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Abstract. Particle motion is considered in incompressible include poorly stirred regions (Se®). Second, we study
two-dimensional flows consisting of a steady backgroundthe influence of the background flow on particle trajectory
gyre on which an unsteady wave-like perturbation is su-stability (Sect4). Prior to discussing these issues, the kine-
perimposed. A dynamical systems point of view that ex- matic models that we use to illustrate our results are briefly
ploits the action-angle formalism is adopted. It is argued anddescribed in SecR. The conclusions of the paper are given
demonstrated numerically that for a large class of problemsn Sect.5.

one expects to observe a mixed phase space, i.e. the occur-

rence of “regular islands” in an otherwise “chaotic sea.” This ) )

leads to patchiness in the evolution of passive tracer distri2 Kinematic models
e 1o 20 bacound o srctresina gk L1 0. o
background flow: trajectory instability, quantified by various the f plane are conS|dered.here.. One is chos.en to _repre_sent
measures of the . degree of chaos,” in’creases on average wi tz{large—scal'e smgle—gyre wind-driven ocean circulation with
increasingdw/dI|, wherew(I) is the angular frequency of reamfunction given byStomme 1966

the trajectory in the background flow ands the action. Sy©@ =g [bemx +(1— by — 1] sin ”Wy

wherea:=tW/(zAD), b:=(1 — &"-L)/+L — &-L), and
1 Introduction by=—3B/rE3[(B/M)?+ (n/ W)2]2. Here,D is the depth,
7 the wind stress amplitude (per unit density), artthe bot-

This paper deals with the kinematics of fluid particles in un- tom friction. The other background streamfunction chosen
steady incompressible flows on the Cartesian plane. Namelyorresponds to solid body rotation,

we study properties of trajectorids (r), y(¢)) that satisfy

(0]
equations of the form R:y©@ = 7R [(x —L/2%+(y - W/2)2] :
x =0y, y=-0, (1a)  The reason for this highly idealized choice will be discussed

where the overdot stands for time derivative and, y, 1) is below. Parameter values used in our numerical work are
the streamfunction. Furthermore, we consider the latter to bdsted in Tablel. - o
split into a steady background component and an unsteady The perturbation streamfunction is constructed by super-

perturbation component, i.e. posing standing Rossby-like modes with a power-law spec-
0 1 trum, namely,

v =vQ0 ) +eyPx, .0, (1b) . .
. . . . . Y@ =aZAe*” sin (kx + ¢r)

wheree is a dimensionless parameter. Equatibycpnstitute il

a canonical Hamiltonian system withthe Hamiltonian and -sin(ly + ¢;) cos(ot + o), @

(x, y) the generalized coordinate-conjugate momentum pair.
Two related issues are addressed in this paper. First, w&here

investigate a cause of “patchiness” in passive tracer distribu- T2(L 24+ W2

tions, i.e. distributions that are mostly vigorously stirred but Ak, 1) = k2 + 12 ’
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Fig. 1. Background flow streamlines (dashed lines) along with streamlines corresponding to a snapshot of the total4d®vyafsolid
lines). Panelga) and(b) correspond to background flow S with different wave-like perturbation fields superimposed(gamwetesponds
to background flow R with the same perturbation that was used to produce panel (a).

not limited to ocean-basin-scale flows. In general, the trends

Table 1. Background flow parameters. _ ) . .
that we describe should be evident after times in excess of

Parameter  Value a few periods of particle revolution in any background gyre
L 10 Mm flow on which a perturbation field with a broad-band of fre-
w 27 Mm guencies is superimposed.
D 200 m
g 9.8ms2
fo 10451 3 Passive tracer patchiness
8 10-11 p1g-1
T 2x103m 252 In this section we present numerical evidence and a theo-
A 10551 retical argument that suggest that for a large class of sys-
®R 2ry~1 tems of the form ) phase spacer, y) should be partitioned

into “regular islands” in a “chaotic sea.” Such a mixed phase

space leads to patchiness in passive tracer distributions. Nu-

merical results are presented for a time-periodic flaw1
and theg (k, [)’s are random numbers uniformly distributed term in the sum in Eq. 2) and subsequently for flows with
between 0 and-2 Here,Lk/m andWI/x are positive inte-  complicated time dependenceléarge).
gers,y is a constantyfy is the reference Coriolis parameter;,  Figure 2 shows, for the time-periodic case=1), a
andg is the acceleration of gravity. Poincaé section and, in the same environment, two addi-

Dashed lines in Figs. 1a, b and Fig. 1c are streamlines fotional trajectory diagnostics whose applicability is not re-
background flows S and R, respectively. Solid lines in thesestricted to time-periodic flows. The Poinéasection was
figures are total flow streamlines corresponding to a snapeonstructed by plotting théx, y) coordinates of several tra-
shot of the flow at ~ 9 y. The perturbation in each case jectories at integer multiples of the period of the streamfunc-
involves 10<10=100 modes. In Figla and Fig. 1c the per- tion; it shows the usual mixture of “regular islands” in an oth-
turbation has=0.05 andy=0. In Fig. 1b the amplitude of erwise “chaotic sea“ (e.gTabor, 1989. The middle panel
the Lk/mr=1=WI/x mode is set to zerap,=0=¢; so the  shows, for a dense set of trajectories willd)=xg fixed and
flow vanishes at the boundagy=0.25, andy=0.4 Mm™1. y(0)=yg variable, a plot ofy vs. yg at a fixed value of. The
The flows used to produce Fifj.and all of the numerical initial conditions chosen fall inside the region of the Poigcar

particle trajectory simulations presented in this paper weresection shown, and it is seen that both regular islands and the
chosen to illustrate important aspects of Lagrangian dynamehaotic sea evident in the Poinéasection can be identified
ics; the flows are in many ways not representative of realistidn the y vs. yg plot. The same structures can also be seen in
oceanic flows. We note, however, that we focus on flowsthe lower panel of Fig2 which shows, for the same trajec-
with complicated time dependence, and that the strong pertories used to produce the middle panel, finite time estimates
turbations to the background are considered. In Hig.for of Lyapunov exponents (described in more detail belaw),
example, it is seen that the perturbation leads to the presvs. yg. Plots ofy vs. yg andv vs. yo are used below to dis-
ence of an eddy-like structure in the flow. Also, we note thattinguish between apparently regular and apparently chaotic
in the flows that we have described, particle trajectories ardrajectories for flows with complicatea (arge) time depen-
periodic in the limit of zero perturbation strength with typi- dence, i.e. in flows for which a Poinésection cannot be
cal periods of about 1y. Thus in an integration time of 10y constructed.
most trajectories will have made approximately 10 revolu- Figure3 shows plots of vs. yg andv vs. yg for the nonpe-
tions around the gyre. The phenomena described below argodic flows used to produce Fif. Trajectories in Fig3b are
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y [Mm] very slowly (power law dependence on time) from neighbor-
ing trajectories while chaotic trajectories diverge at an expo-
nential rate from neighboring trajectories. The nonchaotic
regions of flows are important in applications because they
correspond to regions where the concentration of a passive
tracer will remain high for a long duration. The existence of
these regions leads to a large variance of tracer concentration
or “tracer patchiness” (e.g?asmanterl988 Malhotra et al,
1998.

Another way to visualize passive tracer patchiness is of-
fered in Figs5 and6. Both figures show discrete samples of
a material line of fluid at=0 (vertical line segments in the
figures) and at=12 y, in the environments shown in Fig.
Initial conditions in Fig.5 are as in Fig3, whereas those in
Fig. 6 are as in Fig4. These figures again show that while
most of the initial material line segment is vigorously stirred,
there are small portions of the initial segment, correspond-
ing to the island-like structures seen in Figand4, that are
0 ‘ ‘ ‘ ‘ ‘ ‘ poorly stirred.
0 1 2 3 4 5 6 We turn our attention now to explaining the occurrence of

Yo [Mm] island-like structures in Fige-4. First, we note that in the

background flow, particle motion is describable using action-
angle variables, reviewed below, and trajectories fall on tori.
as a function of initial meridional position (bottom). The mid- For perturbed systems with periodic time dependence, as in

dle and lower plots were constructed by tracking® Jarticles Fig. 2, it_ is well-known that particle trajectory dynamigs are
(Ayo~5.5 km) for a duration of 150y in background flow S with a COnstrained by the KAM theorem (e.@wrnold, 1989 which

time-periodic perturbation superimposed. Particle initial positionsguarantees that for sufficiently smallsome of the origi-
fall on the horizontal line shown in the top panel. The perturbation nal tori — and associated nonchaotic motion — are preserved.

parameters chosen were0.015,y =0, kL /7 =3=IW/x, ¢'s =0, Related theoretical results, generally known as KAM theory
and Zr/0=0.25Yy. (e.g. Tabor, 1989, describe how the nonsurviving tori break
up to form chains of “islands” surrounded by a “chaotic sea”
as seen in Fig2. For a large perturbation strengthall of
generally more unstable than in Figa. The enhanced sta- the original tori will have been broken up, but the secondary
bility in Fig. 3a is reflected in a relatively unstructuredyo) islands that are formed in the process are robust and persist
plot and smaller (on average) Lyapunov exponents than areven when the magnitude of the perturbation exceeds that
seen in Fig3b. In both cases the background flow structure of the background flow. It has been shovBrgwn, 1998
is the same; the difference in the stability behaviour is dueBeigie et al, 1991 that for multiply-periodic perturbations
to the difference in the strength of the perturbation. As ex-the situation is essentially the same as for perturbations with
pected, trajectory instability is seen to increase with increassimple periodic time dependence. This follows from the ob-
ing perturbation strength. servation that Eq.1), with ¥ (x, y, o1t, - - - , ont) Whereo;t
The difference in trajectory stability seen in Fi@a.and ¢ is defined modulo 2, can be transformed to an autonomous
has a different explanation. The same perturbation was useHamiltonian system with a bounded phase space withl)
in both cases, so this cannot be the cause of the differencelegrees of freedom that is constrainedibintegrals. KAM
The cause is the influence of the background flow; this topictheory (the KAM theorem and related results) applies to the
will be discussed in detail in the following section. transformed system, so phase space is generically partitioned
We return our attention now to Figb which corresponds into nonintersecting regular and chaotic regions. A Poiacar
to the strongly perturbed flow shown in Fig. It is seen  section could, in principle, be constructed for such a system
in Fig. 3b that embedded among mostly chaotic trajectoriesby using a multiple slicing technique (d®arker and Chya
are bands of apparently nonchaotic trajectories. These nort989 but slicing is practical only when=1. The signifi-
chaotic bands are most readily identified among the trajeceance of the extension of KAM theory to multiply-periodic
tories whose initial positions are near the center of the gyresystems is that in the system defined by EQ.with v
the reason for this will be discussed in the following section. given by Eq. 8), phase spacér, y) is expected to be par-
Bands of nonchaotic trajectories far from the gyre center arditioned into “regular islands” in an otherwise “chaotic sea.”
also present, however. This is seen in Figvhere two re-  The numerical evidence presented in Figs6 supports this
gions of Fig.3b are blown up. These apparently nonchaotic expectation.
bands of trajectories are the counterparts of the “regular is- The coexistence of regular and chaotic fluid particle tra-
lands” seen in FigR. Trajectories in these bands diverge only jectories in mesoscale and large-scale oceanic flows has been

z [Mm)]

y [Mm]

Fig. 2. Poincaé section (top), final vs. initial meridional posi-
tion (middle), and finite-time estimate of the Lyapunov exponent
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Fig. 3. Trajectory final meridional positiom (top panels), finite-time estimate of the Lyapunov exponefhiddle panels), and absolute
value of stability parameter (bottom panel) as a function of initial meridional position. Background and perturbation fields are aslin Fig.
All particles have initial longitudinal positiongy at the center of the background gyre. The integration time is 12 y\age5.5 km.
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Fig. 4. Blow up of two portions of the top and middle panels of RBg.usingAyg~5m.

suggested in some analyses of surface drifters and submergagbplications are described in Beron-Vera and Brown (2003a,

floats Osborne et al.1986 1989 Richardson et al.1989 b).

Brown and Smith1990. The preceding discussion provides  The explanation of this behaviour makes use of the action-

an explanation of the underlying physics. angle description of the motion of particles in the background
flow (e.g. Abdullaev and Zaslavsky1991). Let

4 Particle trajectory stability [ = 1 ?g dr ¥ (x; v ©)
27T 9 9

In this section we describe the important influence of the
background flow on patrticle trajectory stability that was men-
tioned above in our discussion of Figa, c. The ideas pre-
sented here apply to any canonical Hamiltonian system i
which the Hamiltonian consists of a superposition of an in- o
tegrable component and a nonintegrable perturbation. Othe¥ = 0xG, ¥ =0/G, G(x, 1) := /dx Y (x; ¢vt),

whereY is the meridional coordinate of an isoline ¢f?,
be the action variable, and consider the canonical transfor-
nmation(x, y) — (¢, I), defined implicitly by
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Fig. 5. Initial position (straight segment) and position after 12 y of a discretely samplagk(5.5 km) material line of fluid advected by the
total (background plus perturbation) flows of Fig.Colours indicate the initial meridional position of particles.
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Fig. 6. Blow up of two portions of Fighb corresponding to trajectories shown in Fida, b; hereAyg~5m. Colours indicate the initial
meridional position of particles; the initial material lines are so short that they appear as dots.

where? is the angle variable. According to the above trans- Parker and Chyd 989, a measure of the rate at which neigh-
formation, boring trajectories diverge,

Y, y, 0 > O + ey P, 9,0
and Egs. 1a) take the form

j 7 ¢ 7 Q(r) is the largest of the two eigenvalues of the so-
[ =—e9,0D  §= PYAGY 3 wherev®™(t) is t g g
SO0V @+ ey @) called stability matrixQ(z), which is given by

1
Voo = t”n;o_lva" (5)
— f

where 91 9]
w(I) = dy©/drI. 4 Q= [a,’jﬂ aﬁjja] ©)

Whene=0, Egs. B), which have one degree of freedom, Because of the area preservation property of Ets. ¢r @)
are autonomous and the corresponding Ham||t9n,LéPP,, IS the product of the two eigenvalues @fis unity, so there is
an integral of motion that constrains the dynamics. As a conyg |oss of generality in considering only the largest eigen-
sequence, the equations can be solved by quadratures and th§)ye. Each column oD corresponds to a vector perturba-

motion is periodic with angular frequenay. Namely,/=Io  tjon (87, §9) to a trajectory in the nonautonomous system
andi=do+wr mod 2r, wherelp andd are constants. Ev-  (3) and satisfies the so-called variational equations,
ery solution curve is thus a line that winds around an invariant

one-dimensional torulg} x 71 ¢ R x T1, whose represen- (81) . [ 0 0} <51)

tation in (x, y)-space is the closed curve given by the isoline \ 8¢ /)~ | ' 0| \ 89

w(O).:w(O)([O)' . . . _8119&(1) _819191}(1) 81
Wlth_ the pgrturbatlon term, the corresponding Hamilto- +8[ LA 31791/;(1)} <5ﬂ> )

nian, ¥ @ +¢y @ is no longer an integral of motion (the

equations are nonautonomous) and the system may be semwherew’ : =dw/dI. Equations 7) and @) constitute a sys-

sitive to initial conditions, thereby leading to chaotic mo- tem of four coupled equations.

tion. The distinction between regular and chaotic trajecto- Variational equations that describe the growth of pertur-

ries is commonly quantified by the Lyapunov exponent (e.g.bations using Cartesian coordinai@s, sy) have the same

@)
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form as Eq. ) except that in the Cartesian form all four the difference between Figsa andsc, which were produced
elements of the first matrix on the r.h.s. of E@) &re gener-  using the same flows that were used to produce Figs. 3a and
ally non-zero. Our numerical finite-time Lyapunov exponent 3c. All of the aforementioned observations relating to F&s.
estimates are based on the Cartesian equivalent of Eqs. (and5 are consistent with the heuristic argument given in the
and @), which is generally more convenient for numerical preceding paragraph describing hbmﬂ is expected to con-
calculations. We have chosen to show thé&, §9) form of trol trajectory stability.

these equations to highlight the important role playedhy The physical interpretation of the stability parameiéas

An example of a closely related study which does not ex-illustrated in Fig.7. Figures7a and b show the evolution
ploit action-angle variables, and which consequently over-of a material line of fluid in background flows S and R, re-
looks the critical importance @#’, is Richards et al(1995. spectively. The material line is shownzat0 and ar=12y.

A simple but very important observation follows from the Also, shown is a plot of both/2/w and|«| as a function of
action-angle formalism. Dependence of both parti8)eaid vy (for yo>yc, the meridional coordinate of the gyre center)
variational /) equations on the background flow enters only in each environment. As a consequence of the uniqueness
through the functionw (7). Equations T) strongly suggests of solutions to Eq. 1) and continuity of the velocity field,
that trajectory stability and’ are closely linked. The follow-  the material line of fluid cannot break or intersect itself but
ing heuristic argument explains the mechanism by whith it can increase in complexity with time. Because the motion
is expected to control trajectory stability. If one assumes thain Fig. 7 is integrable (i.e. each point of the material line is
e is small and the second derivativesyf? are zero-mean constrained to lie on a surface of constantr) and because
random variables, then whes{=0 these terms should lead attention is restricted to background flows for whigf has
to slow (power-law) growth o ands . If \a)’} is large, this  compact and closed level sets, i.e. gyre flows, the length of

term will cause a rapid growth ¢8| for any non-zergs!|. the material line can grow with time, at most, following a
The perturbation terms will then lead to a mixing|&#| and power law. Background flow R has a special property. In
|81]. The termw’ will lead, in turn, to further growth ofs#| . that background flow the material line just rotates clockwise

As this process repeats itself, bodi| and|s9| are expected — at a constant rate=wr (=27 y~1), independent of , so
to grow rapidly. The role played by’ in this process is to  «=0 VI. In contrastw varies with/ in background flow S.
amplify small perturbations caused by the second term on th&'he monotonic decay af as a function off in background
r.h.s. of Egs. 7). Thus, where is small, trajectory instability ~ flow S induces a shear in phase space which causes the outer-
is expected to be significantly enhanced wl1uaf1 is large.  most points of the material line to rotate more slowly than the
Whene is sufficiently large that the two terms on the r.h.s. innermost ones and, hence, causes the material line to spiral.
of Egs. () have comparable magnitude, the role played byIn background flow R there is no shear. In polar coordinates
|| in amplifying perturbations is expected to be less impor-radial shear can be defined as
tant. Increased trajectory instability should result in larger
numerical estimates of Lyapunov exponents. A dynamical-rd, (r_lue) ) )
systems-based argument on the roleybin controlling tra-
jectory stability is given below; that argument is consistentwherer is the radial coordinate and is thef-component
with the above heuristic argument. of the velocity field. More correctly, this quantity is twice
The lower panels of Fig3 show the absolute value of therf-component of the strain-rate tensor for rotational mo-
the stability parameter (Zaslavsky, 1998; Beron-Vera andtion (e.g. Batchelor 1964. The connection with motion in
Brown, 2003a, b) phase space can be accomplished by identifyingth » and
7 do wl with ug. The replacements — I anduy — ol in
= (8) Eg. ©) thus give the analogous expressia for the shear
o dI in phase space. Notice that this expression is (apart from
as a function of trajectory initial condition; recall that these the w~1-factor) the stability parameter. We have chosen
initial conditions correspond to variablg with xo fixed at  to include thew™-factor in the definition ofx because of
the gyre center. Comparison of the middle and lower panelprecedent (Zaslavsky, 1998; Beron-Vera and Brown, 2003a,
of Fig. 3a suggests that when the perturbation to the backb) and because it is convenient to makdimensionless.
ground steady flow is weak, trajectory instability increases, To see the importance of the shear in the background flow,
on average, with increasinige|. Figure 3b shows that for compare Figs7a and b with Figs5a and ¢, which show the
a strong perturbation this trend is less strong, although thesvolution of the same initial material line segments in the
most stable trajectories are clearly those in the region of theotal (background plus perturbation) flows. Notice the highly
flow where|«| is small. The background flow R used to pro- complicated structure of the segment in the perturbed flow S
duce Fig.3c was chosen because it has the propesp V1. (Fig. 5a) as compared to that in the unperturbed one (Fy.
Because the same perturbation flows were used to produc@Note that the number of particles used to produce bags
Figs. 3a and 3c the difference between these figures is erfar too small to resolve what should be an unbroken smooth
tirely due to the difference in the background flows. The curve which does not intersect itself.) In contrast, observe
remarkable stability of trajectories in Figc is due to the thatin environment R the perturbation has only a very minor
propertya=0 VI in flow R. The same comment applies to effect on the evolution of the material line (Fig&. and7b).

a(l) =
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Fig. 7. Evolution of a material line of fluid in background flowg& and R(b). Upper-left plots depict rotational periody 2w, and stability
parametery, as a function of initial meridional position.

Additional insight into whyx should be expected to con- out some nonchaotic motion for fixed but Iarga!| . Note
trol trajectory stability comes from the following argument. also that the trends that we have described apply on average;
The perturbation streamfunctieny P has the effect of intro-  details depend on details of the flow, both background and
ducing perturbations to the actidrof a given particle by the  perturbation.
amounts/ . If 81 is assumed to be small and of the same or-
der as the perturbation streamfunctiéiif0O(s), say], then

w experiences the change 5 Concluding remarks

In this paper, we considered particle motion in unsteady in-
compressible two-dimensional flows consisting of a steady

+ 0(£?). The perturbation te» depends on both the pertur- background gyre on which a highly structured unsteady
bations/ and the background flow via. Under the change ~Wave-like perturbation is superimposed. The numerical sim-
I — I + 81, a sufficient condition for to remain invariant ~ ulations presented strongly suggest that: (i) phase space
at O (e) is @=0. This provides an explanation for the remark- is mixed, characteristic of near-integrable one-and-a-half-
able stability of the particle trajectories in flow R. T¢) a  degree-of-freedom Hamiltonian systems; and (ii) particle tra-
nonvanishing sheai0) appears as a necessary conditionjectory stability strongly depends on the structure of the
to sustain the successive stretching and folding of the matebackground (steady) component of the flow.
rial line of fluid after it gets distorted by the perturbation. (Of ~ The mixed phase space structure, in which “islands” of sta-
course, chaotic motion is still possible wher-0 provided  bility emerge from an otherwise chaotic “sea,” was explained
that ¢ is sufficiently large.) It is thus expected that where @s & consequence of the applicability of KAM theory. The
|| is small (resp., large) there will be less (resp., more) senMixed phase space provides an explanation for the occur-
sitivity to initial conditions and, hence, the motion be more rence of patches of poorly stirred fluid in a mostly vigorously
regular (resp., chaotic). Support for this conjecture is givenstirred flow. Trajectory instability was shown to increase
in the numerical simulations presented in this paper. with increasing magnitude of:=/«w'/w, where Zr/w (1) is
Finally, the role ofw’ in dynamical systems theory de- the period_of revoluti_on of a particle_in th(_e background gyre
serves further comment. A nondegeneracy conditiggs0, flow and/ is the particle’s action variable in the background
must be satisfied in order for the KAM theorem to apply flow. o o .
and, hence, to guarantee that some trajectories are nonchaotic These results provide important insight into the physics
provided the strength of the time-dependent perturbation ig/nderlying Lagrangian ocean dynamics. In addition to this
sufficiently weak. This theorem does not imply, however, insight, the results described are potentially important in a
that trajectories are unstable when=0; the KAM theo- variety of practical problems. The occurrence of Lagrangian
rem does not address this limit. The mechanism that leadgslands of stability” has important implications for the trans-
to chaos is the excitation of resonances at discrete frequerR0rt and dispersal of tracers ranging from nutrients to toxic
cies. For a sufficiently strong perturbation, neighboring reso-Pollulants. Knowledge that such “islands” are smaller and
nances overlap and chaotic motion results (@abor 1989.  ess abundant, on average, in regions of flows whefe
The width in frequency of each resonance is proportional tolS large might be exploited when deciding where to place a
lo'|Y/2, so one expects, on average, motion to become inSewage outfall, for example.
creasingly chaotic ag'| increases. This expected trend acknowledgementThe comments of an anonymous reviewer
is consistent with the arguments and numerical simulationshave led to improvements in the manuscript. This work has been
that we have presented above. The trend toward increasinglyupported by Code 3210A of the US Office of Naval Research.
chaotic motion with increasingu’} does not, of course, rule

o l+adl/DHw
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