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Abstract. Thin current sheets represent important and puz-
zling sites of magnetic energy storage and subsequent fast
release. Such structures are observed in planetary magneto-
spheres, solar atmosphere and are expected to be widespread
in nature. The thin current sheet structure resembles a col-
lapsing MHD solution with a plane singularity. Being po-
tential sites of effective energy accumulation, these struc-
tures have received a good deal of attention during the last
decade, especially after the launch of the multiprobe CLUS-
TER mission which is capable of resolving their 3D features.
Many theoretical models of thin current sheet dynamics, in-
cluding the well-known current sheet bifurcation, have been
developed recently. A self-consistent 1D analytical model of
thin current sheets in which the tension of the magnetic field
lines is balanced by the ion inertia rather than by the plasma
pressure gradients was developed earlier. The influence of
the anisotropic electron population and of the corresponding
electrostatic field that acts to restore quasi-neutrality of the
plasma is taken into account. It is assumed that the elec-
tron motion is fluid-like in the direction perpendicular to the
magnetic field and fast enough to support quasi-equilibrium
Boltzmann distribution along the field lines. Electrostatic ef-
fects lead to an interesting feature of the current density pro-
file inside the current sheet, i.e. a narrow sharp peak of elec-
tron current in the very center of the sheet due to fast curva-
ture drift of the particles in this region. The corresponding
magnetic field profile becomes much steeper near the neu-
tral plane although the total cross-tail current is in all cases
dominated by the ion contribution. The dependence of elec-
trostatic effects on the ion to electron temperature ratio, the
curvature of the magnetic field lines, and the average elec-
tron magnetic moment is also analyzed. The implications of
these effects on the fine structure of thin current sheets and
their potential impact on substorm dynamics are presented.
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(lzelenyi@iki.rssi.ru)

1 Introduction

The existence of thin current sheets (TCS) in the Earth’s
magnetosphere is now confirmed by many spacecraft-borne
in situ experiments, including recent multi-point Cluster
measurements (Runov et al., 2003a, b; Sergeev et al., 2003).
TCS represent unique plasma structures similar to a collaps-
ing MHD solution with a plane discontinuity (Syrovatsky,
1970) and thicknesses of the order of the ion Larmor radius
(Mitchell et al., 1990; Pulkkinen et al., 1993, 1994; Sergeev
et al., 1993, 1998; Hoshino et al., 1996; Runov et al., 2003a,
b; Zelenyi et al., 2003). TCS may exhibit various profiles of
current density that significantly differ from the well known
bell-shaped profile of the Harris-type plasma configuration
(Harris, 1962). For example, satellite measurements some-
times reveal a bifurcated (“double-humped”) profile of TCS
(Runov et al., 2003a, b; Baumjohann and Nakamura, 2002)
or even a triple-humped profile with a current density that
has a sharp peak in the center and two peaks on the sides, as
well as rectangular and asymmetric shapes (Nakamura et al.,
2004).

The physical mechanisms underlying the different self-
consistent TCS structures are not well understood. It should
be noted that trajectories of ions and electrons within TCS are
very different. While the behavior of the thermal (usually a
few keVs) ions is principally nonadiabatic near the equatorial
plane (B̈uchner and Zelenyi, 1989), the electrons (having en-
ergies 5 or 6 times lower than that of ions and at least two or-
ders of magnitude smaller gyroradii) are mostly magnetized
in the current sheet (except for a very small regions of about
an electron gyroradius wide, near the X- and O-lines). It is
shown in experimental works by Pulkkinen et al. (1994) that
during the growth phase of substorm the electron pressure in
magnetotail might be anisotropic (p‖−p⊥>0).

Numerical simulations using full kinetic, hybrid, and Hall-
MHD codes have shown that electrons may be responsible
for the characteristic bifurcated structures of TCS and could
carry substantial currents in the vicinity of the weak field
region, i.e. X- and O-lines (Pritchett and Coroniti, 1995;
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Pritchett, 2001; Hesse et al., 1996; Birn et al., 1998; Yin and
Winske, 2002; Asano, 2001, 2003). Hoshino et al. (1996)
and Asano et al. (2003) developed a numerical current sheet
model where the electron current dominates at the edges of
the TCS due to theE×B drift near the X-line, thus lead-
ing to a characteristic double-humped structure of the cur-
rent density profile. Greco et al. (2002) suggested that the
current bifurcation may result from chaotic particle scatter-
ing due to magnetic fluctuations. Zelenyi et al. (2002, 2003)
developed a self-consistent model where thin current sheets
are gradually “deteriorated” by quasi-trapped particles due
to the nonadiabatic scattering of transient ions. This process,
referred to as current sheet “aging”, leads to the splitting, i.e.
bifurcation to a double-humped shape, within the timescale
of substorm growth phase. This raises questions about the
relative contributions of electrons and ions to the TCS for-
mation. In a recent study Zelenyi et al. (2004) investigated
the role of electron current using a 1D self-consistent analyt-
ical model in the limit of isotropic pressure. A detailed anal-
ysis of the results favors the ion-dependent “aging” process
rather than electron drift currents as an efficient mechanism
of current sheet bifurcation.

Although only one example of a “triple” peaked structure
of current density has been reported up to now (Nakamura
et al., 2004), it provides an important example of the variety
of possible current sheet configurations. A very thin region
of electron flow at the center of the current sheet embedded
in a thick ion layer may be the origin of the triple-peaked
current sheet. In this paper, we use a self-consistent 1D ki-
netic model of thin current sheets (Sitnov et al., 2000a; Ze-
lenyi et al., 2000) to examine electrostatic effects in the case
of anisotropic electron pressure. The problem of the elec-
tron current in 1D TCS has not been addressed so far. In
Sitnov et al. (2000b), a simple approach was adopted where
the influence of electrons is taken into account only to redis-
tribute ions in the electrostatic potential arising from quasi-
neutrality and the electron contribution to the net current was
not considered. A procedure to include the electron drift in
similar self-consistent numerical TCS models has been de-
scribed by Peroomian et al. (2002) in a study dedicated to
large-scale kinetic modeling of the magnetotail. This pa-
per presents the results from a combination of the two ap-
proaches to modeling, viz. large scale kinetics and self-
consistent TCS structures. Such a method is valid for both
the cases of isotropic and anisotropic electron pressure.

2 Basic equations of the model

2.1 General assumptions

We present here an analytical 1D self-consistent model of
a thin current sheet, taking into account both ion and elec-
tron plasma populations. The GSM coordinate system, in
which the X, Y and Z axes are along the Sun-Earth, dawn-
dusk and north-south directions, respectively, is used here.
The current sheet is so thin in comparison with its length

(along Y) and width (along X) that one can consider it to
be homogeneous along the X and Y directions (Sitnov et al.,
2000a; Zelenyi et al., 2000). Therefore we consider a simpli-
fied magnetic fieldB=Bx(Z), 0, Bn in which onlyBx(Z) is
dependent on Z and reverses sign across theZ=0 plane. The
Z-componentBn is a constant commonly referred to as the
nomal component and leads to the curved field lines. Within
this sheet, magnetic field line tension is balanced by the fi-
nite inertia of ions rather than by plasma pressure gradients
as in the case of Harris-like equilibria. The particles, e.g.
from the mantle, flow from the edges of TCS toward the neu-
tral sheet plane (Z=0). The ion population consists of tran-
sient particles moving along Speiser-type orbits (the initial
Maxwellian distribution, being characterized by the thermal
velocityvT and the bulk flow speedvD). The motion of tran-
sient particles in the center of thin current sheet might be
described as two simultaneous motions: fast bounce oscilla-
tions inZ coordinate and slowX-gyration in a magnetic field
component normal to a current sheet planeBn. These twoX
andZ oscillations in a first approximation are decoupled if
Bn/B0�1. We assume that the dynamics of the ion popu-
lation is quasi-adiabatic (Whipple et al., 1986, Büchner and
Zelenyi, 1989) so that the action integralIz=

m
2π

∮
Vzdz is

approximately conserved. We assume thatBn component of
the magnetic field has small but finite value, so that only ions
are quasiadiabatic while for electronsBn is strong enough
to magnetize electrons, therefore the cross-field motion of
the electron component is described by hydrodynamic equa-
tions with anisotropic pressure tensor. The electron motion
along the field lines is assumed to be fast enough to sup-
port a quasi-equilibrium Boltzmann distribution in the pres-
ence of an electrostatic potential and mirror forces. A back-
ground plasma with quasi-neutralityni≈ne is also assumed.
Such an approach represents a generalization of the 1D self-
consistent TCS model developed earlier (Malova et al., 2000;
Sitnov et al., 2000a; Zelenyi et al., 2000). In these models the
role of the electron population was not taken into account.

The quasiadiabaticity approachIz≈ const. is valid under
the conditionκ=

√
Rc/ρmax<1 whereρmax is the maximum

gyroradius of the ion, andRc, the minimum curvature radius
(see B̈uchner and Zelenyi, 1989). This condition holds in
the magnetotail for numerous TCS observations (Pulkkinen
et al., 1994). As a matter of fact, Lui (1993) and Sergeev
et al. (1993) estimated the parameterκ in the midtail to
be of ther order of 0.1 for ions and above 3 for electrons.
The κ parameter of the ions is thus small enough to ensure
quasi-adiabatic conditions, whereas that of electrons is large
enough to consider these particles as a magnetized compo-
nent of the plasma.

In general, there exists two exact integrals of the parti-
cle motion: the total particle energy[W=mv2

/
2+ eϕ̃(z)(ϕ̃

is the electrostatic potential) and the canonical momentum
Py=mvy−(e/c)Ay(x, z), which is conserved due to the ab-
sence of explicit - dependence in our model. In the quasi-
adiabatic case, the approximate integral of ”fast” motion
alongZ-coordinate (Sonnerup, 1971; Francfort and Pellat,
1976; B̈uchner and Zelenyi, 1989; Whipple et al., 1986,
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1990) is also roughly conserved. All classes of particle pop-
ulations in the magnetotail (i.e. Speiser’s or transient ions,
quasi-trapped ions on “cucumber”-like orbits and trapped
ions with “ring”-like orbits) may actually be classified ac-
cording to theirIz values (B̈uchner and Zelenyi, 1989). In
this study, as mentioned above, we consider only ions with
Speiser’s orbits and neglect the currents carried by parti-
cles executing “cucumber” and “ring” orbits. The effect of
these latter populations has been investigated in our previous
studies (Zelenyi et al., 2002, 2003). The derivation of self-
consistent dimensionless Vlasov-Maxwell system of equa-
tions for a plasma with one active component (ions) has been
described in detail by Sitnov et al. (2000a, b) and Zelenyi et
al. (2000). Here we use a similar approach to obtain self-
consistent solutions for a two-component system. The main
steps of this calculation are described hereinafter.

Taking into account the equations of particle motion and
the conservation of the integralPy , the quasi-adiabatic in-
variantIz may be expressed as

Iz(v, z) = 2m
/
π

z1∫
z0

(
v2
y + v2

z + 2e
{
ϕ̃(z)− ϕ̃(z′)

}

−

vy + e/mc

z′∫
z

Bx(z
′′)dz′′


2 )1/2

dz′ (1)

with the following limits of integration (Sitnov et al., 2000b)

vy ±

√
v2
y + v2

z + 2e {ϕ̃(z)− ϕ̃(z′)} /m =

−(e
/
mc)

z0,1∫
z0

Bx(z
′′)dz′′. (2)

In the case when the solution of Eq. (2) is negative, the value
z0 is set equal to 0.

2.2 Vlasov-Maxwell system of equations

For the 1D TCS model that we consider, the self-consistent
system of Vlasov-Maxwell equations has the following sim-
ple form:

dBx

dz
= (4π

/
c)
(
jyi(z)+ jye(z)

)
(3)

jyi = (4π
/
c)
∑

i

e

∫
vyfi(z, v)dv. (4)

Here, jyi is the total ion current in they-direction, fi

is the ion distribution function within the current sheet
which is obtained by mapping the source distribution
from the edges of TCS to the neutral plane using Li-
ouville’s theorem. Source distribution (corresponding
to large values ofz) has a form of shifted Maxwellian:
fi∼exp{−[(v‖(v, I (z))−vD)2

+v2
⊥
(v, I (z))]/v2

T } (where
vT is the thermal velocity, andvD is the drift velocity).

We then introduce the dimensionless variables
r = R/(ω0vDε4/3), ζ = zω0/ε

4/3VD, w =
←

v/(vDε2/3),
I=Izε

2/3ω0/(mivT ), ϕ=mv2
Dε4/3ϕ̃/2e, E=cE/B0vDε2/3

p̃⊥,‖=p⊥,‖/N0T⊥,‖0 j̃=J/en0vDε2/3, n=ñ/N0,
b̃x=Bx/B0, b̃=B/B0, where r is a normalized dis-
tance (here,ζ is the dimensionlessz coordinate),w is the
dimensionless particle velocity vector,I is the dimensionless
adiabatic invariant,ε=vT

/
vD is the ion source anisotropy

parameter, ω0=eB0
/
mic is the ion gyrofrequency in

the magnetic fieldB0 at the edges of the sheet,b is the
normalizedBx component of the magnetic field,ϕ is the
dimensionless electrostatic potential andje is the normalized
electron current in they direction: je=eNevDε2/3j̃e. Using
relation between particle magnetic momentµ and adiabatic
invariant Iz as Iz=4πcµ/ε (Sitnov et al., 2000b) one may
then rewrite the normalized ion distribution function at the
right-hand side of Eq. (4) as

fi (w, I (ζ ))=

n0 exp(−ε−2/3I )×exp

(
ε−2/3

([√
w2

0+ϕ−I (ζ )−ε−2/3
]2

+I (ζ )

))
(
π3/2v3

T

[
1+erf (ε−1)

]) . (5)

In dimensionless form, the Maxwell equation (3) then be-
comes

dbx

dζ
=

4ε

π3/2

(
vD

vA

)2
{∫

wy[
1+ erf (ε−1)

]
exp

(
ε−2/3

([√
w2

0+ϕ−I−ε−2/3
]2

+I

))
d3w+

επ3/2

4
j̃e

}
. (6)

We simplify this equation by replacing theζ -coordinate with

the dimensionless vector potentialη=ε2/3
ζ∫
0

b(ζ ′)dζ ′ and by

integrating over theη-coordinate:

bx(η) =
2
√

2ε1/6

π3/4

(
vD

vA

){ η∫
0

{∫
wy[

1+ erf (ε−1)
]

exp

(
ε−2/3

([√
w2

0+ϕ−I−ε−2/3
]2

+I

))
d3w+

επ3/2

4
j̃e

}
dη′

}1/2

(7)

The usual boundary conditionb(∞)=1 is used in Eq. (7).

2.3 Electrostatic potential and electric field

Let us now describe the calculation of the electron current
j̃e, ambipolar electrostatic fieldE and potentialϕ in our
1D kinetic TCS model. For simplicity, we assume that the
electron distribution depends upon the magnetic momentµ

asfe(µ)∼δ(µ−µ∗), i.e. we assume that the electron com-
ponent represents an ensemble of particles characterized by
some average value of magnetic momentµ∗, with parallel
pressureP| and perpendicular pressureP⊥ as the diagonal
components of the gyrotropic pressure tensor. Based on such
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a semi-hydrodynamic description, the electron motion within
TCS is given by

mr̈=−e

(
E +

1

c
[v×B]

)
−

∇pe

ne

−µ∇B. (8)

We use a fluid approach to describe the electron motion
across the magnetic field lines and a guiding center approxi-
mation for the parallel motion:

me

dve⊥

dt
=−e

(
E⊥+

[ve×B]

c

)
−
∇⊥pe

ne

(9)

me

dve‖

dt
=−eE‖−

∇pe‖

ne

−µ∇‖B (10)

(−e) being the electron charge. The last term in Eqs. (8) and
(10) is the repulsive diamagnetic force acting on the elec-
trons with magnetic momentµ, pij=p⊥δij+(p‖−p⊥)hihj ,
h=B/B is the electron pressure tensor, andB=(B2

x+B2
z )1/2

is the total magnetic field. Neglecting the electron inertia for
the fast parallel motion and substitutingE||=−∇ϕ, we ob-
tain from Eq. (10)

∇ϕ(s) =
1

ene

∇‖pe +
µ∇‖B(s)

e
, ϕ0 ≡ ϕ(∞) = 0, (11)

wheres is the curvilinear coordinate along the field line, and
ne (r, ϕ(ζ ))=ni (r, ϕ(ς))=n as a result of quasi-neutrality.
In the 1D case, this equation can be easily integrated if we
assume an isothermal (Te=const) equation of state:

p‖e = neT‖e. (12)

Note that the quantityτ‖=Ti/Te‖ here becomes an important
characteristic parameter. For isothermal electrons, Eq. (11)
can then be rewritten in a form corresponding to the Boltz-
mann distribution
ne(s)

n0
= exp

{
e(ϕ(s)− ϕ0)− µ(B(s)− B0)

Te

}
. (13)

2.4 Electron currents

For the cross-field particle motion, if one neglect higher order
drifts, one obtains from Eq. (9)

ve⊥ = c
E′
⊥ × B

B2
, (14)

where

E′
⊥ = E⊥ +

∇⊥pe

ene

. (15)

In the case of isotropic pressure the cross-field electron cur-
rent has the following simple form:

je⊥ = −eneve⊥. (16)

In the case of anisotropic pressure, we may use a more gen-
eral form of this expression (Krall and Trivelpiece, 1973).
Taking into account the influence of curvature drifts that are
of particular importance here, we get

je⊥ = −enec
[E × h]

B
+

c

B
[h×∇⊥p⊥e]+

c

B

(
p‖e − p⊥e

)
[h× (h∇) h] , h =

B

B
. (17)

2.5 Components of electron anisotropic pressure. Final di-
mensionless equations

To calculate the electron current, one must determine the
electric field and pressures (both perpendicular and parallel).
In principle, the parallel electron pressure can be obtained
from the second Chew-Goldberger-Low (CGL) equation of
statep‖B

2/N3
= const (Kulsrud, 1983). Really, CGL ap-

proximation cannot be applied in the narrow region near the
neural plane due to very large electron curvature drifts in this
region. As one can see from Eq. (17) the curvature drift is in-
versely proportional to the curvature radius of the magnetic
field lines. Near the equatorial plane in a very narrow re-
gion, where formally calculated electron drifts become very
large, CGL approximation fails and corresponding amplitude
of je⊥ becomes erroneously large. We have used more ade-
quate estimates based on the energy conservation arguments
for electrons. This equation however is not valid in the TCS
neutral layer whereB vanishes, and equivalently, the CGL
assumption for the background plasma is violated. Instead of
this equation, we use the conservation of the particle energy
since we examine the equilibrium of a conservative system.

mv2

2
+ eϕ =

mv2
0

2
≡ const, v2

= v2
‖ + v2

⊥ . (18)

With v2
⊥
=v2
⊥0

B(z)
B0
=q2v2

0
B(z)
B0

(q≡ sinθ=
(
τ‖
/
(τ+
‖

τ⊥)
)1/2

,

whereθ is the average pitch-angle of electrons), we obtain:

p‖ = nmv2
0 − nmv2

⊥
= nmv2

0

(
1− q2B(z)

B0

)
. (19)

Perpendicular pressure is taken from the first CGL equation
of state (Chew et al., 1956)

p⊥

nB
= const. (20)

Using the above mentioned dimensionless variables, one can
rewrite Eqs. (11, 17, 19, 20) as:

∇‖ϕ̃(s̃) = ε2/3

[
1

τ‖

∇‖
{
ñ(1− q2b(z)

}
(1− q2)ñ

+
1

τ⊥
∇b

]
;

Ẽ⊥ = −
1

2ε2/3

dϕ̃

dr̃⊥
; Ẽ‖ = −

1

2ε2/3

dϕ̃

ds̃
; b = (b2

x + b2
n)

1/2 (21)

j̃e⊥ = −ñw̃⊥ +
1

2b

(
p̃‖e

τ‖
−

p̃⊥e

τ⊥

)
[b, (b∇) b]

b3

w̃⊥ =
1

b2

[
Ẽ′, b

]
, Ẽ′ = Ẽ +

1

2τ⊥ñ

[
∇p̃⊥, b

]
(22)

p̃‖(z) = ñ
1− q2b

1− q2
(23)

p̃⊥ = ñb. (24)

Here we have reduced the problem to four dimensionless pa-
rameters that characterize the TCS properties, viz.ε =

vT i

vDi
,

τ‖ =
Ti

Te‖
, τ⊥ =

Ti

Te⊥
, bn =

Bn

B0
.
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2.6 Method of calculations

The system of Eqs. (7), (21)–(24) together with boundary
conditions imposed on the magnetic field and on the electro-
static potential fully describes our 1D semi-fluid equilibrium
model of self-consistent current sheet. A set of numerical
solutions of these equations can be obtained using a double
iteration process in which the anisotropic electron current is
not considered in the first step. The ion current, density and
magnetic field are calculated using the standard iteration pro-
cess (Eq.7 with j̃e = 0). To recalculate the electrostatic po-
tential, the ion density and quasi-neutrality condition are then
substituted into Eq. (21). The electrostatic potential is thus
used to calculate the electron current using Eq. (22). This
iteration procedure is then repeated taking into account the
electron current in Eq. (7), until the desired convergent solu-
tion is reached (usually after 7–10 iteration steps).

3 Results

By solving the system of Eqs. (7), (21)–(23) with corre-
sponding boundary conditions, the self-consistent profiles of
partial and total current densities, plasma density, electric
and magnetic fields as well as electrostatic potential are ob-
tained. For clarity, we show here the characteristic profiles
of TCS as a function of three essential parameters of the sys-
tem (e.g.bn, τ⊥, τ‖). Another parameterε=1, will be con-
sidered below for values typical of the Earth’s magnetotail.
Figure 1a shows the TCS current density for different initial
values ofbn and for the case of anisotropic electron pres-
sure. The fine structure of this profile of the current density
is determined by the principal difference between the motion
of ions and electrons inside TCS. Ions (with the Larmor ra-
dius about CS thickness) are demagnetized near the neutral
plane and are moving along open-ended orbits experiencing
meandering type of motion near the neutral plane. The char-
acteristic thickness of a “pure” ion current sheet (i.e. sheet
with electrons serving only a cold neutralizing background)
is about ion Larmor radius, and its profile is determined by
non-harmonic oscillations of nonadiabatic ions in the region
of strong magnetic field inhomogeneity. Otherwise electrons
(with Larmor radius 50–100 times smaller) usually are mag-
netized in the current sheet, and they move along drift orbits.
Corresponding drift electron currents are [E×B], gradient
and curvature ones. The third kind of particle drift depend-
ing on the anisotropy of electron pressure absolutely predom-
inates in a narrow region in the very center of the current
sheet, where the curvature radii of the magnetic field lines
are very small. The thickness of this region is proportional
approximately toL(Bn/B0)

4/3 (Zelenyi et al., 2000), i.e. it
has relatively narrow scale in comparison with characteris-
tic thickness of the whole sheet(L∼ρ0i). Anisotropic elec-
trons in Fig. 1a support a very narrow current maximum in
the vicinity of the neutral plane, which is embedded inside
a more thicker ion current. This peak is entirely due to the
electron curvature drift (last term on the RHS of Eq.17) in
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j y~

(b)

Fig. 1. Profiles of the dimensionless current densities in TCS for
different values of parameterbn=0.025 (solid line), 0.1 (dashed-
dotted line), 0.5 (dotted line) as functions of dimensionless z-
coordinateζ in (a) anisotropic case of electron pressure,(b)
isotropic case (Zelenyi et al., 2004).

the region of a large magnetic field line curvature. A remark-
ably strongbn dependence of the current maximum in the
neutral plane can be seen. For comparison, the influence of
isotropic electrons on the TCS structure when the essential
electron contribution is given byE×B and gradient parti-
cle drifts (first and second terms on the RHS of Eq.17) is
shown in Fig. 1b. These isotropic electron effects lead to a
current sheet splitting and the appearance of a characteris-
tic bifurcated (double-humped) structure. Figure 2a shows
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Fig. 2. Profiles of the dimensionless characteristics of TCS show
contributions of(a) partial electron and ion current densities and
(b) corresponding magnetic fields for fixed valuesbn=0.1 andε=1.

the internal structure of a total TCS current, i.e. the relative
ion and electron contributions to the current density. The
corresponding magnetic field profiles are shown in Fig. 2b.
One can see that the characteristic steepened structure of
the magnetic field profile is governed by ansiotropic elec-
trons whereas the general large-scale structure is formed by
current-carrying ions. For realisticbn values, the curvature
drift is much larger thanE×B and gradient drifts of elec-
trons in the isotropic case (Fig. 1b). One can see that the
maximum of electron current in the very center of the sheet
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Fig. 3. Profiles of the electrostatic potential for differentbn as func-
tions of coordinateζ .

varies roughly in an inverse proportion to the value of nor-
mal magnetic field componentbn, since this component con-
trols the curvature radius of the field lines. Corresponding
profiles of the electrostatic potential are shown in Fig. 3. It
shows that in general electrostatic potential is positive due
to current carrying ions, which become temporarily trapped
in the vicinity of CS. The peculiarities of potential profiles
are due to the difference between electron and ion dynam-
ics. Magnetized electrons move along closed large-scale fig-
ure eight-like drift orbits gyrating around magnetic field lines
and quickly moving along them (especially in a very center
of the current sheet). Thus electron density should have a
depression in a central region. The requirement of charge
neutrality leads to the appearance of an ambipolar electric
field, which favors the net plasma rarefaction near the neu-
tral plane. As a result ions might be pushed out from the
center of current sheet to its edges, thus generating the local
minimum of total plasma density in the center. As one can
see from Fig. 3 this effect is more noticeable for largerBn

values when the influence of magnetized electron motion is
stronger. Figure 4 shows corresponding profiles of the mag-
netic field. One can see a substantial steepening of the mag-
netic field profile near the neutral plane. As we have men-
tioned above electron curvature drift currents in the center of
the sheet are responsible for this effect. Figure 5 presents
the profiles of TCS current density as a function of the ratios
τII=Ti/TeII=τ⊥=Ti/Te⊥. Figure 5 shows that peak ampli-
tude of electron current is inversely proportional to the ratio
Ti/Te. For a typical value of the ion to electron temperature
ratio in the magnetotailτII,⊥∼5, one can clearly see a multi-
layer structure, viz., electron currents are embedded within a
much broader region where the ion contribution is dominant.
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Fig. 4. Self-consistent profiles of the dimensionless magnetic field
in TCS for different values of parameterbn, corresponding to
Fig. 1a.

4 Discussion

The results of our model show that there exists a class of
equilibrium solutions of 1D self-consistent TCS configura-
tion where anisotropic electrons provide a very characteris-
tic contribution to the overall current structure. It has been
shown earlier that the electrons may carry a significant part
of the cross-tail current and lead to a bifurcated structure of
the current density profile (Asano, 2001, 2003). In a more
general case of electrons with anisotropic pressure, the TCS
structure exhibits another characteristic feature. In the case
of isotropic electrons, the magnetic field profile is flattened
in the center of the sheet (Zelenyi et al., 2004), whereas in
the anisotropic case it is steeper in this region. Important that
anisotropy becomes a key word for the physics of such sheets
and this physic is very different from that one meets dealing
with isotropic Harris-type sheets. Interesting that even the
very early pioneering work by Coppy and Rosenbluth (1968)
empasized the critical role anisotropy could play in destabi-
lization of such systems.

Recent CLUSTER data show (Nakamura et al., 2004) that
thin current sheets in the Earth’s magnetotail during geomag-
netically active periods become very dynamical and that the
shape of the current density profile may substantially evolve
with time, viz. exhibit double or even multiple peaks. It is
not clear whether such structures represent successive phases
of current sheet evolution or appear separately under specific
external and/or internal conditions. A few theoretical mod-
els have attempted to explain such complicated current sheet
structures. Hoshino et al. (1996) and Asano et al. (2003)
suggested that the splitting of the cross-tail current is due to
the influence of Hall effects. On the other hand, Zelenyi et
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Fig. 5. Profiles of TCS current densities as a functions of coordinate
ζ for different values of parametersτ⊥=τII=2, 5, 8.

al. (2002) proposed that the current sheet bifurcation results
from accumulation of quasi-trapped plasma. Also, Greco et
al. (2002) discussed the implications of ion scattering at low
frequency magnetic field fluctuations and showed that this
may lead to current bifurcation as well. Sitnov et al. (2003)
considered small anisotropies in ion temperature in Harris-
like equilibria and obtained bifurcated structures for speci-
fied parameter ranges. Our model allows to estimate ampli-
tudes of a large scale electrostatic field building up in a sheet
to keep it charge neutral. Of course, there are other mech-
anisms supporting formation of electric field across the cur-
rent sheet. Daughton et al. (2004) considered scattering of
particles at low frequency LHD fluctuations at the edges of
the Harris- type current sheet (where density gradients reach
maximum). This scattering provides cross-field mobility to
particles and (in absence ofBn) might result to some effects
of the type we considered above: ion leakage from the cen-
tral region and appearance of the electrostatic field restoring
charge neutrality. In a future in the dynamic anisotropic cur-
rent sheet model it might be interesting to study the combined
action of both effects

So far the model presented here, which explicitly takes
into account electron curvature drifts, is the only model
that can explain more sophisticated cross-tail current profiles
with triple peaks. Recent multi-spacecraft observations have
shown that the cross-tail current profiles exhibit a high degree
of complexity and variability and it is expected that CLUS-
TER and other upcoming missions will provide the detailed
measurements needed to resolve important physics issues.

Acknowledgements.The authors are grateful to V. Sergeev,
W. Baumjohann, R. Nakamura and A. Runov for their profound
interest in our work and very fruitful discussions of theoretical re-
sults and Cluster findings. This work was supported by the Russian



586 L. M. Zelenyi et al.: Nonlinear equilibrium structure of thin currents sheets

Foundation of Basic Research grants 02-02-16003, 03-02-16967,
grant of Council of the President of the Russian Federation for
Support of Leading Scientific Schools HIII-1739.2003.2, INTAS
grant 03-51-3738 and NASA grant NNG04GE37G.

Edited by: J. B̈uchner
Reviewed by: I. Silin and another referee

References

Asano, Y.: Configuration of the thin current sheet in substorms,
Ph.D. thesis, Univ. Tokyo, 2001.

Asano, Y., Mukai T., Hoshino, M., Saito, Y., Hayakawa, H., and Na-
gai, T.: Evolution of the thin current sheet in a substorm observed
by Geotail, J. Geophys. Res., 108, doi:10.1019/2002JA009785,
2003.

Baumjohann, W. and Nakamura, R.: What is Cluster telling us
about magnetotail dynamics, Proceedings of 34th COSPAR sci-
entific assembly, Houston, TX, USA, 10-19 October, 2002, Proc.
D3.1-0027-02, 1–9, 2002.

Birn, J., Hesse, M., and Schindler, K.: MHD Simulations of Mag-
netotail Dynamics, J. Geophys. Res., 101, 12 939–12 954, 1996.
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