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Abstract. Significant power-law long-range correlated struc-
tures have been identified in the Italian seismicity from 1983
to 2003. We performed the Allan Factor Analysis and the
Detrended Fluctuation Analysis on both the full and the
aftershock-depleted seismic data, extracted by the INGV
(National Institute of Geophysics and Volcanology) instru-
mental catalog.

Our findings suggest that (i) the time-scaling behaviour
characterizes mainly the Apennine chain; (ii) the time-
correlated behaviour of the seismicity is persistent, and
this implies that the dynamics underlying the seismic phe-
nomenology is characterized by the presence of “positive
feedback mechanisms”; (iii) significant time correlation is
not simply related with the mainshock/aftershock mecha-
nisms.

1 Introduction

Several features account for the complexity in earthquake
sequences. The Gutenberg-Richter law (Gutenberg and
Richter, 1944) states that the distribution of the magnitudes
of earthquakes follows a power-law. The epicenter distribu-
tion is fractal in space and also the faults have a fractal-like
structure (Kagan and Jackson, 1991). The Omori’s law for-
malizes the presence of short-range temporal correlation be-
tween earthquakes, since after a main large shock a series of
aftershocks occurs, with a power-law time-frequency decay
(Utsu et al., 1995).

Therefore, tectonic processes are considered to display
fractal properties in time (e.g. Godano and Caruso, 1995;
Öncel et al., 1996; Wilson and Dominic, 1998). Identifying
whether the time-occurrences of earthquakes are independent
on each other or not, leads to the assessment of the statistical
distribution ruling the event occurrence. Several distributions
have been used to model seismic activity. Poisson statistics
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has been undoubtly the most extensively used, since, in many
cases, for large events a simple discrete Poisson distribution
provides a close fit (Boschi et al., 1995). But the complex-
ity of the earthquake dynamics has revealed the presence of
time-clustering at both short and long time-scales (Kagan and
Jackson, 1991). The analysis of the temporal variations of the
scaling properties of earthquakes has been used to character-
ize the main features of seismicity and to bring us insight
the inner dynamics of seismotectonic activity. The evolu-
tion of scaling exponents with respect to time has revealed
the increase of the time-clustering feature of seismicity cor-
responding to large events, mostly due to the aftershock acti-
vation (Telesca et al., 2001a). The depth-dependent variation
of the time-clustering behaviour of seismicity has been inter-
preted in relation with the brittle and ductile behaviour of the
crust versus depth (Telesca et al., 2001b).

The objective of this study is to analyze the spatial distri-
bution of the long-range time scaling properties of the Ital-
ian seismicity, investigated using the Allan Factor Analysis
(AFA) and the Detrended Fluctuation Analysis (DFA). Both
the methods are suited to analyze observational time series,
which are often affected by nonstationarities.

2 Methods

The standard technique to investigate the temporal properties
of a time series is the power spectral density (PSD) S(f), ob-
tained by means of a Fourier transform of the signal. The
PSD informs on how the power is concentrated at various
frequency bands. This information allows one to identify pe-
riodic, multi-periodic or non-periodic behaviours. Usually
the logarithmic power spectrum plot is used to better distin-
guish between the broadband and periodic components. The
power-law dependence (linear on a log-log plot) of the PSD,
given by S(f)∼f−α, is a hallmark of the presence of time-
scaling properties in the data. The properties of the signal
can be further classified in terms of the numerical value of
the spectral exponentα: if α=0, the signal is a realization of



546 L. Telesca and V. Lapenna: Spatial variability in Italian seismicity

a white noise process, and is not characterized by any kind
of time correlation; ifα>0, the signal possesses the tendency
for repeating the sign of its fluctuations (i.e. if it increases in
one period it will very likely increase in the next period), and,
thus, it is persitstent; ifα<0, the signal is antipersistent and
the fluctuations of opposite signs tend to alternate (Havlin
et al., 1999). Therefore, the spectral exponentα is a quan-
titative parameter, which informs on the type of the scaling
behaviour intrinsic in the data.

The crucial question is: how to estimate the spectral ex-
ponentα for a seismic sequence, which is a point process
and the simple application of the Fourier Transform is not
possible?

The question can be equivalent to the following: what
parameter can be used to significantly describe the scaling
properties of a seismic sequence?

The answer to this question is: it depends on the type of
representation of the seismic sequence.

2.1 Point process representation and Allan Factor Analysis

A temporal point process describes events that occur at some
random locations in time (Cox and Isham, 1980), and is ex-
pressed by a finite sum of Dirac’s delta functions centered
on the occurrence times ti , with amplitude Ai proportional to
the magnitude of the earthquake:

y(t) =

N∑
i=1

Aiδ (t − ti) , (1)

where N represents the number of events recorded. In this
representation we assume that the seismic events are the
events of interest and there is an objective “clock” for the
timing of each event.

In the framework of this representation, the Allan Factor
Analysis (AFA) can be used. Let us divide the time axis into
equally spaced contiguous counting windows of durationτ ,
and produce a sequence of counts{Zk (τ)}, with Zk (τ ) de-
noting the number of earthquakes in the k-th window:

Zk (τ ; t) =

tk∫
tk−1

n∑
j=1

δ
(
t − tj

)
dt. (2)

The Allan Factor (AF) is a measure which can be used to
distinguish fractal from Poissonian temporal fluctuations in
point processes. This factor is defined as the variance of
successive counts for a specified counting timeτ divided by
twice the mean number of events in that counting time:

AF(τ) =
<

(
Zk+1(τ ) − Zk(τ )

)2
>

2 < Zk(τ ) >
. (3)

The AF of a fractal point process varies with the counting
time τ with a power-law form:

AF(τ) = 1 +

(
τ

τ1

)α

. (4)

The monotonic power-law increase is representative of the
presence of fluctuations on many time scales (Lowen and Te-
ich, 1995);τ1 is the so-called fractal onset time, and marks
the lower limit for significant scaling behaviour in the AF,
so that forτ�τ1 the clustering property becomes negligible
within these timescales (Thurner et al., 1997). For Poisso-
nian processes the AF assumes approximately values near or
below unity for all counting timesτ . From Eq. (4), the cal-
culation ofα can be performed by estimating the slope of
the straight line that fits in a least square sense the AF curve,
plotted in log-log scales. Of course, only the linear part of the
curve will be considered to calculate the fractal exponent.

2.2 Interevent interval representation and detrended fluctu-
ation analysis

This approach considers the interspike intervals (the times
between successive events) and uses the event number as an
index of the time. With this approach the method of the De-
trended Fluctuation Analysis (DFA) can be used.

The DFA performs the clustering analysis on the series
of the interevent intervals. It was proposed by Peng et
al. (1995), and avoids spurious detection of correlations that
are artifacts of nonstationarity, that often affects experimen-
tal data. Such trends have to be well distinguished from the
intrinsic fluctuations of the system in order to find the correct
scaling behaviour of the fluctuations. Very often we do not
know the reasons for underlying trends in collected data and
we do not know the scales of underlying trends. DFA is a
method for determining the scaling behaviour of data in the
presence of possible trends without knowing their origin and
shape.

The methodology operates on the time series x(i), where
i=1,2,...,N and N is the length of the series. With xave we
indicate the mean value

xave=
1

N

N∑
k=1

x(k) . (5)

The signal is first integrated

y(k) =

k∑
i=1

[x(i) − xave] . (6)

Next, the integrated time series is divided into boxes of equal
length n. In each box a least-squares line is fit to the data,
representing the trend in that box. The y coordinate of the
straight line segments is denoted by yn(k). Next we detrend
the integrated time series y(k) by subtracting the local trend
yn(k) in each box. The root-mean-square fluctuation of this
integrated and detrended time series is calculated by

F(n) =

√√√√ 1

N

N∑
k=1

[y(k) − yn(k)]2 . (7)

Repeating this calculation over all box sizes, we obtain a rela-
tionship between F(n), that represents the average fluctuation
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Fig. 1. Epicentral distribution of earthquakes (M≥2.4) occurred in Italy over the period 1983–2003.

as a function of box size, and the box size n. If F(n) behaves
as a power-law function of n, data present scaling:

F(n) ∝ nd . (8)

Under these conditions the fluctuations can be described by
the scaling exponent d, representing the slope of the line fit-
ting log F(n) to log n. For a white noise process, d=0.5. If
there are only short-range correlations, the initial slope may
be different from 0.5 but will approach 0.5 for large window
sizes. d>0.5 indicates the presence of persistent long-range
correlations, meaning that a large (compared to the average)
value is more likely to be followed by large value and vice
versa. d<0.5 indicates the presence of antipersistent long-
range correlations, meaning that a large (compared to the av-
erage) value is more likely to be followed by small value and
vice versa.

3 Data analysis

We have investigated the shallow (depth≤100 km) Italian
seismicity from 1983 to 2003, considering the earthquakes

contained in a polygonal area surrounding the Italian coasts
and borders within which the National Institute of Geo-
physics and Volcanology (INGV) has furnished reliable lo-
cations for the events of magnitude M≥2.4, that represents
the minimum magnitude for which the catalogue can be
considered complete. The spatial distribution of the earth-
quakes, analysed in the present paper, is shown in Fig. 1. We
studied the spatial variation of the time-scaling properties of
the seismicity data of the full and aftershock-depleted cata-
logues. The analysis over the aftershock-depleted catalogue
has been performed, because the aftershock clusters could
bias the results, since the main shocks are followed by a large
number of events (Breitenberg, 2000). A possible method to
eliminate the aftershocks is to use a space-time rectangular
or circular window, dependent on the magnitude of the main-
shock (Gardner and Knopoff, 1976). This method has been
improved by means of a dynamic aftershock clustering al-
gorithm, which considers the peculiarity of each main shock
concerning the extent of the aftershocks in space and time
(Reasenberg, 1985). The method of Reasenberg (1985) is
based on a physical basis, which considers each earthquake
capable to generate an alteration of the surrounding stress
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Fig. 2 Fig. 2. AF curves vs. counting timeτ in the full (a) and the
aftershock-depleted(b) Italian catalogues.

field that may trigger a further seismic event, which nucle-
ates in its surroundings a modified stress field. The areal and
time extent for which the event can trigger a following event
is called interaction zone of the earthquake, whose length
scale is proportional to the source dimension, and the tempo-
ral scale is determined with a probabilistic model based on
Omori’s law. Thus, we applied the Reasenberg’s algorithm to
remove aftershocks from the Italian catalogue. This method
recognizes clusters in space-time in an earthquake catalog. It
is intended for use in removing aftershocks or “declustering”
the catalog. The method depends on a number of subjec-
tively defined parameters. In our case we selected 10 days as
the maximum look-ahead time for clustered events, 2.4 as the
“effective” lower magnitude cutoff for the catalog and 10 km
as the interaction radius of dependent events.

Since our study is aimed to analyze the spatial variation of
the time-scaling properties of seismicity, we covered the Ital-
ian territory with a grid of cells having a size of 0.5◦

×0.5◦.
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Fig. 3. Mean AF curve (±1σ) of the (a) full and (b) aftershock-
depleted seismic catalogue.

We calculated the scaling exponentsα and d, as explained in
the previous section, only if the cell contained a minimum
of 100 events. A question naturally arises on how large are
the statistical errors of the exponents for short series, where
the statistics is expected to be poor. Varotsos et al. (2003)
have analyzed the dependence of the estimate of the scaling
exponents on the size, and they found that the statistical er-
ror depends on the size of the series only, assuming value
of 0.16, 0.10 and 0.07 for lengths N=50, 100 and 200 re-
spectively. Therefore, the choice of N=100 as the minimum
length of the series seems sufficient to get reliable estimates
of the scaling exponents.

3.1 Allan Factor Analysis

In order to select the range of timescales involved in the scal-
ing behaviour of the cells, we firstly calculated the AF curves
for all the cells, satisfying the constraint on the minimum
number of events. Figure 2 shows the AF curves for all the
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Fig. 4 Fig. 4. Map of Italian territory showing theα variability: (a) full
and(b) depleted seismic catalogues.

cells in the full (Fig. 2a) and aftershock-depleted (Fig. 2b)
cases. Figure 3 shows the mean AF curve (±1σ) for the full
(a) and the depleted (b) case. We observe that the timescale
range is long enough in both cases (about 4 decades in the
full case and almost 2 decades in the depleted case), thus
giving reliable estimates of the scaling exponents. The range
in the full case is larger than that in the depleted case be-
cause the aftershocks introduce short-term correlations, and
so produce an enlargement of the range of the correlation
times. Therefore, we calculated for each cell the scaling ex-
ponentα for timescales starting from 104.5 s and from 106 s
in the full and depleted case respectively. Figure 4 shows
the spatial variation of the scaling exponentα, estimated by

 24

0.5 1.0 1.5 2.0 2.5 3.0
5

6

7

8

9

10
Full

lo
g 10

(F
j(n

))

log
10

(n)

a) 

0.5 1.0 1.5 2.0 2.5

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5 Depleted

Lo
g 1

0(
F j(n

))

log
10

(n)

b) 

Fig. 5Fig. 5. DFA curves in the(a) full and(b) afteshock-depleted seismic
catalogues.

means of the AFA in the full case (a) and in the depleted case
(b). Some cells are present in the full map, but not in the
depleted one, since the aftershock depletion procedure has
reduced their number of earthquakes. We observe a certain
variability in the range between 0 and 1 of the scaling ex-
ponents from one cell to another, suggesting different types
of time-correlation; in both cases the higher correlation de-
gree is in central Italy, where recently a strong earthquake
occurred in 1997. The maximumα values changes from 0.85
(full case) to 0.57 (depleted case), indicating that the deletion
of the aftershocks causes the lowering of the strength of the
time-correlation.

3.2 Detrended Fluctuation Analysis

As in the AFA, we firstly calculated the DFA curves for all
the cells with a minimum number of 100 events, and plot-
ted them to check the presence of scaling in all the cells and
their global range. Figure 5 shows in the full (a) and de-
pleted (b) case the fluctuation functions versus the index n.
The scaling behaviour involves all the curves at all the scales.
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Fig. 6 Fig. 6. Map of Italian territory showing the d variability:(a) full
and(b) depleted seismic catalogues.

Figure 6 shows the spatial variation of the scaling exponent
d, estimated by means of the DFA in the full (a) and in the de-
pleted case (b). The cells show a variability in the persistence
properties. The maximum value of the d exponent, indicating
the degree of persistence, becomes smaller in the depleted
case respect to the full case, as observed in the AFA of the
seismicity.

3.3 Significance of the results

In order to evaluate the significance of the estimates, we
used a surrogate method (Theiler et al., 1986). For each
cell we generated one hundred shuffled series of the origi-
nal sequence, randomly permutating the original interevent
time series, thus having the same mean interevent time, but
with all the time correlations destroyed; therefore, these

surrogate series are characterized by uncorrelated behaviour.
We used this procedure to generate surrogate series, in order
to maintain identical the probability density function of the
interevent times, and, therefore, not to change the first-order
properties of the time distribution of the events, whose time-
correlation features we need to test. Randomly shuffling the
interevent times practically implies assigning a random value
of the time occurrence to the event, but this value is extracted
by the same distribution as the original sequence. Our aim
is to test whether the calculated estimates of the scaling ex-
ponents indicate a significant correlated effect respect to the
uncorrelated behaviour displayed by the surrogates; this test
is needed especially for those cells with a relatively low num-
ber of events, whose correlated behaviour may be due to the
limited size of the sample. Beingα(d) the scaling exponent
of the original sequence, letµs and σS indicate the mean
and the standard deviation of the scaling exponents calcu-
lated for the shuffled sequences. The difference between the
exponents before and after the surrogate data test for corre-
lation may be quantified by means of the difference between
the original and the mean surrogate value of the scaling ex-
ponent, divided by the standard deviation of the surrogate
values (Theiler et al., 1986):

σ =
|α(d) − µS |

σS

. (9)

σ measures how many standard deviations the original ex-
ponent is separated from the surrogate data exponent. The
larger σ the larger the separation between the exponents
derived from the surrogate data and the exponent derived
from the original data. Thus, largerσ value indicates
stronger correlation. In order to evaluate the significance of
σ we also calculated the p-value by means of the formula
p=erfc(σ/

√
2) (Theiler et al., 1986); this is the probability

of observing a significanceσ or larger if the null hypothesis
(absence of correlation) is true. This measure furnishes an es-
timate of the uncertainty of the scaling exponents. Figures 7
(AFA) and 8 (DFA) show the maps of Italy, using the full
(a) and depleted (b) catalogues: only the cells with p<0.05
are plotted. We see that almost the same cells, featured by
correlated temporal behaviour, characterize both full and de-
pleted catalogues. Furthermore, all the cells, in which the
correlation is significant, the correlation is persistent. This
suggests the presence of areas in the Italian territory with a
strong persistent degree of correlation, which is not only due
to the generation of aftershocks, following the occurrence of
large shocks, but relies to the underlying time structure of the
seismicity of those areas.

3.4 Discussion of the results

In the present study, on the basis of a statistical analysis of the
scaling properties of the time occurrences of earthquakes, we
have identified in the Italian territory areas, which are char-
acterized by a correlated and persistent behavior. The areas,
mainly located along the Apennine Chain, are approximately
those, which have been characterized in past and recent years
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Fig. 7 Fig. 7. Map of Italian territory showing theα variability of the
cells characterized by p<0.05: (a) full and (b) aftershock-depleted
seismic catalogues.

by strong earthquakes. The most correlated structures are
in central Italy, while less correlated behaviour character-
izes the seismic variability of southern Italy, except for the
north-western part of Sicily (Fig. 7). Figure 8 suggests that
persistent feature characterizes all the cells considered, and
this means that the seismicity of Italy seems to be “regu-
larly” structured. We observe a higher degree of persistence
in central Italy and a lower degree in southern Italy. This
classification seems to be in agreement with the recent seis-
motectonic zonation by Gruppo Nazionale Difesa Terremoti
(GNDT) (http://gndt.ingv.it), which discriminates between
the zones linked to the inner border of the adriatic-ionic plate
in subduction under the apenninic chain (central Italy) and
the zones linked to the recent uplift of the apenninic chain
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Fig. 8 Fig. 8. Map of Italian territory showing the d variability of the cells
characterized by p<0.05: (a) full and (b) aftershock-depleted seis-
mic catalogues.

following a long history of spatio-temporal migration of the
foreland system (southern Italy).

The variability of the scaling exponents among the differ-
ent cells suggest that the time-correlation behaviour is not
unique for all the seismic areas, whose time distribution is
more or less correlated and more or less persistent.

Bak et al. (2002) have performed a similar analysis on the
southern California seismicity, but their aim was the finding
of a unified scaling law for earthquakes. In their work, two
earthquakes are to be categorized as belonging to a correlated
or uncorrelated sequence depending not independently on the
waiting time, the magnitude and the length scale, but only on
the value of their scaled product. As a consequence, quoting

http://gndt.ingv.it
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Bak et al. (2002), “the short time clustering, commonly re-
ferred to as aftershocks, is nothing but the short time limit of
the general hierarchical properties of earthquakes”.

Our paper furnishes a different perspective of the analy-
sis of the time distribution of seismic events: both the full
and the aftershock-depleted seismicity are characterized by
almost similar range of values of the scaling exponents, and
this indicates that in both cases similar clustering behaviour
is detected.

4 Conclusions

The seismicity of the Italian territory has been analyzed to
reveal the presence and the type of time-correlation phenom-
ena in the data. Two methods have been used, AFA and
DFA, which gave consistent results. We used the seismic-
ity data of the 1983–2003 catalogue of the INGV network.
We analyzed the full and, in order to avoid bias effects in
the estimates, the aftershock-depleted catalogues. The sig-
nificance of the results has been investigated by means of
a surrogate method, that has permitted to discriminate areas
with uncorrelated seismicity from those with correlated be-
haviour. The main findings are summarized as follows: (i)
time-scaling behaviour, leading to time-correlated behaviour,
is mainly located along the Apennine chain; (ii) the iden-
tification of persistence in the time-correlated behaviour of
the seismicity implies that the dynamics underlying the seis-
mic phenomenology is characterized by the presence “posi-
tive feedback mechanisms”; (iii) significant time correlation
is typical of the seismic sequences, not simply related with
the mainshock/aftershock mechanisms.

This paper contributes to give another methodological per-
spective to the seismotectonics of Italy, focusing on the cor-
relation properties of seismicity.
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