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Abstract. The aim of this paper is to study the effects of a
corrugated wall on the behaviour of propagating rays. Differ-
ent types of corrugation are considered, using different dis-
tributions of the corrugation heights: white Gaussian, power
law, self-affine perturbation. In phase space, a prevalent
chaotic behaviour of rays, and the presence of a lot of caus-
tics, are observed. These results entail that the KAM theorem
is not fulfilled.

1 Introduction

Ray theory has been successfully used in many branches of
physics (optics, geophysics and any field where wave prop-
agation is relevant) and it can explain many experimental
observations, like travel time curves, wave amplitudes, in-
terference, etc. A very interesting phenomenon, for which
ray theory has found application, is the formation of waveg-
uide channels, along which the waves propagate at very long
distances. This occurs when the waves propagate without
significant diffractive losses, and has been studied for the
light radiation in optical fibres (Unger, 1977), short radio
waves in atmosphere (Gurevich and Tsedilina, 1975), low
frequency sound waves in the ocean (Keller and Papadakis,
1977). Among many factors affecting this behaviour, the
most investigated is the presence of regular inhomogeneities
along the wave propagation direction. A periodic perturba-
tion of the waveguide has been studied for the ionosphere
(Gurevich and Tsedilina, 1975), internal waves in the ocean
(Keller and Papadakis, 1977), and seismic wave propaga-
tion in the Earth’s crust (Keers et al., 1996). Chaotic be-
haviour inferred from propagation has also been analyzed
(Palmer et al., 1988; Tappert et al., 1991; Abdullaev, 1991).
Ray theory fails in very heterogeneous media, meaning that
when rays cross, a caustic results, i.e. a subdivision of the
space in different regions of multipathing, not allowing an
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easy analytic treatment. Even when waveguides with smooth
heterogeneities are considered, a chaotic behaviour can ap-
pear (Keers et al., 1997). Similar results can also be ob-
tained by varying the refraction index along the transverse
coordinate (Abdullaev, 1991). Another group of strongly
chaotic systems, which makes use of ray theory, can be con-
structed from certain classes of “billiard” problems (Buni-
movic, 1979; Sinai, 1970).

Here, we study the behaviour of ray propagation in a
waveguide with an irregular interface, attempting to repro-
duce the wave propagation in real randomly corrugated Earth
layers. In particular, we analyze three types of corrugation:
a Gaussian white noise, a power law distribution and a self-
affine corrugation.

The paper is organized as follows: in Sect.2 we mention
the general features of Hamiltonian chaos; in Sect.3 we il-
lustrate the general strategy of ray propagation in the waveg-
uide; Sect.3.1illustrates the results related to Gaussian white
noise, whereas the results for power law distribution and self-
affine profiles are shown in Sects.3.2 and3.3, respectively.
In Sect.4 we shall draw our conclusions.

2 Hamiltonian chaos

Ray propagation in a waveguide is regarded as a Hamiltonian
problem with periodic solutions. However, even by perturb-
ing the Hamiltonian with a periodic potential, as is, for ex-
ample,Abdullaev(1991), chaotic zones in the phase space
are obtained. Periodic behaviour in the phase space is eas-
ily recognizable in the case of a few degrees of freedom.
Namely, we have ellipsoidal shaped trajectories in the two-
dimensional case. More generally, the dynamics will evolve
on an N-dimensional torus and we shall observe a quasi-
periodic behaviour. Note that quasi-periodicity is described
by the relationm×ω=0, wherem is a vector of integers (ex-
cept the trivial vector of components equal to zero) andω is
the vector of the angular velocities. In this case, if one ran-
domly takes a point in the phase space, its dynamics evolves
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Fig. 1. Smoothly perturbed harmonic oscillator map.

on a torus which will completely be filled by the N-frequency
oscillations of the system.

2.1 KAM theorem

What happens when we perturb the Hamiltonian of an inte-
grable system? Let us consider the following Hamiltonian

H(p, q) : H(p, q) = H0(p, q) + εH1(p, q) , (1)

where H0 is unperturbed and H1 is the perturbation. We ex-
pect that, for smallε, orbits initially approximate those of
the integrable system and stay very close to the unperturbed
N-tori for some time. However, a given orbit when followed
for enough time could ergodically wander anywhere on the
energy surface. It should not be surprising that the true sit-
uation lies somewhere between the two extremes. Without
going into the details of the KAM theorem, we can say that
it essentially states that, under very general conditions and
for small values ofε, “most” (in the sense of the Lebesgue
measure in the phase space) of the unperturbed tori survive.
More formally, this means that if we have a torus of the un-
perturbed system with frequency vectorω0, there exists a
torus of the perturbed system which has a frequency vector
ω(ε)=k(ε)ω0, wherek(ε)→1 asε→0 (Ott, 1993). As a final
observation, we note that the so-called resonant tori (the ones
for which m×ω0=0) will be destroyed by the perturbation
for anyε>0. According to the KAM theorem, for small val-
ues ofε, the perturbed system phase space volume (Lebesgue
measure) not occupied by the surviving tori is small and ap-
proaches zero asε approaches zero.

2.2 Fractality in phase space

The resonant tori are dense, so we expect that in the proxim-
ity of the surviving tori of the perturbed system there will be
regions, as small as desiderated, occupied by chaotic orbits,
as well as new tori created by perturbation. The set in phase
space occupied by surviving perturbed tori is called a fat frac-
tal (Ott, 1993). For completeness, we would like to mention

that some Hamiltonian systems show a phase space charac-
terized by chaotic behavior, not because they lack integrabil-
ity, but because the Hamiltonian has singularities (points in
which it is not differentiable). These points arise, for exam-
ple, in the models of collisions of rigid billiard balls. No-
tice that a billiard is a two-dimensional planar domain in
which a point particle moves with constant velocity, along
straight line orbits between specular bounces (angle of in-
cidence = angle of reflection) from the domain boundaries
(Ott, 1993; Hilborn, 1994). Some examples of Hamiltonian
perturbed systems are the standard map (Ott, 1993), nontur-
bulent mixing in fluids (Aref, 1984; Chaiken et al., 1986;
Feingold et al., 1988), the trajectories of magnetic field lines
in plasma (Rosenbluth et al., 1966; Finn, 1975; Hanson and
Cary, 1984) and many others. The phase space of a perturbed
periodic system is shown in Fig.1, where a smoothly per-
turbed harmonic oscillator is presented.

3 Ray propagation

In most cases of the quoted literature, including the papers
concerning seismic rays, the Hamiltonian system (the ray
propagating in a waveguide or an Earth layer) has been pe-
riodically perturbed (resonant waveguide). The ray propaga-
tion in a resonant waveguide can be investigated analytically
or numerically, providing interesting results in the field of
Hamiltonian chaos (for a detailed and exhaustive discussion,
seeAbdullaev, 1992).

For real systems a periodic perturbation could be an over-
simplification. A more realistic description of the Earth’s
structure should include the real topography of the Earth’s
landscapes. Here we try to reproduce the real Earth struc-
tures by means of randomly corrugated interfaces, which
should simulate the true topography of the Earth. In order
to investigate the influence of a complex corrugation of the
waveguide, we perform a numeric parametric study perturb-
ing the Hamiltonian with different noises. Practically, this
corresponds to adding an effective potential due to the corru-
gated interface. Thus, in our simulations, the noise is added
to an initially flat interface, which, as a result, will be irregu-
larly corrugated, perturbing the ray motion in a complex way
depending on the chosen noise. Notice that the physical di-
mension of the layer corrugation should be at least equal to
the wavelength of the propagated wave, in order to make the
scattering possible. The average velocity of the P waves in
the Earth’s crust is≈3.5 km−1, typical frequencies of seis-
mic waves are in the range 1–30 Hz; this implies that their
wavelength is in the range 3.5–120 km. Thus, the largest
wavelength have the dimension of a hill, implying that our
simulations have the dimensions of a true Earth.

We shall show that, as a final result, the KAM theorem
is not fulfilled anymore. Indeed, the tori are generally de-
stroyed, except for some take-off angles or for some ampli-
tudes of the perturbation added to the flat interface.

The simulation has been performed by propagating the ray
in a layer with lengthl=100 km and widthh=1 km. The
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We shall show that, as a final result, the KAM theorem
is not fulfilled anymore. Indeed, the tori are generally de-
stroyed, except for some take-off angles or for some ampli-
tudes of the perturbation added to the flat interface.

The simulation has been performed by propagating the ray
in a layer with lengthl = 100 km and widthh = 1 km. The
upper interface was flat, whereas the bottom interface was
corrugated. The source was placed in the upper left corner
of the waveguide and the ray propagated according to Snell’s
law. The distance covered by the ray on the upper interface
at each reflection can be evaluated by:

∆xup = y(i) tan(α− ϑ)[1 +
cosα

cos(α− 2ϑ)
] (2)

∆xdw = y(i) tan(α + ϑ)[1 +
cosα

cos(α+ 2ϑ)
], (3)

whereα is the take off angle of the ray,ϑ is the inclination
angle of the reflector andy(i) is the ordinate of the impact
point of the ray on the reflector. The new take-off angle after
each propagation step is:

αup
n = αn−1 − 2ϑ (4)

αdw
n = αn−1 + 2ϑ, (5)

wheren is the order index (see Fig. 2). The phase space for
each angle is represented by all the coordinate couples[α, d]
(d is the horizontal distance covered by the ray expressed in
km), for any initial take-off angleα0. The choice of these
variables is due to their interest in seismology and to our aim
of making our results comparable with those of other authors
(Keers et al., 1996, 1997). In order to avoid any dependence
on the particular configuration of the corrugated interface,
we have generated200 different profiles for eachα0, and
the propagation procedure has been repeated for each one of
them. Thenα0 is increased by0.1o and the whole process
is repeated. We plot the manifold of the phase space for a
single given initial condition and the complete phase space,
where all the initial conditions are joint in a single represen-
tation. The corrugated interface has been created by joining
33 points equispaced in abscissa, whereas the ordinate value
is given by:

– a random number with zero mean Gaussian distribution
and fixed variance;

– a power law distribution;

– a self-affine perturbation.

We chose these perturbations in order to simulate real
landscapes in three different cases: random noise with finite
variance, random noise with infinite variance, self-affine per-
turbation, the best simulation of earth topography (Turcotte,
1997; Malamud and Turcotte, 1999).

a)

b)

Fig. 2. a) Propagation for reflectorup, b) Propagation for reflector
dw. Proportions are not respected.

Fig. 3. Example of Gaussian white profile.

3.1 Gaussian white noise

Our first simulation has been performed perturbing the lower
flat interface with a Gaussian white noise. Many simulations
(see an example in Fig. 3) have been made for different val-
ues of the variance in order to understand its effects on the
rays propagation. Notice that here the variance of the noise
represents the amplitude of the perturbationε. The scale of
the variance has been set equal toh ∗ 10−3. This choice
derives from a compromise between the significance of the
perturbation (lower values do not affect the periodic propaga-
tion) and the possibility of a free propagation (higher values
trap the ray not allowing a propagation through the layer).
In this case, we have noticed that, for small values of vari-
ance, the phase space is characterized by the presence of
some residues of surviving 1-tori, whereas these disappear
more rapidly for large values of variance. Let us comments
upon each variance value:

– V ariance equal to10−5km2. We can observe the pres-
ence of residual tori in the region ofα in the range
[−1.5o, 1.5o] for low values of α0[1.0o, 1.3o]. For
higher values ofα0, we observe a chaotic region, and
the expected regions of regularity are represented by
horizontal lines.

– V ariance equal to10−4km2. In this case, we observe

Fig. 2. A portion of the lower interface between two successive
points at different heights is shown as an example, when(a) the
reflector is up-going,(b) the reflector is down-going. Dotted lines
represent the seismic rays propagating in the simulated Earth layer.
Dashed lines are perpendicular to the lower and upper interfaces.
Proportions are not respected.

upper interface was flat, whereas the bottom interface was
corrugated. The source was placed in the upper left corner
of the waveguide and the ray propagated according to Snell’s
law. The distance covered by the ray on the upper interface
at each reflection can be evaluated by means of very simple
trigonometric manipulations (for a sketch of the geometry,
see Fig.2):

1xup
= y(n) tan(α − θ)

[
1 +

cosα

cos(α − 2θ)

]
(2)

1xdw
= y(n) tan(α + θ)

[
1 +

cosα

cos(α + 2θ)

]
, (3)

whereα is the take-off angle of the ray,ϑ is the inclination
angle of the reflector,y(n) is the ordinate of the impact point
of the ray on the reflector andn is the index of the propaga-
tion step. After each reflection the new take-off angle is:

α
up
n = αn−1 − 2θ (4)

αdw
n = αn−1 + 2θ . (5)

The phase space for each angle is represented by all the
coordinate couples(d, α) (d is the horizontal distance cov-
ered by the ray expressed in km), for any initial take-off an-
gle α0. The choice of these variables is due to their interest
in seismology and to our aim of making our results compa-
rable with those of other authors (Keers et al., 1996, 1997).
In order to avoid any dependence on the particular config-
uration of the corrugated interface, we have generated 200
different profiles for eachα0, and the propagation procedure
has been repeated for each one of them. Thenα0 is increased
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Fig. 3. Example of lower interface. Height has a Gaussian white
distribution with variance=1.0 km2. Thirty-three points are plotted.

by 0.1◦ and the whole process is repeated. We plot the mani-
fold of the phase space for a single given initial condition and
the complete phase space, where all the initial conditions are
joint in a single representation. The corrugated interface has
been created by joining 33 points, equispaced in abscissa,
whereas the ordinate value is given by:

– a random number with zero mean Gaussian distribution
and fixed variance;

– a power law distribution;

– a self-affine perturbation.

We chose these perturbations in order to simulate real
landscapes in three different cases: random noise with fi-
nite variance, random noise with infinite variance, self-affine
perturbation, the best simulation of the Earth is topography
(Turcotte, 1997; Malamud and Turcotte, 1999).

3.1 Gaussian white noise

Our first simulation has been performed by perturbing the
lower flat interface with a Gaussian white noise. Many sim-
ulations (see an example in Fig.3) have been made for dif-
ferent values of the variance, in order to understand the ray’s
propagation. Notice that here the variance of the noise rep-
resents the amplitude of the perturbationε. The scale of the
variance has been set equal toh×10−3. This choice derives
from a compromise between the significance of the pertur-
bation (lower values do not affect the periodic propagation)
and the possibility of a free propagation (higher values trap
the ray not allowing a propagation through the layer). In this
case, we have noticed that, for small values of variance, the
phase space is characterized by the presence of some residues
of surviving 1-tori, whereas these disappear more rapidly for
large values of variance. Let us comment about each variance
value:

– Variance equal to 1.0×10−5 km2. We can observe the
presence of residual tori in the region ofα in the range
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a similar behaviour as in the previous one. But here
theα0 range, for which we observe a residual toroidal
region is increased up to2.3o.

– V ariance equal to10−3km2. The residual toroidal
zone acquires a fractal structure clearly recognizable
at various epicentral distances for different values of
α0. The case ofα0 = 2.0o is particularly interest-
ing: by zooming in the region15 < d < 25km and
−1o < α < 1o it is possible to see very clearly the frac-
tal behaviour of the phase space. This characteristic is
preserved up toα0 = 4.5o, where the toroidal region is
very poorly populated. The whole phase space reveals
how chaotic behaviour begins to dominate the dynamics
for this value of the variance.

– V ariance equal to10−2km2. We observe a very simi-
lar behaviour as in the previous case, but for higher val-
ues ofα0 with a less dense toroidal region.

– V ariance equal to10−1km2. Again for still higher val-
ues ofα0 the toroidal regions are less dense.

– V ariance equal to1km2. The trend is confirmed,
and the complete phase space is a very dense cloud of
points.

Examples are provided in Fig. 4, where we represent the
phase space for three different values of the variance. It is
clear that the effect of an increasing value of the variance is
the disappearence of the region in which the surviving tori
are recognizable (compare with Fig. 1). Note that the differ-
ent scale of the vertical axis is due to a better zooming on the
significant part of the phase space.

3.2 Power law distribution

The perturbation of the interface has been obtained, in this
case, by adding (or subtracting, with a50% of probability)
to the flat interface a value randomly chosen among a set of
numbers with a power law distribution (see an example in
Fig. 5). In this simulation, also, we observe a chaotic be-
haviour with a central narrow zone, in which it is possible to
notice some residual tori. This region tends to disappear as
the exponent of the power law distribution increases. As in
previous section, in what follows we analyze the results for
the three values of the exponent:

– Exponent equal to1.0. The manifolds of the phase
space for eachα0 become less dense asα0 increases and
the region of residual tori becomes empty forα0 > 65o.
This feature, observed also for the Gaussian white noise,
is here clearer. The complete phase space (Fig. 6 a) ex-
hibits a behaviour very similar to the Gaussian white
noise cases. The central zone is compressed and tends
to be confused in the chaotic regions, but a zoom forα
in the range[−20o, 20o] reveals the existence of residual
tori.
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Fig. 4. Complete phase space associated to ray propagation in
a waveguide characterized by a Gaussian white lower interface.
Different Variances are shown: a)variance = 10−5km2, b)
variance = 10−3km2, c) variance = 1km2

Fig. 5. Example of Power Law distributed profile.

– Exponent equal to1.5. Here the residual toroidal re-
gion is still recognizable forα0 < 42o, whereas it com-
pletely disappears for the other values. The complete
phase space (Fig. 6 b) shows a clear residual toroidal
zone.

– Exponent equal to2.0. The phase space is completely
chaotic for anyα0 and, obviously, we can observe the
same feature for the whole phase space (Fig. 6 c).

3.3 Self-affine perturbation

The last simulation has been performed by using a self-affine
corrugated wall: a statistically self-affine fractal is gener-
ally non isotropic being thex andy coordinates differently
scaled. For this waveguide, the lower interface has been built
by means of the midpoint displacement method (Russ, 1994).
This is one of the most straightforward methods to gener-
ate a self-affine profile. Starting with the entire length of a
linear array, the midpoint is displaced up or down by a ran-

Fig. 4. Complete phase space associated with ray propagation in
a waveguide characterized by a Gaussian white lower interface.
Different variances are shown:(a) variance=1.0×10−5 km2, (b)
variance=1.0×10−3 km2, (c) variance=1.0 km2.

(−1.5◦, 1.5◦) for low values ofα0(1.0◦, 1.3◦). For
higher values ofα0, we observe a chaotic region, and the
expected regions of regularity are represented by hori-
zontal lines.

– Variance equal to 1.0×10−4 km2. In this case, we ob-
serve a similar behaviour as in the previous one. But
here theα0 range, for which we observe a residual
toroidal region is increased up to 2.3◦.

– Variance equal to 1.0×10−3 km2. The residual toroidal
zone acquires a fractal structure clearly recognizable
at various epicentral distances for different values of
α0. The case ofα0=2.0◦ is particularly interesting:
by zooming in on the region 15.0 km<d<25.0 km and
−1.0◦<α<1.0◦, it is possible to see very clearly the
fractal behaviour of the phase space. This characteristic
is preserved up toα0=4.5◦, where the toroidal region is
very poorly populated. The whole phase space reveals
how chaotic behaviour begins to dominate the dynamics
for this value of the variance.

– Variance equal to 1.0×10−2 km2. We observe a very
similar behaviour as in the previous case, but for higher
values ofα0, with a less dense toroidal region.

– Variance equal to 1.0×10−1 km2. Again, for still higher
values ofα0 the toroidal regions are less dense.
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Fig. 5. Example of lower interface. Height has a power law distri-
bution with an exponent=1.0. Thirty-three points are plotted.

– Variance equal to 1.0 km2. The trend is confirmed,
and the complete phase space is a very dense cloud of
points.

Examples are provided in Fig.4, where we represent the
phase space for three different values of the variance. It is
clear that the effect of an increasing value of the variance is
the disappearence of the region in which the surviving tori
are recognizable (compare with Fig.1). Note that the differ-
ent scale of the vertical axis is due to a better zooming in on
the significant part of the phase space.

3.2 Power law distribution

The perturbation of the interface has been obtained, in this
case, by adding (or subtracting, with a 50% of probability)
to the flat interface, a value randomly chosen among a set
of numbers with a power law distribution (see an example
in Fig. 5). In this simulation, also, we observe a chaotic be-
haviour with a central narrow zone, in which it is possible to
notice some residual tori. This region tends to disappear as
the exponent of the power law distribution increases. As in
the previous section, in what follows we analyze the results
for the three values of the exponent:

– Exponent equal to 1.0. The manifolds of the phase
space for eachα0 become less dense asα0 increases and
the region of residual tori becomes empty forα0>65.0◦.
This feature, also observed for the Gaussian white noise,
is here clearer. The complete phase space (Fig.6a) ex-
hibits a behaviour very similar to the Gaussian white
noise cases. The central zone is compressed and tends
to be confused in the chaotic regions, but a zoom in for
α in the range (−20.0◦, 20.0◦) reveals the existence of
residual tori.

– Exponent equal to 1.5. Here the residual toroidal re-
gion is still recognizable forα0<42.0◦, whereas it com-
pletely disappears for the other values. The complete
phase space (Fig.6b) shows a clear residual toroidal
zone.
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Fig. 6. Complete phase space associated to ray propagation in
a waveguide characterized by a power law distribution lower in-
terface. Different Exponent are shown: a)Exponent = 1, b)
Exponent = 1.5, c) Exponent = 2.

Fig. 7. Example of Self-Affine profile.

dom amount. This procedure is repeated for each of the two
segments to produce four, and continues down to individ-
ual points. The magnitude of each displacement is reduced
as the length of the segment is reduced so that, for a length
scalern = 1

2n , the displacement shall be scaled as

r2ξ (6)

and the fractal dimension shall beDF = 2 − ξ. In other
words, the construction starts with a straight (Euclidean) line
between two points. Then, the midpoint of the line is dis-
placed by some random amount〈z〉, either up or down with
equal probability. This creates a line with two straight seg-
ments, and the procedure is repeated for each one of their
midpoints. Again the midpoints of the new segments are
displaced by a quantity rescaled according to relation (6)
and so on, down to a previously chosen threshold value of
the segment length. Generally,〈z〉 is obtained by using a
Gaussian random number generator with the standard devia-
tion rescaled according to relation (6). The coefficientξ, the

Hurst’s exponent in the range[0, 1], turns out to control the
fractal dimension of the line. For the particular waveguide
here considered, we have decided to stop the construction at
5th step, i.e.31 segments. We underline the fact that we have
33 points, including the profile’s initial and final points (see
an example in Fig. 7). Once again, we have considered200
profiles. In our study, we have usedξ = 0.9, 0.5, 0.1, which
imply DF = 1.1, 1.5, 1.9 respectively. For each fractal di-
mension, we have used three different scales of the standard
deviationσ, h ∗ 10−3, h ∗ 10−4, h ∗ 10−5. Observing the
phase spaces of these simulations, it is clear that the presence
of residues of tori is connected to how much corrugated the
wall is: as the fractal dimension increases, the residual tori
disappear. The dependence of the phase space on the scale
of σ is similar to the one observed for the Gaussian white
noise. Now we discuss the effects of the self-affine interface
perturbation on the phase space asDF andσ vary:

– DF = 1.1, σ = h ∗ 10−3 . The residual tori are clearly
recognizable forα0 < 18.6o, whereas the whole phase
space shows chaotic regime for the others values ofα0.

– DF = 1.1, σ = h ∗ 10−4. Here the phase space appears
more complex, characterized by a fractal structure of the
residual tori for lower values ofα0. The complete phase
space evidences the existence of regular regions. Fig. 8
a.

– DF = 1.1, σ = h ∗ 10−5. In this case, the residual tori
are less dense but still recognizable, and the complete
phase space is more regular.

– DF = 1.5, σ = h ∗ 10−3. The behaviour of the rays is
very similar to the one of the fractal dimensionDF =
1.1, except for a lesser density of the points in the phase
space.

– DF = 1.5, σ = h ∗ 10−4. Once again, the features
of the fractal dimensionDF = 1.1 are repeated with a
lesser density of points. Fig. 8 b.

– DF = 1.5, σ = h ∗ 10−5. We can observe the same
trend as discussed above. Obviously, the same structure
is repeated for the fractal dimensionDF = 1.9 with a
lesser density of points. Fig. 8 c.

For all the interface perturbations, we estimated the phase
space fractal dimension by using the Grassberger and Pro-
caccia algorithm (1983). The values are in the range1.3-
1.7, revealing that the systems’ behaviour cannot be consid-
ered hamiltonian: hamiltonian chaos generates dense fractal
phase spaces withDF = 2.0, which, in fact, are called ”fat
fractals”.

4 Conclusions

We attempted to reproduce ray propagation in real earth lay-
ers by simulating such structures by means of corrugated

Fig. 6. Complete phase space associated with ray propagation in
a waveguide characterized by a power law distribution lower inter-
face. Different exponent are shown:(a) Exponent=1.0,(b) Expo-
nent=1.5,(c) Exponent=2.0.

– Exponent equal to 2.0. The phase space is completely
chaotic for anyα0 and, obviously, we can observe the
same feature for the whole phase space (Fig.6c).

3.3 Self-affine perturbation

The last simulation has been performed by using a self-affine
corrugated wall: a statistically self-affine fractal is generally
nonisotropic, given that thex andy coordinates are scaled
differently. For this waveguide, the lower interface has been
built by means of the midpoint displacement method (Russ,
1994). This is one of the most straightforward methods to
generate a self-affine profile. Starting with the entire length
of a linear array, the midpoint is displaced up or down by
a random amount. This procedure is repeated for each of
the two segments to produce four, and continues down to the
individual points. The magnitude of each displacement is
reduced as the length of the segment is reduced, so that for a
length scalern= 1

2n , the displacement shall be scaled as

r2ξ (6)

and the fractal dimension shall beDF =2−ξ . In other words,
the construction starts with a straight (Euclidean) line be-
tween two points. Then, the midpoint of the line is displaced
by some random amount〈z〉, either up or down, with equal
probability. This creates a line with two straight segments,
and the procedure is repeated for each one of their midpoints.
Again, the midpoints of the new segments are displaced by
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Fig. 7. Example of a self-affine profile, building dimension is:
DF =1.5 andσ=h×10−4. Thirty-three points are plotted.

a quantity rescaled according to relation (6) and so on, down
to a previously chosen threshold value of the segment length.
Generally,〈z〉 is obtained by using a Gaussian random num-
ber generator with the standard deviation rescaled according
to relation (6). The coefficientξ , the Hurst’s exponent in the
range (0, 1), turns out to control the fractal dimension of the
line. For the particular waveguide considered here, we have
decided to stop the construction at 5th step, i.e. 31 segments.
We underline the fact that we have 33 points, including the
profile’s initial and final points (see an example in Fig.7).
Once again, we have considered 200 profiles. In our study,
we have usedξ=0.9, 0.5, 0.1, which impliesDF =1.1, 1.5,
1.9, respectively. For each fractal dimension, we have used
three different scales of the standard deviationσ , h×10−3,
h×10−4, h×10−5. Observing the phase spaces of these sim-
ulations, it is clear that the presence of residues of tori is
connected to how much the wall is corrugated: as the fractal
dimension increases, the residual tori disappear. The depen-
dence of the phase space on the scale ofσ is similar to the one
observed for the Gaussian white noise. Now we discuss the
effects of the self-affine interface perturbation on the phase
space asDF andσ vary:

– DF =1.1,σ=h×10−3 . The residual tori are clearly rec-
ognizable forα0<18.6◦, whereas the whole phase space
shows a chaotic regime for the other values ofα0.

– DF =1.1, σ=h×10−4. Here the phase space appears
more complex, characterized by a fractal structure of
the residual tori for lower values ofα0. The complete
phase space evidences the existence of regular regions
(Fig. 8a).

– DF =1.1, σ=h×10−5. In this case, the residual tori are
less dense but still recognizable, and the complete phase
space is more regular.

– DF =1.5,σ=h×10−3. The behaviour of the rays is very
similar to the one of the fractal dimensionDF =1.1, ex-
cept for a lesser density of the points in the phase space.
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Fig. 8. Complete phase space associated to ray propagation in a
waveguide characterized by a self-affine lower interface. Differ-
ent Fractal dimension of building and different variances have been
showed. In the Fig.: a)DF = 1.1, σ = h ∗ 10−4; b) DF = 1.5,
σ = h ∗ 10−4; c) DF = 1.9, σ = h ∗ 10−4.

waveguides. In our simulation of the propagation of seis-
mic rays in a layer, we used different kinds of noise: white
Gaussian, power law distributed and self-affine noises.

For Gaussian white noise, phase space tends to become a
straight line and the residual toroidal zone becomes smaller
and smaller as the noise variance increases.

The power law distribution exhibits a more pronounced
tendency to the disappearence of the tori as the exponent of
the power law distribution increases. The ray propagation on
the fractal interface depends onDF and on the amplitude of
the perturbation. If we fix the dimension and make the ran-
dom number in the building procedure smaller, we can note
that the phase space turns again into a straight line; inversely,
if the random numbers are larger, the residual tori disappear
and all the space becomes chaotic.

In any case, we observe periodic behaviours (straight lines
in the phase space) because the rays, for large initial take-
off angles, reach the edge of the layer after very few reflec-
tions with a poor sampling of the corrugation. For lower ini-
tial take-off angles we observe a chaotic regime without any
clearly recognizable surviving torus. Most of the tori are dis-
torted into fractal sets, reminding of the fractal structure of a
phase space arising from a ”KAM dynamical system”. How-
ever, in no case is dense as the fractal regions are expected for
KAM systems. Thus, we can conclude that a noise structure
is a strong perturbation of the Hamiltonian, which makes the
KAM theorem not fulfilled anymore.

These results also have very important seismological im-

plications: in chaotic regimes it is impossible to follow the
propagation of a single ray and the different phases of the
seismic signal cannot be easily recognized. Moreover, the
frequent presence of caustics could explain anomalous am-
plification of the seismic amplitude.

Acknowledgements. We would like to acknowledge an anonymous
reviewer whose criticisms helped us in improving the clearness of
the paper.
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Fig. 8. Complete phase space associated with ray propagation in
a waveguide characterized by a self-affine lower interface. Differ-
ent fractal building dimensions and different variances have been
showed.(a) DF =1.1, σ=h×10−4; (b) DF =1.5, σ=h×10−4; (c)
DF =1.9, σ=h×10−4.

– DF =1.5, σ=h×10−4. Once again, the features of the
fractal dimensionDF =1.1 are repeated with a lesser
density of points (Fig.8b).

– DF =1.5, σ=h×10−5. We can observe the same trend
as discussed above. Obviously, the same structure is
repeated for the fractal dimensionDF =1.9 with a lesser
density of points (Fig.8c).

For all the interface perturbations, we estimated the phase
space fractal dimension by using the Grassberger and Procac-
cia algorithm (1983). The values are in the range 1.3−1.7,
revealing that the systems’ behaviour cannot be considered
Hamiltonian: Hamiltonian chaos generates dense, fractal
phase spaces, withDF =2.0, which, in fact, are called “fat
fractals”.

4 Conclusions

We attempted to reproduce ray propagation in real Earth lay-
ers by simulating such structures by means of corrugated
waveguides. In our simulation of the propagation of seis-
mic rays in a layer, we used different kinds of noise: white
Gaussian, power law distributed and self-affine noises.

For Gaussian white noise, phase space tends to become a
straight line and the residual toroidal zone becomes smaller
and smaller as the noise variance increases.

The power law distribution exhibits a more pronounced
tendency to the disappearence of the tori as the exponent of
the power law distribution increases. The ray propagation on
the fractal interface depends onDF and on the amplitude of
the perturbation. If we fix the dimension and make the ran-
dom number in the building procedure smaller, we can note
that the phase space turns again into a straight line; inversely,
if the random numbers are larger, the residual tori disappear
and all the space becomes chaotic.

In any case, we observe periodic behaviours (straight lines
in the phase space) because the rays, for large initial take-
off angles, reach the edge of the layer after very few reflec-
tions with a poor sampling of the corrugation. For lower
initial take-off angles we observe a chaotic regime without
any clearly recognizable surviving torus. Most of the tori are
distorted into fractal sets, reminiscent of the fractal structure
of a phase space arising from a “KAM dynamical system”.
However, dense, fractal regions are not expected for KAM
systems. Thus, we can conclude that a noise structure is
a strong perturbation of the Hamiltonian, which makes the
KAM theorem not fulfilled any longer.

These results also have very important seismological im-
plications: in chaotic regimes it is impossible to follow the
propagation of a single ray, and the different phases of the
seismic signal cannot be easily recognized. Moreover, the
frequent presence of caustics could explain anomalous am-
plification of the seismic waves’ amplitudes.
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