@.x’, Py) plane for thex-line problem,Z;=I, o, phase curves are lines of constant(a) r <— (12)2/3, (b)
- (IZ,)Z/S <T<7¢, (€) e <7 <0, (d) T>0.

of averaging and the perturbation theory. As a result, wewherex/. is given by (5). TheUC consists of two straight
were able to describe the structure of phase portraits of xlines, S+, that are parallel to thé,-axis and are separated
motion in more details. In particular, we found that there from it by a distance
were not three, but four qualitatively different types of the
phase portraits depending on the values of the slow variables 2/3
/ o, = /2(=7 = (1)*°).

andl (see below).

We construct phase portraits for th&0 problem in the
same way the phase portrait in Fig. 3b was constructed: od he only stationary point is still at the origin. The phase
the whole phase plane=1. o and the phase curves are lines curver’, that is tangent t&JC, divides the phase plane into
of constant. two regions:A andB.

Depending on the value af, there are four qualitative-
ly different types of phase portraits for the particles residing3)- Te<t <0.
near anx-line.

A typical phase portrait is shown in Fig. 4c. A&z, the
1). —oco<T<— (12)2/3 elliptic stationary pointO at the origin undergoes a bifurca-
tion: the pointO becomes hyperbolic and there are two new

A typical phase portrait is shown in Fig. 4a. For these val- €lliptic stationary pointsC., located at

ues oft, there is ndJC. Particles do not cross the equatorial

(z=0) plane. Hence, they reside within the regBmn the (Ax)e = £V 2(T — ).

(z, P;) phase plane . The only stationary point is at the ori-

gin. There is a new special curve on the phase portrait — the
separatrix of the--motion,o. The curver separates the tra-

2). — (12)2/3 <T<1, jectories that are localized on one side of ftidine (those

insideo) from those that move from side to side of ti¥e

A typical phase portrait is shown in Fig. 4b. The critical line within one period of the-motion.

valuer,. is

4). t>0.
Te = —x/, (16)

c
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A typical phase portrait is shown in Fig. 4d. A0, o is 4.5 Motion in the regio\
tangent taS+. and for larger values aof, crosses it. The curve
I’ now consists of two separate cuniés and, therefore, the In the regiorA, the motion is more Complicated. The value of
regionB consists of two separate domaitis, andB_, that  /; is conserved only far fron§ and undergoes a jump every

are bounded by, andI'_, respectively. time a phase point crossé&s The asymptotic formulas for
the jump of adiabatic invariant on a separatrix were obtained
4.3 Phase portraits in the vicinity of ap-line. by Timofeev (197§ for particular case of a pendulum in a

slowly varying gravity field, byNeishtadt(1986 and Cary
Depending on the value afthere are three qualitatively dif- €t al- (1989 for systems with one degree of freedom plus

ferent types of phase portraits. slowly varying parameter and Hyeishtadt(1987 for sys-
tems with two degrees of freedom, one corresponding to the
1). —co<r<— (11/)2/3_ fast motion and the other corresponding to the slow motion.

This theory was first applied to magnetospheric problems by

A typical phase portrait is shown in Fig. 5a. TH€ has Buchner and Zeleny(1989. We have

the form of two straight lines., that are parallel to th&, -

4 5 .
axis and are separated from it by a distance Al =1lpa = 2L:p ¥ F—kB"PxIn(28iN®) (MFR),

(18)
1
(x)s =,/2 (—r - (12)2/3). ~F_10) PIn(2sin®)  (X0).
There are three fixed point& (hyperbolic) at the originand " (18), 1.« and/; ;, are the values of, in the domains:
C. (elliptic) at andb, respectively, the minus and plus signs correspond to
passages frorb to a and froma to b, respectively (see the
Ox), = £V2(—1 + 1) discussion below Eqg.1@) in Sect. 3). The phas® char-

acterizes a separatrix crossing and it depends not only on
23 and P, but onz and P, as well. The value o® is very sensi-
2). - (12’,) <T<T. tive to small perturbations of the initial conditions and can be
treated as a random variable uniformly distributed @nr).
A typical phase portrait is shown in Fig. 5b. For these val- |t is shown byNeishtadt(1987), that in the limitx —0, for
ues ofz, there is naUC, hence, the motion of particles on multiple crossings\ 7, can be treated as a random value with
the entire phase plane is regular outside of a small domain i zero mean and dispersion of order? (MFR) or (due to

the vicinity of . normalizing conditions.x~1) of order~x? (XO). Because
of these jumps/, was referred to as a quasi-adiabatic invari-
3). .<rt. ant byBiichner and Zelenyil989.

Because of the jumps if no unique value of, can be
A typical phase portrait is shown in Fig. 5c. At=t, assigned to a whole orbit of themotion. (Moreover, in the
the hyperbolic fixed poin© and the elliptic fixed point€,. ~ exact system projections of phase curves orithe,) phase
merge giving rise to a single elliptic fixed point at the origin. plane are not even closed curves —while in the averaged sys-
tem the trajectories are closed.) Nevertheless, while a parti-
4.4 Motion in the regiorB cle moves far from the uncertainty curve the valud ofe-
mains nearly constant (with accuracy of ordesee the dis-
In both (MFR and XO) problems the behaviour of particles cussion in the previous subsection) and can be used to specify
residing in the regionA andB is drastically different. segments of trajectories between consecutive crossings of the
In the regiorB, both in MFR and XO problems, the phase gncertainty curve. Recall, that the characteristic values of the
space is filled by the invariant tori up to a residue of expo-1UmPS’ magnitude are small (of ordesc). Therefore, at ev-
nentially small measure (of order ofexp(—C/./k) where €Y single crossing the vqlue bfdoes not change much. Itis
C is some constant) and the value of adiabatic invariant, the accumulation of the jumps (see Sect. 5 below) that leads
is conserved eternally: on infinite time interval it has only 0 chaotic dynamics and mixing in the phase space. Despite
oscillations of ordek (the Arnold theorem about perpetual 1€ jumps, the notion of, was used to characterize orbits

adiabatic invariance, see emnold et al, 19089. We can Py many different authors (see eiarimabadi et al.199q
introduce the second action variable Burkhart et al, 1991, Moses et a.1993. In particular, the

value ofI, characterizes the motion in a sense that it foretells
1 if a given trajectory (for frozen values of the slow variables)
Le= o % Prdx, 17 intersects the separatrix or not. There exists a critical value
of I, (seeBuchner and Zelenyil989 and Subsects. 4.1—
where the integral is taken over a closed phase trajectory o4.3) such that if at any point along a trajectdkyis larger
the (x, Py) plane. (smaller) then that critical value, the trajectory does (does
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Fig. 5. Phase portraits on thé.x’, P,) plane for theO-line problem,/,=I, o, phase curves are lines of constant(a) t <— (11/)2/3, (b)
— (12)2/3 <1<7, (C) T>T.

not) intersect the separatrix. Jumpslofcan not movel,
across the critical value. Besides that, the current valuge of

such important properties of themotion as the period and 22 , k2 0 (k) 2% (IZ/)—4/3 A3 —1 12

the distance of the closest approach to the earth (the locatioh = 06711/ 2 5 N28 123

of the rightmost point in Fig. 3). iy (262 = 1) 47 (1) 7" £ (k)
Despite the jumps of. in the regionA, we can formally (19)

introduce the actioi, as the normalized by:2area within a
curveh=const,l,=const on the&x, P;) plane.l, undergoes Where

jumps, that are synchronized with the jumpd of KK (k). k<1,

Q(k):{K(k—l),k>1;

ol
Alx ~ B_IAIZ

. and f (k) was defined inX2). The values o1, k2 anda

depend on whether a particle moves in the vicinityXefor

) . O-line and on the position of a phase curve on the phase
As the jumps ofl, are small,Al,~k, the corresponding plane.

jumps of/, are also small. Hence, although even the origi-* o particles in the vicinity of ai -line k» is given by the

pal adiabatic invariant],, is not ex_actly_cqnser_ved,_ We can conditionsko>k, and

introduce and use the second adiabatic invariant in the case

When the aggregate changdins small (see Sect. 5.for'more' 2hfY3 (kp) = (12)4/3 _ (20)

details). Therefore/, can also be called a quasi-adiabatic

invariant and plays the role of the longitudinal invariant in The values ofk; and« depend on whether a phase curve

GCT. intersects the line=0 or not. If the whole curve is on one
For the XO problem we can obtain the explicit formula for Side of linex=0 thenk, is given by €0) and the condition

I, that is valid in the regiorA as well as in the regioB. ~ k1<kc; in this casex=1. If a phase curve intersects line the

The similar formula for the MFR problem fa&,=constwas  *=0 thena=2 andk is given by

derived byZelenyi et al.(1990. It follows from (12) and 23 (o o

(17), that —t = (I/f k) (28 - 1).



110 D. L. Vainchtein et al.: Quasiadiabatic description

For a particle in the vicinity of a®-line k1 is given by the The experimental observations show (ségyganenko

conditionsk; <k. and (1987) that, on averagey8/ox>0 (i.e. B, (x) increases to-
wards the earth). Hence, the energy increases with time and

213 (ky) = (12/,)4/3~ (21)  particles move from the regioB to the regionA. The time

tr that a particle spends in the regiBn(in other words, the

If the whole curve is on one side of the line=0 thenk; is time before a particle reach&sin Fig. 3b) is given by
given by 1) and the conditiorto>k.; in this casexr=1. If a

phase curve intersects line=0 thenoe=2 andk; is given by I (ho,to) = I (hr, tr),
= (Iz//f (k2))2/3 (2,(% _ 1) ) wherehg is the initial energy of the particle and
1, .43
hr = 5 (L)

5 Long-time dynamics: regular transport and mixing _ .
is the energy corresponding ko

The earth magnetotail is an open system. Charged particles )
from the solar wind enter in the far region and then accelerate®-2 RegiorA
and drift towards the earth. In the present section we discus% . . . L
he motion of particles in the regiof is affected by two

the properties of particles’ dynamics on the time scales of the h (1) the drif der the infl f
life time of particles in the magnetotail, which for a typical phenomena: (1) the drift over energy under the influence o

particle is much longer then the period of thenotion. the electri(? field anq (2) the jumps of adiabgtic !nvariants.
After averaging over the-motion, we can study the mo- The behavior of particles depends on the relative importance

tion on the(z, k) plane (i.e. the acceleration of the particles). of th_ese_ phenomena.

For givenZ. and I,, every point on ther, i) plane corre- Wiggins (1988 proved the presence of Smale horseshoes

sponds to the entire phase curve on theP,) plane. in domains with separatrix crossings, which, in turn, implies

In the absence of the electric field the particles would stay_the existence of chaotic trajectories. The accumulation of the

in the region where they originally resided ¢r B) forever. Jumps of adiabatic invariant; cou!d produce c'haotic dynam-

As it was discussed before, the jumps of adiabatic invariant ¢s, a phenomena called ad_labatlp chaowviggins (1988. .

cannot move particles from the regiéro the regiorB (re- or the_ problem under con5|dergt|on the presence of chaotic
call, the particle in the regioB do not cross the separatrix). It dynamics was demonstrated Bi(chner and Zelenyl989

is the presence of the electric field combined with the Iongi-ze.Ienyl et ".’“’ 19.99' The properties of the long-term eve-
tudinal variations of the magnetic field that causes the energ)I)Jtlon_Of ad|abat|c'|n\./ar|ants depend on yvhether consecutive
drift and the particles move from the regi@nto the region crossings are statistically d_ep_end_ent or independent.

A, or from the region to the regiorB. The direction of the In general case, the statistical independence follows from

drift depends on the location of a particle in the magnetotail.the divergence of phgses along trajectories, which, in turn,
depends on the relation between the values of the pBase

5.1 RegiorB (see Eq18) at two successive separatrix crossings. Denote
the respective values ¢ as®; and®,. A small variation
While a particle resides in the regid) the values of both  §®3 of ®; produces the variation of the jump valueofoy
adiabatic invariantsl, and/,, are conserved up to the oscil- a quantity of ordekx §®;. As a result, the phage, changes
lations of ordek (see Subsect. 4.4). The motion of a particle by the quantityy®>~C (1/«x)x §©1=C50O1. The coefficient

on the(z, h) plane is described by conservation laws C, that is proportional t@ 7, /31, defines the divergence of
trajectories. IfC is large trajectories diverge fast: a small
I, = const I, = const (22) change in the resonance phase before one crossing generally

) o results in a big change in the value of the resonance phase of
Let us (/:0n5|der the drift in energy for the MFR problem. e neyt crossing. In that case the jumps of adiabatic invari-
On the (', Pxf) phase plane in Fig. 3b, the shape of the 5 ot o successive crossings can be considered as inde-

phase curves does not change with time, each trajectory b‘?)'endent. On the other hand, small valuegdéad to nearly

ing specified by a value of energy. Consequently, as the enetsyiapatic motion.

ay drifts, parti_cle Qrift from one phase_curve to another. The  \with consecutive jumps being independent, evolution of
direction of this drift depends on the signafi/dr averaged e adiabatic invariant due to multiple separatrix crossings

over thex-motion: can be treated as a random walk with a step of order of
dh  oh , B without a preferred direction. Such a diffusion of adiabatic
iyl 8V< xﬂm>, (23)  invariants is observed in (nearly all) numeric simulations of
various systems. Diffusion time can be estimated as a char-
where brackets denote the averaging overitraotion. It acteristic slow period divided by a characteristic mean square
follows from (23), that the particle’s acceleration is affected value of the jump. Thus estimated, diffusion time was shown
only by large-scale variations @f(vx) with a typical length  to be in a good agreement with numerical simulations (see
scale comparable with the amplitudexebscillations. Bruhwiler and Cary1989.
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The assumption of statistical independence is crucial for Introduce a parameter
chaotization: when phases on the successive crossings are re-
lated a regular motion can emergéary and Skodj€1989
showed that for some initial conditions consecutive crossings
are statistically dependent. It was shownBigkens and Es-
cande(199]) andNeishtadt et al(1997) that the islands of In MFR, the value off,., is of order of~1/«. A character-
stability, albeit being of a small measure, do exist inside largeistic size of jumps of the adiabatic invariant on the separatrix
chaotic sea. A similar phenomenon of statistical dependences of order~«. Therefore T~k 3.
of consecutive jumps in a model of the roll convection was  The lifetime of particles is defined by the acceleration due
discussed irtin et al. (2002. A somewhat different phe-  to the electric field and depends on the magnitude of the con-
nomenon appears1f; is (approximately) independent 8f.  stant solar wind-induced electric field and non-uniformity of
In this caseéd T, /9 I, approximately vanishes and consecutive magnetic field. A typical rate of change of energy is of order
phases become correlated. In particular, consecutive jumpsf ¢y (see Eq23). Hence, we havé; ~(sv) ! and we arrive
may cancel each other producing a phenomenon called ergt
ergy resonances or beamlets (see €lgen 1992 Ashour-

Abdalla et al, 1993, that is well known in magnetospher- K3

ic applications, but involves only a relatively small number = Ve

of particles in the process of the convection from the dis-

tant tail to the earth. For nearby trajectories the net effect ofSimilarly, in XO T, ~¢ 1, Tj ~ 2~3 and
jumps (averaged for all the crossings during one period of the

x-motion), although not exactly vanishing, is much smaller 23

than in a general case. Consequently, the beamlet particles =
behave as if they are in an adiabatic regime. Itis important to

note that the beamlets are occur only for not too small values |f ;, «1, drift dominates, jumps are small perturbations and

of . In the formal limit ofk —0 the beamlets disappear. We  he mixing is negligible. In the opposite cage1, the mix-

return to the topic of the beamlets in the end of the currenting is strong: particles cross the separatrix sufficient number

section where we discuss the rate of mixing. of times for adiabatic invariant cover the whole admissible
In the pure parabolic field model the particles stay in the gomain. A similar observation was made (based on numeri-

magnetotail forever. In that case, the mixing is complete anctg simulations) byKarimabadi et al(1990. Thereforej is

all the structures in the distribution functions of the chaotic 3 measure of mixing in the system.

region that were present when particles entered the magneto- N one can see the advantages of the two types of phase

tail are washed out. On the other hand, in real magnespheriﬁortraitS on thex’, P,) plane. Ify<1, I, remains approxi-

configurations the particles spend in the magnetotail only gy 5te)y constant and, like in the regiinparticles drift from
finite time, and the number of jumps may not be sufficient yne phase curve to another in Fig. 3a. On the other hand,

for complete mixing. if 7>>1, particles jump from one phase curve to another in

Introdluce the characteristic .time .of'mixi.anj, as a time Fig. 3b remaining on approximately the same energy level.
over which the value of the adiabatic invariant changes by a Note, that ifD is defined by 24),  is an averaged charac-
guantity of order 1 (see below). As the jumps of the adiabatic ' yxs), 9

invariant are localized near the uncertainty cutye. 7 can teristics, that is the same for all the phase space. In order to
be Written as y " describe the evolution of coherent structures, we can consid-

ern as a function of (say) the energy The most prominent
Tj ~ Tmi’ consequence of the dependence oh / is a possibility for
‘ D consecutive jumps to be correlated. To include the correla-
whereT),, is a typical time between consecutive crossingstion in the diffusion coefficient we can redefidiebased on
of UC and is of order of the period of theemotion. D is the average square of the magnitude of a total jump of the
the diffusion coefficient and is of order of the average squareadiabatic invariant in one period of themotion:
of the magnitude of a jump of the adiabatic invariant at one

crossing: D(h) ~ <(A21z)2> /2,
D~ <(AIZ)2>. (24)

=7

If the consecutive crossings are statistically independent,
The extent of mixing in the system depends on the relationA»/,, that is a sum of two changes &f during one peri-
betweenT; and Ty, that is a characteristic lifetime of par- od of thex-motion, is of order of the variation ok 7, at one
ticles in the magnetotail. IT; is larger thenTy, then mix-  crossing. However, if for a certain value lof=h,, the jumps

ing is small everywhere in the phase space and distributiorare correlated, like in the case of beamlets, when they cancel
functions are transported towards the earth relatively intacteach otherAsl, (and, correspondinglyD (4;)) may go all
Contrarily, if T; is less therf7, then mixing is importantand  the way to zero. In this casggoes to 0 and at the energy
distribution functions are homogenized. level h=h,; the dynamics is adiabatic.
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6 Orbits with small 7, in MFR describes variations ¢f over anx-orbit. The relative impor-
tance of the second term i@8) is given by a parameter
If the cumulative effect of the jumps of the adiabatic invariant

is small (< 1), then the mixing is weak in the whole domain y = §Kh_2
and Eq. 22) specify the acceleration rate. In the general case, 2k IZ2 '
the exact solutions cannot be obtained explicitly.

These solutions can be simplified in a particular case
I, <1, that corresponds to very long orbits with far reflect- 42152 1
ing points (a reflecting point being the rightmost point on a L~ Emﬁ
phase curve in Fig. 3a, see also Sect. 4). However, one must ¢
keep in mind that the separation of theandz-motions is  Using 2) we obtain the acceleration rate,

If y<«1 the second term is small and

valid only in the region wherg~1 and, therefore, we can B~ g5 (29)
not use the considerations below to describe the motion of ’
the particles that come too close to the earth. that confirms the result obtained Bglenyi et al(1990. Ex-
For largex’ (see9) we can linearize Hamiltoniar8f near  perimental results yield that the conditipn«1 is satisfied
z20= % v/2x'. Introducingz=z0+7, wherez<zo, we get for the particles withl,<«1 beyond 5@ from the Earth.
1 1 Note, that.ifyzl, (29).is qot va}lid.'
h=3 (prﬂZ + P24 2x’32) — prZﬂZ Y h,. The period ofx-oscillations is given by

Xmax Xmax ] h3/2 11 d
[ [ L 1 e
X Xmin PXIB KIZ 0:3 1_5

The result is a harmonic oscillator with a variable frequency T, = 2 =
X
Recall that the mixing parameter, is proportional to the pe-

o (x")=+/2x’ and, therefore,

min

h, = L (pzz + Zzwz(x/)) = Lo®). (25)  riod of thex-motion, T;. Taking into account that the char-
2 acteristic values of are of order 1, we get that for smdl,
It follows from (17) and @5), that n has the form
3
Xfnax 1 1 ~ 2K
I~—/ de+/ma—/ 2h — I,~/8x’ dx’, 7 Ive (30)
X o B«

(26) It follows from (30), that for the particles with small, the
mixing is less prominent then for the particles with~1 as
where  x’ and x/ are given by the the particles with/,«1 cross the separatrix fewer times be-
min max
condition P, (x=xminmad=0. One can see in Fig. 3a that fore being carried out of the magnetotail. The similar effect

the first term in £6) is much smaller then the second one and (that for shorter trajectories the rate of diffusion is larger) was
thus can be neglected. Introduce a new variable observed byKarimabadi et al(1990).

£ =~2x'I/h.

In terms ofé, (26) can be written as

7 Acceleration of particles in XO

Again, consider the casgk1 (small jumps ofl;). Conser-

vation laws @2) are valid on the whole phase plane. The
fhs/z 11 motion on the (time, energy) phase plane can be described

I ~ / e NS (27) using a single phase portrait. Apply a change of variables

T KIZ
x=x(1), n=n)*"?, c=7@)*°.

In (27) we substitutednax=1. Integrating 27) by parts and

taking into account that
ing “ e =T (1) he =T (1)

2
ap = 148 h_2 £ and apl V. Note, that the value df does not change under such a change
d§  « dx I dx p of variables. Introduce a new adiabatic invariant

we get J=1/I.

X

5/2 2
. 2v2h {21 vh f ((1—5)3/2—:(1—5)5/2>;dg] It follows from (19), that

T3 KI2 |58 «I? _ 12
(28) J =« 2v2 / 0 ®) 2 1% (k) — 1 dk
2k | — (K2 —1) =T 23 (k) ‘

The first term in the square brackets &8 depends on the

average over am-oscillation value of8. The second term (31)
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Fig. 6. Phase portraits on th&, &) plane for (a) theX-line problem, (b) theD-line problem. Phase curves are lines of consfant

On the(T, D plane phase curves are lines of constanhe
shape of curves does not depend/gn

It follows from (31), that the lowest possible value bfis

h©® = (1/£.)%3, although phase curves do not fill the entire @ __3J/07 _ 1

min
L= (0 - .
domamh>hfni)n. The minimum possible energymin as a

function ofT is given by

_ Emin @, T <Te
hmin = —©

DT> T,
for particles moving in the vicinity of aiX-line and

E(O)

min»

Bl

_ < Te,
Nmin =
hmin(T), T > T,

for particles moving in the vicinity of arO-line, where
hmin (T) andT, (see Eqsl5and16) are given by

27)"° f (ki) = 1,
%2, —1=—7(20) 2,
1

- F (32)

Te =

(2k§ - 1) ~ —0.59.

In the vicinity of anX-line, Eqs. 82) define fort>7, on the
(7. h) plane curve;, that corresponds te on the(x’, Px)
plane. In the vicinity of anD-line, Egs. 82) definegs;, for
T<T.. In both cases, abovg, particles cross the=0 plane
twice within each period of the-motion. Belowo;, parti-
cles move in eithex >0 or x <0 domain. The horizontal line
Sp:2hs=1 corresponds to theC.

It follows from J=const, that

aJ aJ —
0T )

and for the curves that do not cross the0 plane we obtain

kp
/ (2h F4B3 (k) - 1) W(k)dk
k

1

- =55k
T b 2 / g (_ <2k2_ 1) _7 2B (k))lll(k)dk
ky

(33)

)

where

k 20 F43 (k) — 1) 2
‘p(k)zfgﬁ((i) ( 2f o 33 72 > 0
(=s (22 — 1) + T 23 (K)))

It follows from (33), that in the vicinity of anX-line the en-
ergy of particles which do not cross the-0 plane increases
and the particles initially residing in the regi@drift to the
regionA. Therefore, the motion of particles in the vicinity of
an X-line becomes more and more chaotic with time. The
phase portrait on th@, ?) plane (in other words, solutions
of J=const) is shown in Fig. 6a.

On the other hand, in the vicinity of afi-line the energy
of particles which do not cross=0 decreases and the par-
ticles drift from the regiorA to the regionB. Therefore the
motion of particles in the vicinity of a®-line becomes more
and more regular. The phase portrait is shown in Fig. 6b.

The energy of the particles that cross the0 plane may
increase as well as decrease. It can be shown numerically
that for anyJ there is a value of ; such thadh/dT <0 for
T<7; anddh/dT>0forT>7;.

8 Conclusions

We considered the motion of charged particles in three dif-
ferent regions of the earth magnetotail: in the region with
magnetic field reversal and in the vicinities of neutral line of
X-and O-types. The presence of small parameters (ratio of
characteristic length scales in and perpendicular to the equa-
torial plane and the smallness of the electric field) allows us
to introduce the hierarchy of motions.
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We introduced a parameter that plays the role of a measur8urkhart, G., Martin, R., Dusenbery, P., and Speiser, T.: Neutral
of mixing in the system. This parameter describes the relative line chaos and phase space structure, Geophys. Res. Lett., 18,
importance of the diffusion of adiabatic invariants on a time ~ 1591-1594, 1991.
scale, defined by the acceleration of particles induced by th&ary J. and Skodje, R.: Phase change between separatrix crossings,

electric field. Depending on the value of this parameter, the  Physica D, 36, 287-316, 1989.

. . . . - Cary, J., Escande, D., and Tennyson, J.: Adiabatic invariant change
jumps of the adiabatic invariants destroy original structures due to separatrix crossing, Phys. Rev., A, 34, 42564275, 1986.

n the.dISt!’IbutIOI’l function or partlcle_s gcce}erate and IeaVeCatteII, C., Roth, I., and Linton, M.: The effects of low frequency
th? tail gwckly enough tq keep the (_dlstrlbutlon funCt_'On r?l' waves on ion trajectories in the Earth’s magnetotail, Geophys.
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invariant we obtained the equations that govern the accelerchapman, S.: Properties of single-particle dynamics in a parabol-
ation of particles. Using this parameter we showed that for ic magnetic reversal with general time dependence, J. Geophys.
particles on long elongated trajectories (small valueg, pf Res., 99, 5977-5985, 1994,
mixing is less prominent than for the rest of the particles.  Chapman, S. and Rowlands, G.: Are particles detrapped by constant
Our approach illustrates the usefulness of such quantities By in static magnetic reversals?, J. Geophys. Res., 103, 4597-
as quasi-adiabatic invariants (even not perfectly conserved% 4603, 1998. _ _ _
for the description of particles’ motion in the limit when usu- hapman, S. and Watkins, N.: Scaling parameters and parametric
al guiding center theory breaks down. The developed ap- coordinates in static and time dependent magnetic reversals, Adv.
proach may be useful not only for description of the dynam- Space Res., 18, 285-289, 1996.
. . . . . Chen, J.: Nonlinear dynamics of charged particles in the magneto-
ics of the particles in the magnetotail, but also in other open tail, J. Geophys. Res., 97, 15 011-15 050, 1992.
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