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Abstract. We review some recent results that have been ob-
tained in the investigation of collisionless reconnection in
two dimensional magnetic configurations with a strong guide
field in regimes of interest for laboratory plasmas. First
we adopt a two-fluid dissipationless plasma model where
the plasma evolution is described by the advection of two
Lagrangian invariant fields. Then, we show that an analo-
gous formulation in terms of Lagrangian invariants applies
to the case where the electron response is obtained from a
drift-kinetic model.

1 Introduction

Laboratory plasmas and space plasmas often exhibit different
physical behaviour even in the case of closely related phe-
nomena, such as magnetic field line reconnection, because
of different parameter ratios and most importantly, because
of different boundary conditions. In particular, laboratory
plasmas are strongly constrained by periodicity conditions
and, with the exception of Reverse Field Pinches, by the
structural rigidity imposed by the externally generated and
quasi-uniform toroidal magnetic field. On the other hand
both types of plasmas are generally characterized by very
large Lundquist numbers and, in particular for space plasmas,
by conditions where the characteristic reconnection time is
shorter than the electron-ion collision time. In such low col-
lisionality regimes magnetic reconnection is made possible
not by electron resistivity, but by electron inertia and by ki-
netic (thermal) effects.

Recently, collisionless magnetic field line reconnection in
the laboratory has been re-examined inOttaviani et al.(1993,
1995); Cafaro et al.(1998); Grasso et al.(2000, 2001); Por-
celli et al. (2002); Del Sarto et al.(2003); Pegoraro et al.
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(2004) and in Liseikina et al.(2004) with the aim of un-
derstanding the fast evolution time scales displayed in the
experiments and of determining whether the magnetic is-
land growth can saturate in the absence of dissipation. Of
particular importance is the investigation of whether and in
which form the reconnection time scales are determined by
the microscopic spatial scales arising from electron inertial
and thermal effects and that are involved in the reconnec-
tion process (see, e.g.Bhattacharjee et al., 2001; Shay et al.,
2001; Wang et al., 2001; Fitzpatrick, 2004a,b). In addition,
it is important to investigate whether the relative values of
these microscopic spatial scales determine:

1) the final state of the saturated island and in particular the
distribution of the current layers and of the fluid vortic-
ity layers within the island,

2) the redistribution of the released magnetic energy
among the different forms of plasma energy,

3) the onset of secondary instabilities driven by the recon-
nection process.

In this investigation the use of a two fluid model, first de-
veloped inSchep et al.(1994); Kuvshinov et al.(1994, 1998)
has been particularly fruitful since, on the one hand, it con-
tains the dispersive wave features of kinetic Alfvèn waves,
features that are thought (Rogers et al., 2001) to play a funda-
mental role in all descriptions of collisionless reconnection,
and on the other hand it exhibits elegant mathematical prop-
erties that allow us to describe the nonlinear plasma evolution
in a rather compact and general form. The usefulness of such
an approach has been evidenced also in the investigation of
the kinetic regime performed inLiseikina et al.(2004), where
it has been shown in that these mathematical properties can
be extended to regimes where the electron response is de-
rived from a drift kinetic equation (de Blank, 2001; Valori,
2001; de Blank et al., 2003). The extension of the investi-
gation of the nonlinear evolution of magnetic reconnection
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to the kinetic regime is imposed by the fact that, in the pres-
ence of thermal effects, a fluid approach cannot be properly
justified at the increasingly small scale lengths that are char-
acteristic of the plasma nonlinear evolution in the absence of
dissipation.

An important consequence of the results reviewed in this
paper is that the physical process that occur at the micro-
scopic scalelengths involved in the reconnection process de-
termine its evolution in a very intrinsic way by changing the
conservation laws that the plasma evolution must obey. This
is very different from the case when magnetic reconnection
occurs through the effect of electron resistivity, as in the lat-
ter case no invariant quantities are preserved.

2 Magnetic connections

Magnetic topology plays an important role in the global dy-
namics of high temperature plasmas. Within the ideal MHD
plasma description, where

E + u × B/c = 0, ⇒
∂B

∂t
= ∇ × (u × B) , (1)

with E(x, t), B(x, t) the plasma electric and magnetic field
andu(x, t) the fluid plasma velocity, two plasma elements,
separated by the vectorδl(x, t) that are initially connected by
a magnetic field line (δl×B=0 att=0), remain connected by
a field line at any subsequent time, sinceδl×B is transported
with the plasma (i.e., its Lie derivative vanishes)

∂(δl × B)

∂t
+ (u · ∇) (δl × B) = −(∇u) · (δl × B) . (2)

This condition introduces a topological linking (magnetic
connection) between plasma elements that is preserved dur-
ing the ideal MHD plasma evolution. Magnetic linking con-
straints the plasma dynamics by making configurations with
lower magnetic energy, but different topological linking, in-
accessible.

Magnetic reconnection partially removes these constrains
by allowing the field lines to decouple locally (i.e., around
critical points) from the plasma motion and to reknit in a dif-
ferent net of connections. This localized breaking of the con-
nections arises from physical effects neglected in Eq. (1) that
are weak all over the plasma, but are locally enhanced by the
formation of small spatial scales around critical points.

In collisionless magnetic field line reconnection, the de-
coupling between the magnetic field and the plasma motion
occurs because of finite electron inertia (in the fluid limit)
or thermal effects (in the kinetic plasma description). In the
absence of dissipation, the plasma response both in the fluid
and in the kinetic electron treatment admits generalized link-
ing conditions that are preserved during the process of mag-
netic reconnection and that in a 2-D configuration take the
simple form of Lagrangian invariants.

2.1 Generalized magnetic connections: an example

In a collisionless cold plasma model the effect of electron
inertia and of the Hall term in Ohm’s law

E +
u

c
× B = −

me

e

due

dt
+

1

nec
J × B, (3)

can be accounted for by introducing the vector fields

Be ≡ B −
mec

e
∇ × ue = ∇ × Ae, (4)

Ee ≡ E +
me

2e
∇u2

e +
me

e

∂ue

∂t
= −∇ϕe −

1

c

∂Ae

∂t
, (5)

where subscriptse denote electron quantities andue is the
electron fluid velocity. The generalized vector potentialAe

is proportional to the fluid electron canonical momentum and
ϕe to the total electron energy and reduce to vector potential
A and to the electrostatic potentialϕ in the limit of massless
electrons. The vector fieldsBe(x, t) andEe(x, t) satisfy the
homogeneous Mawxell’s equations and the ideal Ohm’s law
in the form

Ee +
ue

c
× Be = 0, (6)

which leads to the generalized liking condition

∂(δl × Be)

∂t
+(ue·∇) (δl × Be) = −(∇ue)·(δl × Be) . (7)

Similarly, all the ideal MHD theorems (magnetic flux conser-
vation, magnetic helicity conservation, linking number etc,)
are recovered by substitutingBe for B andue for u.

2.2 Transitions between magnetic equilibria

The breaking of the magnetic connections allows the system
to access configurations with lower magnetic energy.

The possibility of a transition between two magnetic equi-
libria with different magnetic energies can be easily con-
ceived in the case of dissipative reconnection, when the local
decoupling between the magnetic field and the plasma mo-
tion is due to electric resistivity,E+u×B/c=ηJ , since the
excess magnetic energy that is released in the transition can
be transformed into heat. The possibility of such a transition
between two equilibrium states is less obvious in the nondis-
sipative case where energy can only be transferred into me-
chanical or (reversible) internal energy so that one could ex-
pect that the system cannot be ”stopped”in a new stationary
equilibrium with a lower magnetic energy. Indeed this appar-
ent difficulty is not very different from the one that occurs in
the treatment of Landau damping in Vlasov’s equation for the
distribution functionf (x, v, t). In Vlasov’s equation no en-
ergy is dissipated and particle-points (distribution elements)
in phase space that lie initially on anf=const hypersurface
and that move along the characteristics of the single-particle
HamiltonianH(x, v, t) lie at all times on anf=const hyper-
surface (with the same value of the constant). This amounts
to say that, in the absence of collisions,f -connections are
preserved.



F. Pegoraro et al.: Theory of collisionless reconnection 569

3 Two-dimensional configurations: connections and
Lagrangian invariants

The concept of magnetic connections simplifies in the case
of two-dimensional (2-D) configurations where all quantities
depend onx, y and on timet only. The magnetic configura-
tions of interest here are characterized by a strong, externally
imposed,Bz field which is taken to be fixed and does not
play the role of a dynamical variable and by an inhomoge-
neous shear field in the x−y plane associated with a current
densityJ (x, y, t) along the z-axis. The fieldBz plays a very
important physical role in determining the model that is ap-
propriate to represent the plasma dynamics in the x−y plane.
Plasma configurations whereBz is absent display a different
behaviour both in the fluid and in the kinetic description.

In such a 2-D configuration, the magnetic and the electric
field can be expressed as

B = B0ez + ∇ψ(x, y, t)× ez, (8)

E = −∇ϕ(x, y, t)+
ez

c

∂ψ(x, y, t)

∂t
, (9)

where the flux functionψ(x, y, t) is the z-component of the
vector potential of the shear magnetic field andϕ is the elec-
trostatic potential which plays the role of the stream func-
tion for the plama motion in the x−y plane. Then, the con-
served connections between plasma elements moving in the
x−y plane take the form of Lagrangian invariants i.e., can be
expressed in term of scalar quantities that are advected by the
plasma motion and are constant along characteristics.

In the ideal MHD limit this Lagrangian invariant corre-
sponds to the z componentAz of the magnetic vector po-
tential i.e. to the flux functionψ . Plasma elements that lie
initially on aψ=const curve in the x−y plane and that move
along the characteristics of the stream functionϕ remain at
all times on the sameψ=const curve, i.e.,ψ-connections are
preserved. Note that the conservation of a Lagrangian invari-
ant is qualitatively different from that expressed e.g. by the
continuity equation for the plasma energy density, insofar as
the values of a Lagrangian invariant cannot be modified, but
only redistributed.

3.1 Cold fluid finite-mass electrons

If the effect of electron inertia is included (in a cold electron
fluid), the Lagrangian invariant corresponds to the z compo-
nentAz−(mec/e)ue,z of the “ vector potential” of the field
Be, which is proportional to the z component of the elec-
tron canonical fluid momentum. In most cases of interest
for magnetic reconnection in a configuration with a strong
Bz field, the density perturbations can be taken to be small.
Then, the term proportional to the z componentue,z of the
electron velocity can be rewritten in terms of the z compo-
nent of the electron current densityJ (we disregard the ion
motion along field lines). Within this approximation, denot-
ing as customaryAz−(mec/e)ue,z by F , we have

F(x, y, t) = ψ(x, y, t)− d2
e∇

2ψ(x, y, t) , (10)

with −∇
2ψ(x, y, t)≡J (x, y, t) the z component of the cur-

rent density andde≡c/ωpe the collisionless electron skin
depth. The Lagrangian invariantF is advected by the stream
functionϕ of the electron motion in the x−y plane which is
proportional to the electrostatic potential according to

∂F

∂t
+ [ϕ, F ] = 0 , (11)

with the Poisson brackets[f, g] defined by

[f, g] = ez · ∇f × ∇g . (12)

This equation arises from the parallel component of Ohm’s
Eq. (3). The stream functionϕ obeys the equation

∂U

∂t
+ [ϕ,U ] = [J,ψ] , (13)

whereU=∇
2ϕ is proportional to the plasma fluid vorticity

and to the plasma density perturbation. This equation arises
from the electron continuity equation and from the quasi-
neutrality condition, after expressing the ion perturbed den-
sity in terms of the divergence of the ion polarization drift.

3.2 Warm fluid finite-mass electrons

When the effects of electron temperature are included, elec-
tron parallel compressibility leads to a modification of the
conserved connections (Schep et al., 1994) and introduces
a new microscopic scale-lengthρs≡(me/mi)1/2vthe/�i the
so called ion-sound gyro-radius. When this contribution is
included, an anisotropic electron pressure tensor appears in
Ohm’s law (as shown inSchep et al.(1994), this term is
needed in order to compensate for a drift term in the elec-
tron inertia contribution). Then Eq. (11) becomes

∂F

∂t
+ [ϕ, F ] = %2

s [U,ψ] , (14)

and the structure of the conserved connections is modified.
By combining Eqs. (13, 14), we find that in this warm fluid
finite-mass electron regime, two generalized connections are
conserved which are expressed by the Lagrangian invariants
G±(x, y, t) defined by

G± = ψ − d2
e∇

2ψ ± deρs∇
2ϕ , (15)

that are advected by the generalized stream functions

ϕ± = ϕ ± (ρs/de)ψ . (16)

The new advection equations are

∂G±

∂t
+ [ϕ±,G±] = 0 . (17)

Note the formal analogy with the standard 1-D Vlasov-
Poisson problem for electrostatic Langmuir waves: the set of
Eqs. (17) has the form of two coupled 1-D Vlasov equations,
with x and y playing the role of the coordinate and of the
conjugate momentum for the “distribution functions”G± of
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two “particle” species with opposite charges in the Poisson-
type equation forϕ and equal charges in the Yukawa-type
equation forψ

deρs∇
2ϕ =

(G± −G±)

2
,

ψ − d2
e∇

2ψ =
(G± +G±)

2
. (18)

The stream functionsϕ± play the role of the single particle
Hamiltonians.

3.3 Dynamics: energy functional

The dynamics of the plasma configuration is governed by the
conserved energy functionalHf l(ψ, ϕ) 1

Hf l(ψ, ϕ)≡
∫
d2x

2

(
|∇ψ |

2
+|∇ϕ|

2
+d2

e J
2
+ %2

sU
2
)
. (19)

The first term
∫
d2x|∇ψ |

2/2 represents the magnetic energy
in the shear field,

∫
d2x|∇ϕ|

2/2 the plasma fluid kinetic mo-
tion,

∫
d2xd2

e J
2/2 the energy of the ordered electron kinetic

energy along field lines and
∫
d2x%2

sU
2/2 the work done by

the parallel electron compression. This last term disappears
in the limit of a cold electron fluid (%s→0) . Note that the
magnetic energy and the plasma fluid kinetic motion, con-
tain first derivatives orψ andϕ while the ordered electron
kinetic energy and the work done by the parallel electron
compression contain second derivatives, i.e., one can expect
that the former two dominate at large scales and the latter
two at small spatial scales. Note in addition that, in the ab-
sence of dissipative effects, there are no characteristic dissi-
pative scalelengths in Eqs. (17) that can limit the nonlinear
formation of small spatial scales. However we stress that,
even when “resistive” or “’viscous” effects are effectively in-
cluded, they remain at all scales uniformly smaller than those
of the electron inertial terms. This is guaranteed by the fact
that fluid viscosity and electron resistivity do not introduce
higher order differential operators in Eqs. (17) and that the
characteristic evolution time is short on the the electron-ion
collision time.

4 Nonlinear reconnection regimes

We are interested here in the nonlinear evolution of colli-
sionless reconnection instabilities which arise because of the
initial inhomogeneous current distribution in the x−y plane.

1This energy functional is related to the possibility of describ-
ing Eqs. (17) in the form of Hamiltonian field equations with non-
canonical variables and degenerate non-canonical Poisson brackets
(Morrison (1984); Kuvshinov et al.(1994)). The kernel of these
Poisson brackets is given by an infinite set of Casimirs defined as∫
d2xC±(G±) with C± arbitrary smooth functions.
By redefining the energy functionalHf l by adding the ap-

propriate combination of Casimirs, we can rewriteHf l in the

formH(G±, ϕ±)=−
∫
d2x (G+ϕ++G−ϕ−)/2 (Kuvshinov et al.,

1998).

This procedure is different from the one where forced mag-
netic reconnection is studied in configurations where mag-
netic flux is driven from their boundaries (in our case recon-
nection is “forced” by the initial conditions). As mentioned
above, the decoupling between the plasma motion and the
magnetic field occurs around critical points that correspond,
in the 2-D configurations under examination, to the zeros of
the shear field i.e., to the zeros of∇ψ(x, y, t). As is cus-
tomary for magnetic configurations of interest for labora-
tory plasmas, we consider initial configurations where crit-
ical points have degenerated into a critical line, i.e., initial
configurations that depend only on one coordinate (say x)
and where the shear field vanishes along a line (the null line):
ψ0=ψ0(x) with ∂ψ0(x)/∂x=0|x=0.

The early development (linear phase) of the reconnection
instabilities in such configurations has been thoroughly ex-
amined in the literature in terms of threshold conditions for
the onset of the instabilities, growth rates and role of the
boundary layer at the null line. In this layer a large cur-
rent density cumulates and the topology of the shear field
starts to be changed with the formation of magnetic islands
bounded by magnetic separatrices. The interest here is to
examine the nonlinear phase of a collisionless reconnection
instability and the eventual saturation of the island growth.
The threshold condition of the reconnection instabilities in
null line configurations is controlled by the value of a pa-
rameter, usually denoted by1′, which “measures” both the
total current that the instability drives in the boundary layer
and the magnetic energy flux that is convected by the insta-
bility flows towards the null line. In the case of collisionless
reconnection instabilities, where the decoupling between the
magnetic field and the plasma occurs because of electron in-
ertia, the regime that is of greatest interest is the so called
large1′-regime (de1′ of order unity).

The early nonlinear phase of the development of the col-
lisionless reconnection instability in the cold electron limit
was examined numerically and analytically inOttaviani et al.
(1993, 1995) and shown to lead to a narrow current layer
along the initial null line and to a super-exponential phase
with a reconnection rate, as measured by the reconnected flux
δψ(t) at the island X-point, larger than in the linear phase.

In order to investigate the long term nonlinear evolution
and the ”saturation” of a fast growing (largede1′) recon-
nection instability produced by electron inertia in a sheared
magnetic equilibrium configuration with a null line, Eqs. (17)
were integrated numerically inCafaro et al.(1998); Grasso
et al. (2000, 2001); Del Sarto et al.(2003) The scaling of
the nonlinear evolution time with the microscopic parame-
tersde and%s and the dependence of the spatial structure of
the current density and vorticity distribution in the saturated
phase on these parameters were of particular interest in such
investigation.

4.1 Numerical results: fluid regimes

In this series of simulations periodic conditions were taken
along y and the configuration parameters were chosen such
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that only one mode can be linearly unstable. The typ-
ical mesh sizes areNx=2048 andNy=1024. Random
perturbations were imposed on the equilibrium configura-
tion ψ0(x)=−L/[2 cosh2 (x/L)] in a simulation box with
Lx=2Ly=4πL, taking de=3/10L and %s/de in the range
0-1.5. The accuracy of the integration was verified by test-
ing the effects of numerical dissipation on the conservation
of the energy and of the Lagrangian invariants.

4.2 Formation of small spatial scales in the nonlinear phase

The Lagrangian invariantsG± differ from the flux function
ψ by the termd2

e J ± de%sU which has small coefficients
but involves higher spatial derivatives. As shown inCafaro
et al.(1998), magnetic reconnection proceeds unimpeded in
the nonlinear phase because of the development near the X
point of the magnetic island of increasingly small spatial
scales that effectively decoupleψ fromG±. In Hamiltonian
regimes the formation of such scales does not stop at some
finite resistive scalelength. This corresponds to the formation
of increasingly narrow current and vorticity layers. Because
of the conservedG± connections, the spatial localization and
structure of these layers depends on the value of%s/de.

4.3 Mixing of the Lagrangian invariants and island growth
saturation

As mentioned above, in the reconnection model adopted,
magnetic energy

∫
d2x|∇ψ |

2 is transformed, in principle re-
versibly, into two forms of kinetic energy, one,

∫
d2x|∇ϕ|

2,
related to the plasma motion in the x−y plane and one,∫
d2xd2

e J
2, to the electron current along z and, for%s 6=0, into

electron parallel compression
∫
d2x%2

sU
2. The last two en-

ergies involve quantities with higher derivatives. Being the
system Hamiltonian, it is not a priori clear whether a recon-
nection instability can induce a transition between two sta-
tionary plasma configurations with different magnetic ener-
gies, as is the case for resistive plasma regimes where the
excess energy is dissipated into heat.

Taking%s/de∼1, inGrasso et al.(2001) it was shown that,
in spite of energy conservation, this transition is possible at a
“macroscopic” level. A new coarse-grained stationary mag-
netic configuration can be reached because, as the instability
develops, the released magnetic energy is removed at an in-
creasingly fast rate from the large spatial scales towards the
small scales that act a perfect sink. This allows the saturation
of the island growth. Similarly, the constraints imposed by
the conservation of theG± connections cease to matter at a
macroscopic level.

The advection of the two Lagrangian invariantsG± is de-
termined by the stream functionsϕ±. The winding, caused
by this differential rotation type of advection makesG± in-
creasingly filamented inside the magnetic island, leading to
a mixing process. These filamentary structures ofG± do
not influence the spatial structure ofψ which remains regu-
lar. The advection of the Lagrangian invariants is shown in
Fig. 1 where we draw the shaded isocontours ofG+ at time
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Fig. 1. Shaded isocontours of the Lagrangian invariantG+ in the
central region of the (x, y) domain of integration. The frames are
obtained at timest = 47.5, 50, 55, 60, 65, 70, 75, 80 for a run with
%s/de = 1.5, Lx = 4π, Ly = 21pi.

4.2 Formation of small spatial scales in the nonlinear phase

The Lagrangian invariantsG± differ from the flux function
ψ by the termd2

eJ ± de%sU which has small coefficients
but involves higher spatial derivatives. As shown in Cafaro
et al. (1998), magnetic reconnection proceeds unimpeded in
the nonlinear phase because of the development near theX

point of the magnetic island of increasingly small spatial
scales that effectively decoupleψ from G±. In Hamiltonian
regimes the formation of such scales does not stop at some
finite resistive scalelength. This corresponds to the formation
of increasingly narrow current and vorticity layers. Because
of the conservedG± connections, the spatial localization and
structure of these layers depends on the value of%s/de.

4.3 Mixing of the Lagrangian invariants and island growth
saturation

As mentioned above, in the reconnection model adopted,
magnetic energy

∫
d2x|∇ψ|2 is transformed, in principle re-

versibly, into two forms of kinetic energy, one,
∫

d2x|∇ϕ|2,
related to the plasma motion in thex-y plane and one,∫

d2xd2
eJ

2, to the electron current alongz and, for%s 6= 0,
into electron parallel compression

∫
d2x%2

sU
2. The last two

energies involve quantities with higher derivatives. Being the
system Hamiltonian, it is not a priori clear whether a recon-
nection instability can induce a transition between two sta-
tionary plasma configurations with different magnetic ener-
gies, as is the case for resistive plasma regimes where the
excess energy is dissipated into heat.

Taking %s/de ∼ 1, in Grasso et al. (2001) it was shown
that, in spite of energy conservation, this transition is possi-
ble at a “macroscopic” level. A new coarse-grained station-
ary magnetic configuration can be reached because, as the in-
stability develops, the released magnetic energy is removed
at an increasingly fast rate from the large spatial scales to-
wards the small scales that act a perfect sink. This allows
the saturation of the island growth. Similarly, the constraints
imposed by the conservation of theG± connections cease to
matter at a macroscopic level.

The advection of the two Lagrangian invariantsG± is de-
termined by the stream functionsϕ±. The winding, caused
by this differential rotation type of advection makesG± in-
creasingly filamented inside the magnetic island, leading to
a mixing process. These filamentary structures ofG± do not
influence the spatial structure ofψ which remains regular.
The advection of the Lagrangian invariants is shown in Fig.
1 where we draw the shaded isocontours ofG+ at timet =
47.5, 50, 55, 60, 65, 70, 75, 80 for a run with%s/de = 1.5.
The analogy with the Bernstein-Greene-Kruskal (BGK) so-
lutions of the Vlasov equation obtained in Manfredi (1993);
Lancellotti et al. (1998); Brunetti et al. (2000); Lancellotti
et al. (2003) for the nonlinear Landau damping of Langmuir
waves was discussed in Grasso et al. (2001). Note that, as in
the case of Vlasov equation, Hamiltonian reconnection nat-
urally leads to the formation of elongated ribbons. Indeed,
the conservation ofG± in Eqs. (17) requires the formation
of small scales, while the divergence free advection veloci-
ties derived from the stream functionsϕ± must necessarily
stretch the plasma in order to preserve areas.

Fig. 1. Shaded isocontours of the Lagrangian invariantG+ in the
central region of the (x,y) domain of integration. The frames are
obtained at timest = 47.5,50,55,60, 65, 70,75,80 for a run with
%s/de=1.5,Lx=4π , Ly=21pi.

t=47.5, 50, 55, 60, 65, 70, 75, 80 for a run with%s/de=1.5.
The analogy with the Bernstein-Greene-Kruskal (BGK) so-
lutions of the Vlasov equation obtained inManfredi (1993);
Lancellotti et al.(1998); Brunetti et al.(2000); Lancellotti
et al.(2003) for the nonlinear Landau damping of Langmuir
waves was discussed inGrasso et al.(2001). Note that, as in
the case of Vlasov equation, Hamiltonian reconnection nat-
urally leads to the formation of elongated ribbons. Indeed,
the conservation ofG± in Eqs. (17) requires the formation
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of small scales, while the divergence free advection veloci-
ties derived from the stream functionsϕ± must necessarily
stretch the plasma in order to preserve areas.

4.4 Onset of a secondary Kelvin Helmholtz instability: tur-
bulent versus laminar mixing

The advection, and consequently the mixing, of the La-
grangian invariants can be either laminar or turbulent de-
pending on the value of%s/de. The transition between these
two regimes was shown inDel Sarto et al.(2003). to be
related to the onset of a secondary Kelvin Helmholtz-type
(K-H) instability driven by the velocity shear of the plasma
motions that form because of the development of the recon-
nection instability. Whether or not the K-H instability be-
comes active before the island growth saturates, affects the
redistribution of the magnetic energy and determines whether
a (macroscopically) stationary reconnected configuration is
reached.

In the cold electron limit,%s/de=0, the system of Eqs. (17)
becomes degenerate and the generalized connections are de-
termined by a single Lagrangian invariantF . Initially, F
is advected along a hyperbolic pattern given by the stream
function ϕ which has a stagnation point at theO-point of
the magnetic island. This motion leads to the stretching of
the contour lines ofF towards the stagnation point and to
the formation of a bar-shaped current layer along the equilib-
rium null line, which differs from the cross shaped structure
found in the initial phase of the reconnection instability for
%s/de 6=0. Subsequently,F contours are advected outwards in
thex-direction. At this stageF starts to be affected by a K-H
instability that causes a full redistribution ofF . In this phase
the spatial structure ofF is dominated by the twisted fila-
ments of the current density which spread through the central
part of the magnetic island. The evolution of the Lagrangian
invariantF is shown in Fig.2 where its shaded isocontours
are plotted at timest=100, 102, 106, 111, 117, 127, 137, 147
in the central region of the (x,y) domain of integration.

After the onset of the secondary instability the contours of
the vorticityU , see Fig.3, exhibit a well developed turbulent
distribution of monopolar and dipolar vortices, while those
of ψ remain regular although they pulsate in time. The en-
ergy balance shows that part of the released magnetic energy
remains in the form of plasma kinetic energy corresponding
to the fluid vortices in the magnetic island and that an oscilla-
tory exchange of energy persists between the plasma kinetic
energy and the electron kinetic energy (see alsoBergmans
et al., 1998) corresponding to the pulsations of the island
shape.

This turbulent evolution of the nonlinear reconnection pro-
cess persists in the non degenerate, finite electron temper-
ature, case where the two Lagrangian invariantsG± deter-
mine the generalized linking conditions However, as the ratio
%s/de is increased, i.e. as the electron temperature effects be-
come more important, the onset of the K-H instability occurs
later during the island growth and its effect on the current
layer distribution becomes weaker. For%s/de∼1, no sign of
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4.4 Onset of a secondary Kelvin Helmoltz instability: tur-
bulent versus laminar mixing

The advection, and consequently the mixing, of the La-
grangian invariants can be either laminar or turbulent de-
pending on the value of%s/de. The transition between these
two regimes was shown in Del Sarto et al. (2003). to be re-
lated to the onset of a secondary Kelvin Helmoltz-type (K-H)
instability driven by the velocity shear of the plasma motions
that form because of the development of the reconnection in-
stability. Whether or not the K-H instability becomes active
before the island growth saturates, affects the redistribution
of the magnetic energy and determines whether a (macro-
scopically) stationary reconnected configuration is reached.

In the cold electron limit,%s/de = 0, the system of Eqs.
(17) becomes degenerate and the generalized connections are
determined by a single Lagrangian invariantF . Initially, F
is advected along a hyperbolic pattern given by the stream
function ϕ which has a stagnation point at theO-point of
the magnetic island. This motion leads to the stretching of
the contour lines ofF towards the stagnation point and to the
formation of a bar-shaped current layer along the equilibrium
null line, which differs from the cross shaped structure found
in the initial phase of the reconnection instability for%s/de 6=
0. Subsequently,F contours are advected outwards in thex-
direction. At this stageF starts to be affected by a K-H insta-
bility that causes a full redistribution ofF . In this phase the
spatial structure ofF is dominated by the twisted filaments
of the current density which spread through the central part
of the magnetic island. The evolution of the Lagrangian in-
variantF is shown in Fig. 2 where its shaded isocontours are
plotted at timest = 100, 102, 106, 111, 117, 127, 137, 147 in
the central region of the (x, y) domain of integration.

After the onset of the secondary instability the contours of
the vorticityU , see Fig. 3, exhibit a well developed turbulent
distribution of monopolar and dipolar vortices, while those
of ψ remain regular although they pulsate in time. The en-
ergy balance shows that part of the released magnetic energy
remains in the form of plasma kinetic energy corresponding
to the fluid vortices in the magnetic island and that an oscilla-
tory exchange of energy persists between the plasma kinetic
energy and the electron kinetic energy (see also Bergmans
et al. (1998)) corresponding to the pulsations of the island
shape.

This turbulent evolution of the nonlinear reconnection pro-
cess persists in the non degenerate, finite electron temper-
ature, case where the two Lagrangian invariantsG± deter-
mine the generalized linking conditions However, as the ratio
%s/de is increased, i.e. as the electron temperature effects be-
come more important, the onset of the K-H instability occurs
later during the island growth and its effect on the current
layer distribution becomes weaker. For%s/de ∼ 1, no sign
of a secondary instability is detectable during the time the
island takes to saturate its growth.

In the transitional regime, the advection pattern and the
current layer structures exhibit an intermediate behaviour.
Initially, G± are advected in opposite directions with a dif-

Fig. 2. Shaded isocontours of the Lagrangian invariantF in the
central region of the (x, y) domain of integration. The frames are
obtained at timest = 100, 102, 106, 111, 117, 127, 137, 147 for a
run with%s = 0, Lx = 4π, Ly = 21pi.

ferential rotation, as is the case for%s/de = 1. At later times
they acquire features characteristic of the evolution ofF in
the degenerate%s = 0 case and their advection becomes K-H
unstable leading to an almost turbulent distribution.

Fig. 2. Shaded isocontours of the Lagrangian invariantF in the cen-
tral region of the (x,y) domain of integration. The frames are ob-
tained at timest=100,102, 106,111,117,127,137, 147 for a run
with %s=0,Lx=4π , Ly=21pi.

a secondary instability is detectable during the time the island
takes to saturate its growth.

In the transitional regime, the advection pattern and the
current layer structures exhibit an intermediate behaviour.
Initially, G± are advected in opposite directions with a dif-
ferential rotation, as is the case for%s/de=1. At later times
they acquire features characteristic of the evolution ofF in
the degenerate%s=0 case and their advection becomes K-H
unstable leading to an almost turbulent distribution.
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Fig. 3. Shaded isocontours of the vorticityU in the central region of
the (x, y) domain of integration. The frames are obtained at times
t = 100, 102, 106, 111, 117, 127, 137, 147 for the same run of Fig.
2.

4.5 Need for a kinetic electron description

The above results show that the conservation of the general-
ized connections in the reconnection process leads to the for-
mation of current and vorticity layers with spatial scales that,
in the absence of dissipation, becomes increasingly small
with time. In this nonlinear phase of the development of the
reconnection instability, in the presence of thermal effects,

the fluid approximation becomes inconsistent inside the lay-
ers. The generalized connections and the constraints that they
exert on the plasma dynamics apply to the case of a fluid
plasma, where fluid elements can be defined and the linking
property between fluid plasma elements can be formulated.
inconsistent inside the layers. The generalized connections
and the constraints that they exert on the plasma dynamics
apply to the case of a fluid plasma, where fluid elements can
be defined and the linking property between fluid plasma el-
ements can be formulated.

It thus becomes important to understand what is the role
of the topological invariants in a kinetic electron description
where e.g., the canonical momenta of the single electrons
do not simply add up to give the fluid conserved Lagrangian
invariant F discussed above. The role of a finite electron
temperature on the topological properties of the plasma is al-
ready evident from the above results, since the contribution
of the parallel electron compressibility introduces two new
Lagrangian invariantsG± and two different streaming func-
tionsϕ± instead ofF andϕ, and consequently changes the
nonlinear evolution of reconnection in a significant way.

5 Drift kinetic formulation

Let F(x, y, v||, t) be the drift-kinetic electron distribution
function, withv|| the electron velocity coordinate along field
lines. It is convenient to adopt the electron canonical mo-
mentum, divided by the electron mass,p||, defined by2

p|| ≡ v|| − ψ, (20)

as the kinetic variable instead ofv||. Since we consider two
dimensional (z independent) fields and perturbations,p|| is a
particle constant of the motion.

In thex, y, p||, t variables the drift kinetic equation for the
distribution functionf(x, y, p||, t) ≡ F(x, y, v||, t) reads (de
Blank (2001); Valori (2001); de Blank et al. (2003))

∂f

∂t
+ [ϕ− ψp|| − ψ2/2, f ] = 0− [ϕkin, f ], (21)

with ϕkin = ϕ − ψp||/c − ψ2/2. Note that in Eq.(21) the
spatial derivatives are taken at constantp|| and not at con-
stantv||. For each fixed value ofp||, the time evolution off
corresponds to that of a Lagrangian invariant “density” ad-
vected by the velocity field obtained from the generalized
stream functionϕkin.

The advection velocity field is different on eachp|| =
const foil. Thus, as noted in Liseikina et al. (2004),f con-
sists of an infinite number of Lagrangian invariants, each of
them advected with a different velocity, that take the place of
the two fluid invariantsG± in Eqs.(17).

2We adopt the following normalizationsϕ = eϕ/mev
2
the, ψ =

eψ/mecvthe, x, y = x/L, y/L, t = tmev
2
thec/L2eB0, p|| =

p||/vthe, whereL is a characteristic length and the other symbols
are standard

Fig. 3. Shaded isocontours of the vorticityU in the central region
of the (x,y) domain of integration. The frames are obtained at times
t=100,102, 106, 111,117,127,137,147 for the same run of Fig.
2.

4.5 Need for a kinetic electron description

The above results show that the conservation of the general-
ized connections in the reconnection process leads to the for-
mation of current and vorticity layers with spatial scales that,
in the absence of dissipation, becomes increasingly small
with time. In this nonlinear phase of the development of
the reconnection instability, in the presence of thermal ef-
fects, the fluid approximation becomes inconsistent inside

the layers. The generalized connections and the constraints
that they exert on the plasma dynamics apply to the case of
a fluid plasma, where fluid elements can be defined and the
linking property between fluid plasma elements can be for-
mulated.

It thus becomes important to understand what is the role
of the topological invariants in a kinetic electron description
where e.g., the canonical momenta of the single electrons
do not simply add up to give the fluid conserved Lagrangian
invariantF discussed above. The role of a finite electron
temperature on the topological properties of the plasma is al-
ready evident from the above results, since the contribution
of the parallel electron compressibility introduces two new
Lagrangian invariantsG± and two different streaming func-
tionsϕ± instead ofF andϕ, and consequently changes the
nonlinear evolution of reconnection in a significant way.

5 Drift kinetic formulation

Let F(x, y, v||, t) be the drift-kinetic electron distribution
function, withv|| the electron velocity coordinate along field
lines. It is convenient to adopt the electron canonical mo-
mentum, divided by the electron mass,p||, defined by2

p|| ≡ v|| − ψ , (20)

as the kinetic variable instead ofv||. Since we consider two
dimensional (z independent) fields and perturbations,p|| is a
particle constant of the motion.

In thex, y, p||, t variables the drift kinetic equation for the
distribution functionf (x, y, p||, t)≡F(x, y, v||, t) reads (de
Blank, 2001; Valori, 2001; de Blank et al., 2003)

∂f

∂t
+ [ϕ − ψp|| − ψ2/2, f ] = 0 − [ϕkin, f ] , (21)

with ϕkin=ϕ−ψp||/c−ψ
2/2. Note that in Eq. (21) the spa-

tial derivatives are taken at constantp|| and not at constant
v||. For each fixed value ofp||, the time evolution off corre-
sponds to that of a Lagrangian invariant “density” advected
by the velocity field obtained from the generalized stream
functionϕkin.

The advection velocity field is different on eachp||=const
foil. Thus, as noted inLiseikina et al.(2004), f consists
of an infinite number of Lagrangian invariants, each of them
advected with a different velocity, that take the place of the
two fluid invariantsG± in Eqs. (17).

The fluid quantities are defined in terms of distribution
functionf as follows∫
dp||f (x, y, p||, t)n(x, y, t) ,∫
dp||p||f (x, y, p||, t)[u(x, y, t)− ψ(x, y, t)] n(x, y, t) ,

2We adopt the following normalizationsϕ= eϕ/mev
2
the

,

ψ = eψ/mecvthe, x, y= x/L, y/L, t = tmev2
the
c/L2eB0, p|| =

p||/vthe, whereL is a characteristic length and the other symbols
are standard.
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dp||[p||−u(x, y, t)+ψ(x, y, t)]

2f (p||, x, y, t)5|||| , (22)

wheren(x, y, t) andu(x, y, t) are the normalized electron
density and fluid velocity and5||||(x, y, t) is the(z, z) com-
ponent of the pressure tensor. Then Ampere’s equation reads

d2
e∇

2ψ = nu, (23)

and, as in the fluid case, the ion equation of motion together
with quasineutrality give

(n− n0) = ρ2
s∇

2ϕ, (24)

wheren0 = n0(x) is the initial normalized density and the
density variations are supposed to remain small.

The above system of equations admits a conserved energy
functionalHkin

Hkin =

∫
d2x

2
[d2
e (∇ψ)

2
+ ρ2

s (∇ϕ)
2
+ nu2

+5||||] (25)

Aside for the normalization, the main difference between
these energy terms and the corresponding ones derived in the
fluid case, see Eq. (19), is in the expression of the electron
compression work, as natural in a kinetic theory, the pres-
sure tensor5|||| cannot be expressed in terms of the lower
order moments of the distribution function.

5.1 Electron equilibrium distribution function

The stationary solutions of Eq. (21) are of the form
f=f (p||, ϕkin). Using the identity for the single particle en-
ergy

v2
||
/2 − ϕ = p2

||
/2 − ϕkin , (26)

we can write a stationary distribution function that depends
only on the particle energy asf=f (p2

||
/2−ϕkin), while the

well known static (ϕ0=0) Harris pinch equilibrium distribu-
tion (Harris(1962)) is given by3

f = f0 exp[−(p2
||

− 2ϕkin)− 2v∗p||] (27)

In order to have a less inhomogeneous plasma configura-
tion we can add a pedestal (Maxwellian) distribution func-
tion of the formfped=f00 exp[−(p2

||
−2ϕkin)]. The corre-

sponding self consistent vector potentialψ0(x) is given by
ψ0(x)=(1/v∗) ln (coshx) and the shear magnetic field has
the standard hyperbolic tangent distribution.

5.2 Evolution of thep||=const foils

We write the distribution function withf (x, y, t, p||) as
f (x, y, t, p||)=

∫
dp̄||δ(p̄|| −p||)f (x, y, t, p̄||). This is a fo-

liation of the electron distribution function in terms of the in-
finite number of Lagrangian invariants obtained by taking the

3In velocity variable v|| this distribution corresponds to

F0 exp[−(v||−v
∗)2−2v∗ψ] and leads to a particle and current den-

sity of the formn=n0 exp(−2v∗ψ) andj=−n0v
∗ exp(−2v∗ψ),

wherej is normalized onnoevthe andv∗ is the standard parameter
related to the diamagnetic fluid motion.

distribution functionf at fixed electron canonical momen-
tum. Within the drift-kinetic equation each̄p||-foil evolves
independently, while all foils are coupled through Maxwell’s
equations. The total number of particles in each foil is con-
stant in time.

In the initial configuration, the spatial dependence of
each p̄||-foil is given for the case of the Harris distribu-
tion by exp(2ϕ̄kin)= exp(−2ψp̄||−ψ

2)= exp[p̄2
||
−v̂||(x)

2
],

wherev̂||(x)≡v||(ψ, p̄||)=p̄||+(1/v∗) ln (coshx). For nega-
tive values ofp̄|| the maximum of the argument of the expo-
nent is located atx=±arccosh[exp(−v∗p̄||)] i.e. the foil is
localized in space within two symmetric bands, respectively
to the right and to the left of the neutral line of the magnetic
configuration. For positive values ofp̄|| all the foils are cen-
tered aroundx=0.

5.3 Nonlinear twist dynamics of the foils

In the adopted drift kinetic framework thēp||-foils take the
role of the Lagrange invariantsG± of the fluid plasma de-
scription. In this perspective, the dynamics of the foils can
be predicted by looking at the form of stream functionϕkin
inside each foil. The advection velocity can be written as

ez×∇(ϕ − ψp||−ψ
2/2)=ez×∇ϕ+(p||+ψ)∇ψ×ez , (28)

which represents the particleE×B drift and their free motion
along field lines.

At fixed p||=p̄|| we see that depending on the sign of
ψ+p̄||=v̂||(x), the advection velocity field takes two counter
oriented rotation patterns, reminiscent of those that advect
G− (G+) in fluid theory. In the equilibrium configura-
tion where all quantities are function ofψ=ψ(x) andϕ=0,
this advection corresponds to the free particle motion along
ψ=const surfaces inside each foil. However, when the in-
stability starts to move the plasma along thex axis and
∂ϕ/∂y 6=0, the portions of the foil wherêv||>0 or wherev̂||<0
bend in opposite directions. This leads to a distortion and
twist of the foils and to their eventual spatial mixing, analo-
gously to the mixing ofG± in fluid theory.

6 Numerical results: drift-kinetic regime

For a Harris equilibrium the evolution of the reconnection in-
stability is characterized by three dimensionless parameters
that can be expressed as the dimensionless ion sound gyro-
radiusρs and the electron skin depthde from Poisson’s and
Ampere’s equations respectively, andn0. In fact, whende
andn0 are given,v∗, and thusψ0, are determined implicitly
by the choice ofL.

The size of the simulation box alongy has been cho-
sen equal to 4π such that the parameter1′ is positive only
for the lowest order mode corresponding toky=1/2 so that
only theky=1/2 mode can be linearly unstable. The simula-
tion box is 40 long in thex direction, with periodic bound-
ary conditions in y and first type boundary conditions in x.
We have taken fixedρs=1 andde=1, v∗

=4, corresponding
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5.2 Evolution of thep|| = const foils

We write the distribution function withf(x, y, t, p||) as
f(x, y, t, p||) =

∫
dp̄||δ(p̄||−p||)f(x, y, t, p̄||). This is a foli-

ation of the electron distribution function in terms of the infi-
nite number of Lagrangian invariants obtained by taking the
distribution functionf at fixed electron canonical momen-
tum. Within the drift-kinetic equation each̄p||-foil evolves
independently, while all foils are coupled through Maxwell’s
equations. The total number of particles in each foil is con-
stant in time.

In the initial configuration, the spatial dependence of each
p̄||-foil is given for the case of the Harris distribution by
exp (2ϕ̄kin) = exp (−2ψp̄|| − ψ2) = exp [p̄2

|| − v̂||(x)2],
wherev̂||(x) ≡ v||(ψ, p̄||) = p̄|| + (1/v∗) ln (cosh x). For
negative values of̄p|| the maximum of the argument of the
exponent is located atx = ±arccosh[exp (−v∗p̄||)] i.e. the
foil is localized in space within two symmetric bands, re-
spectively to the right and to the left of the neutral line of the
magnetic configuration. For positive values ofp̄|| all the foils
are centered aroundx = 0.

5.3 Nonlinear twist dynamics of the foils

In the adopted drift kinetic framework thēp||-foils take the
role of the Lagrange invariantsG± of the fluid plasma de-
scription. In this perspective, the dynamics of the foils can
be predicted by looking at the form of stream functionϕkin

inside each foil. The advection velocity can be written as

ez×∇(ϕ−ψp||−ψ2/2) = ez×∇ϕ+(p||+ψ)∇ψ×ez(28)

which represents the particleE × B drift and their free mo-
tion along field lines.

At fixed p|| = p̄|| we see that depending on the sign ofψ+
p̄|| = v̂||(x), the advection velocity field takes two counter
oriented rotation patterns, reminiscent of those that advect
G− (G+) in fluid theory. In the equilibrium configuration
where all quantities are function ofψ = ψ(x) andϕ = 0,
this advection corresponds to the free particle motion along
ψ = const surfaces inside each foil. However, when the
instability starts to move the plasma along thex axis and
∂ϕ/∂y 6= 0, the portions of the foil wherêv|| > 0 or where
v̂|| < 0 bend in opposite directions. This leads to a distortion
and twist of the foils and to their eventual spatial mixing,
analogously to the mixing ofG± in fluid theory.

6 Numerical results: drift-kinetic regime

For a Harris equilibrium the evolution of the reconnection in-
stability is characterized by three dimensionless parameters
that can be expressed as the dimensionless ion sound gyro-
radiusρs and the electron skin depthde from Poisson’s and
Ampere’s equations respectively, andn0. In fact, whende

andn0 are given,v∗, and thusψ0, are determined implicitly
by the choice ofL.

The size of the simulation box alongy has been chosen
equal to4π such that the parameter∆′ is positive only for the
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Fig. 4. Contour plots (top) and 3D plots (middle) of thep|| =
constant foils of electron distribution function and contour plots
(bottom) of the kinetic stream functionϕkin at t = 81 for p|| =
−1.5,−0.5 from left to right in the interval−4 < x < 4 around
the neutral line. Note the different scales in the vertical axes of the
3D plots.

Fig. 4. Contour plots (top) and 3-D plots (middle) of the
p||=constant foils of electron distribution function and contour
plots (bottom) of the kinetic stream functionϕkin at t=81 for
p||=−1.5,−0.5 from left to right in the interval−4<x<4 around
the neutral line. Note the different scales in the vertical axes of the
3-D plots.

to ψ0=1/4, n0=1/16, de=1, v∗
=2(=>ψ0=1/2, n0=1/4),

de=0.5, v∗
=2(=>ψ0=1/2, n0=1/16). Smaller values ofv∗

correspond to larger instability growth rates i.e., to faster
evolving instabilities where the saturation of the island
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Fig. 5. Contour plots (top) and 3D plots (middle) of thep|| =
constant foils of the electron distribution function and contour
plots (bottom) of the kinetic stream functionϕkin at t = 81 for
p|| = 0.5, 1.5 from left to right in the interval−4 < x < 4 around
the neutral line. Note the different scales in the vertical axes of the
3D plots.

lowest order mode corresponding toky = 1/2 so that only
the ky = 1/2 mode can be linearly unstable. The simula-
tion box is 40 long in thex direction, with periodic boundary
conditions iny and first type boundary conditions inx. We
have taken fixedρs = 1 andde = 1, v∗ = 4, correspond-
ing to ψ0 = 1/4, n0 = 1/16, de = 1, v∗ = 2 (=> ψ0 =
1/2, n0 = 1/4), de = 0.5, v∗ = 2 (=> ψ0 = 1/2, n0 =
1/16). Smaller values ofv∗ correspond to larger instabil-
ity growth rates i.e., to faster evolving instabilities where the
saturation of the island growth is reached sooner. Here we
present the results obtained in the case withde = 1 and
v∗ = 4. The evolution of thep̄||-foils f(x, y, p̄||, t), re-
stricted to the interval−4 < x < 4 around the neutral line,
is shown att = 81 for p̄|| = −1.5,−0.5 in Fig.(4) and for
p̄|| = 0.5, 1.5 in Fig.(5), together with the contour plots of
the stream functionϕkin in x-y for the same values of̄p||
and the same interval inx.

Foils corresponding to negative values ofp̄|| were initially
localized in two symmetric bands to the left and to the right
of the neutral line and are thus modified by the onset of the
reconnection instability only in their portion that extend into
the reconnection region. On the contrary foils corresponding
to positive values of̄p|| were initially localized aroundx = 0
and are thus twisted by the development of the reconnection
instability. The contour plots of the stream functionϕkin

corresponds to a differential rotation in thex-y plane. The
sign of the rotation is opposite for positive and for negative
values ofp̄||. The mixing caused by this differential rotation
of thep||-foils is evident. As in the fluid case, the mixing of
the Langrangian invariants inx-y space is accompanied by
the energy transfer towards increasingly small scales.

Within the range of parameters explored in the simulations
discussed in the present paper, we have not evidenced any
onset of a secondary instability. This result is fully consis-
tent with the fluid simulations that show that the onset of
the Kelvin-Helmoltz instability is impeded by increasing the
electron temperature.

In summary, the Lagrangian invariants obtained by writ-
ing the drift-kinetic electron distribution function as a foli-
ation of an infinite number of fluid type distributions taken
at fixed parallel canonical momentum, lead us to establish a
clear link between the fluid and the kinetic regimes of the re-
connection instability since the (two) fluid invariants and the
(infinite) drift-kinetic invariants evolve in time in an analo-
gous fashion. In both cases the mixing of the Langrangian
invariants inx-y space and the energy transfer towards in-
creasingly small scales make it possible for the system to
reach a different macroscopic magnetic equilibrium with a
saturated magnetic island and with a lower magnetic energy
even in the absence of dissipation.

7 Conclusions

Magnetic field line reconnection in collisionless system is
controlled by topological constraints that evolve in very sim-
ilar forms in fluid and in kinetic regimes.

Fig. 5. Contour plots (top) and 3-D plots (middle) of the
p||=constant foils of the electron distribution function and con-
tour plots (bottom) of the kinetic stream functionϕkin at t=81 for
p||=0.5, 1.5 from left to right in the interval−4<x<4 around the
neutral line. Note the different scales in the vertical axes of the 3-D
plots.

growth is reached sooner. Here we present the results ob-
tained in the case withde=1 andv∗=4. The evolution of
thep̄||-foils f (x, y, p̄||, t), restricted to the interval−4<x<4
around the neutral line, is shown att=81 for p̄||=−1.5,−0.5
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in Fig. (4) and forp̄||=0.5, 1.5 in Fig. (5), together with the
contour plots of the stream functionϕkin in x−y for the same
values ofp̄|| and the same interval in x.

Foils corresponding to negative values ofp̄|| were initially
localized in two symmetric bands to the left and to the right
of the neutral line and are thus modified by the onset of the
reconnection instability only in their portion that extend into
the reconnection region. On the contrary foils corresponding
to positive values of̄p|| were initially localized around x=0
and are thus twisted by the development of the reconnection
instability. The contour plots of the stream functionϕkin cor-
responds to a differential rotation in the x−y plane. The sign
of the rotation is opposite for positive and for negative values
of p̄||. The mixing caused by this differential rotation of the
p||-foils is evident. As in the fluid case, the mixing of the
Langrangian invariants in x−y space is accompanied by the
energy transfer towards increasingly small scales.

Within the range of parameters explored in the simulations
discussed in the present paper, we have not evidenced any
onset of a secondary instability. This result is fully consis-
tent with the fluid simulations that show that the onset of the
Kelvin-Helmholtz instability is impeded by increasing the
electron temperature.

In summary, the Lagrangian invariants obtained by writ-
ing the drift-kinetic electron distribution function as a foli-
ation of an infinite number of fluid type distributions taken
at fixed parallel canonical momentum, lead us to establish a
clear link between the fluid and the kinetic regimes of the re-
connection instability since the (two) fluid invariants and the
(infinite) drift-kinetic invariants evolve in time in an analo-
gous fashion. In both cases the mixing of the Langrangian
invariants in x-y space and the energy transfer towards in-
creasingly small scales make it possible for the system to
reach a different macroscopic magnetic equilibrium with a
saturated magnetic island and with a lower magnetic energy
even in the absence of dissipation.

7 Conclusions

Magnetic field line reconnection in collisionless system is
controlled by topological constraints that evolve in very sim-
ilar forms in fluid and in kinetic regimes.

The form of these topological constraints depends explic-
itly on the microscopic physics that governs the reconnection
process in the plasma. We find that the value of the micro-
scopic parameters, such as the electron skin depthde and the
ion sound gyro-radius%s in the fluid regimes, and the cor-
responding parameters in the drift kinetic regime, determine
not only the linear growth rates of the reconnection instabil-
ities, but also their characteristic nonlinear evolution times
and, most important, the spatial distribution of the current
and vorticity layers produced during the nonlinear develop-
ment of the instabilities.

Indeed we find that, in the fluid regime, the ratio%s/de de-
termines a transition between a turbulent nonlinear regime,
where long lasting fluid vortices develop inside a pulsating

magnetic island, and a laminar regime with a (macroscopi-
cally) stationary island. In both regimes the current and vor-
ticity layers eventually fill the entire magnetic island.

The topological constraints play an important role also in
the kinetic regimes, as we have shown in the case of the drift
kinetic model of the electron response for a two dimensional
magnetic configuration with a strong guide field. In particu-
lar we have shown that the mixing of the Lagrangian invari-
ants, the formation of smaller and smaller spatial scales and
the energy transfer towards these increasingly small scales
is common to the fluid and to the kinetic regimes of the
Hamiltonian dynamics of a collisionless plasma and can be
described in both regimes in analogous mathematical terms.
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