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Abstract. This study introduces a nonlinear determinis-
tic approach for streamflow disaggregation. According to
this approach, the streamflow transformation process from
one scale to another is treated as a nonlinear determinis-
tic process, rather than a stochastic process as generally as-
sumed. The approach follows two important steps: (1) re-
construction of the scalar (streamflow) series in a multi-
dimensional phase-space for representing the transforma-
tion dynamics; and (2) use of a local approximation (near-
est neighbor) method for disaggregation. The approach is
employed for streamflow disaggregation in the Mississippi
River basin, USA. Data of successively doubled resolutions
between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and
16-day) are studied, and disaggregations are attempted only
between successive resolutions (i.e. 2-day to daily, 4-day to
2-day, 8-day to 4-day, and 16-day to 8-day). Comparisons
between the disaggregated values and the actual values re-
veal excellent agreements for all the cases studied, indicating
the suitability of the approach for streamflow disaggregation.
A further insight into the results reveals that the best results
are, in general, achieved for low embedding dimensions (2 or
3) and small number of neighbors (less than 50), suggesting
possible presence of nonlinear determinism in the underlying
transformation process. A decrease in accuracy with increas-
ing disaggregation scale is also observed, a possible implica-
tion of the existence of a scaling regime in streamflow.

1 Introduction

Streamflow disaggregation has been and continues to be a
challenging problem in hydrology. The past few decades
have witnessed numerous studies addressing the streamflow
disaggregation problem and, consequently, a large number of
mathematical models (e.g. Harms and Campbell, 1967; Va-
lencia and Schaake, 1972; Salas et al., 1980; Stedinger and
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Vogel, 1984; Bras and Rodriguez-Iturbe, 1985; Grygier and
Stedinger, 1988; Lin, 1990; Santos and Salas, 1992; Ma-
heepala and Perera, 1996). The essence of such models is to
develop a staging framework (e.g. Santos and Salas, 1992),
where streamflow sequences are generated at a given level of
aggregation and then disaggregated into component flows.

Traditionally, streamflow disaggregation approaches have
involved some variant of a linear model of the form

Xt = AZt + BV t (1)

whereXt is the vector of disaggregate variables at timet ,
Zt is the aggregate variable,Vt is a vector of independent
random innovations (usually drawn from a Gaussian distri-
bution), andA andB are parameter matrices. The matrixA
is estimated to reproduce the correlation between aggregate
and disaggregate flows, whereas the matrixB is estimated
to reproduce the correlation between individual disaggregate
components. The many model variants that have been made
available in the literature make different assumptions on the
structure and sparsity of these matrices. They also apply,
prior to use of Eq. (1), a variety of normalizing transfor-
mations to the data to account for the fact that (monthly)
streamflow data are seldom normally distributed. Summa-
bility (i.e. the requirement that disaggregate variables should
add up to the aggregate quantity) has also been an issue in
these models, though a few studies have effectively handled
this problem in some ways (e.g. Bras and Rodriguez-Iturbe,
1985; Grygier and Stedinger, 1988).

An important aspect that has to be recognized from the
above models is that they present a mathematical framework
where a joint distribution of disaggregate and aggregate vari-
ables is specified. However, the specified model structure
is parametric. It is imposed by the form of Eq. (1) and the
normalizing transformations applied to the data to represent
the marginal distributions. Even though, the parametric ap-
proach has been shown to be effective for streamflow disag-
gregation purposes, they also possess certain important draw-
backs, such as the following (Tarboton et al., 1998):
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1. As Eq. (1) involves linear combinations of random vari-
ables, it is compatible mainly with Gaussian distribu-
tions (with only a few exceptions). Therefore, if the
marginal distribution of the streamflow variables in-
volved is not Gaussian, normalizing transformations are
required for each streamflow component, in which case
Eq. (1) would be applied to the normalized flow vari-
ables. It is often difficult to find a general normaliz-
ing transformation and retain statistical properties of the
streamflow process in the untransformed multi-variable
space; and

2. The linear nature of Eq. (1) limits it from representing
any nonlinearity in the dependence structure between
variables, except through the normalizing transforma-
tion used.

In view of such limitations with the parametric approach,
Tarboton et al. (1998) developed a nonparametric approach
for streamflow disaggregation. Such a study, in fact, fol-
lowed the studies by Lall and Sharma (1996) and Sharma et
al. (1997), which proposed and demonstrated the use of the
nonparametric approach for streamflow simulation. The non-
parametric approach eliminates the drawbacks of the para-
metric approach (Tarboton et al., 1998), since: (1) the nec-
essary joint probability density functions are estimated di-
rectly from the historic data using kernel density estimates;
(2) the procedures are data driven and relatively automatic
and, therefore, nonlinear dependence can be incorporated to
the extent suggested by the data; and (3) difficult subjective
choices as to appropriate marginal distributions and normal-
izing transformations are avoided.

With regards to disaggregation in particular, since the ba-
sic purpose is to determine the proportions of the aggregate
flow to allocate to each subset, the real difference between
the parametric and the nonparametric approaches is the fol-
lowing. The parametric approach deals with the allocation
problem through a “global” prescription of the associated
density function and correlation structure in a transformed
data domain, whereas in the nonparametric approach this
problem is approached by looking at the relative proportions
of the subset variables in a “local” sense. As a result, the
nonparametric approach has the ability to better capture (any)
variations that may lead to heterogeneous density functions
and to adaptively model complex relationships between ag-
gregate and disaggregate flows.

The nonparametric approach, presented by Tarboton et
al. (1998), is certainly a significant step forward in the con-
text of streamflow disaggregation (or any other hydrologic
analysis), because it not only recognizes the possible nonlin-
ear behavior of the streamflow (disaggregation) phenomenon
but also attempts to incorporate the nonlinear dependence of
the data. In regards to the issue of nonlinearity, it is appro-
priate to note that the topic of “nonlinear hydrology” has
already witnessed a significant progress in the last decade
or so. Among the notable advances that have been made
within the area of nonlinear hydrology, the finding of the pos-
sible nonlinear deterministic nature of hydrologic phenom-

ena (e.g. Rodriguez-Iturbe et al., 1989) has received arguably
the widest attention (both positively and negatively). This is
particularly the case in streamflow studies (e.g. Jayawardena
and Lai, 1994; Porporato and Ridolfi, 1997; Krasovskaia et
al., 1999; Jayawardena and Gurung, 2000; Sivakumar et al.,
2001a, 2002a, b; Lisi and Villi, 2001; Islam and Sivakumar,
2002). For further details, the reader is referred to the articles
by Sivakumar (2000, 2004).

The above studies have brought encouraging news for hy-
drologists, in particular streamflow modelers, as they re-
vealed the possible presence of nonlinear determinism in the
seemingly highly irregular hydrologic phenomena, suggest-
ing the possibility of accurate short-term predictions. This
has further been verified and supported by the near-accurate
predictions achieved for streamflow data observed at differ-
ent river systems (e.g. Porporato and Ridolfi, 1997; Jayawar-
dena and Gurung, 2000; Sivakumar et al., 2001a, 2002a, b;
Lisi and Villi, 2001; Islam and Sivakumar, 2002) and also
for other hydrologic and geomorphic data, such as lake vol-
ume (e.g. Abarbanel and Lall, 1996) and suspended sediment
concentration (e.g. Sivakumar, 2002).

In the spirit of such studies, an attempt is made in the
present study to use the relevant ideas for streamflow dis-
aggregation purposes. It is appropriate to note that such an
attempt is not entirely new to hydrology, as the first author
and his colleagues have previously used such ideas for rain-
fall disaggregation (Sivakumar et al., 2001b). As the present
study is, in a way, an extension of the study by Sivakumar et
al. (2001b) as far as the field of hydrology is concerned, its
originality must only be assessed from a hydrologic problem
(i.e. streamflow disaggregation) point of view, rather than
from a methodological perspective. Having said that, the
study by Sivakumar et al. (2001b) encountered an important
problem in implementing the disaggregation procedure, es-
sentially due to the presence of zero rainfall values. It is the
authors’ opinion that such a problem is either completely or
largely overcome (depending upon the river system) when
one is dealing with streamflow data, since the probability
of occurrence of no flow is almost zero for large rivers and
significantly low for others (compared to the probability of
no rain situation). This is particularly the case for annual
and monthly streamflow data, used in most of the previous
streamflow disaggregation studies.

For the purpose of streamflow disaggregation in the
present study, data observed in the Mississippi River basin
(at St. Louis, Missouri), USA, are considered (recent re-
search on the flow series from the basin has provided clues
to the possible presence of nonlinear deterministic behav-
ior in the underlying dynamics; Sivakumar and Jayawar-
dena, 2002). Streamflow data of successively doubled res-
olutions (i.e. scales) between daily and 16 days, i.e. daily, 2-
day, 4-day, 8-day, and 16-day, are studied. Disaggregations
are made only between successive resolutions, i.e. 2-day to
daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day.
The nonlinear local approximation disaggregation procedure
proposed by Sivakumar et al. (2001b), with required modi-
fications for streamflow data, is employed. The accuracy of
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disaggregation is measured using four different indicators:
(1) correlation coefficient; (2) root mean square error; (3) di-
rect time series plots; and (4) scatter diagrams.

The organization of this paper is as follows. Section 2
presents a brief account of the nonlinear deterministic dis-
aggregation procedure, originally proposed by Sivakumar et
al. (2001b). Section 3 presents the details of the Mississippi
River basin and the streamflow data considered in this study.
Details of the disaggregation analysis carried out, results ob-
tained and their discussion are reported in Sect. 4. Conclu-
sions from the present study and the scope for further re-
search are presented in Sect. 5.

2 Nonlinear deterministic disaggregation procedure

In a recent study, Sivakumar et al. (2001b) proposed a non-
linear deterministic disaggregation approach for rainfall and
also demonstrated its effectiveness on the rainfall data ob-
served in the Leaf River basin in Mississippi, USA. As this
approach is employed in the present study for streamflow dis-
aggregation, the procedure is described below.

Let us assume that we have a streamflow seriesXi , i=1,
2,..., N , at a certain resolutionT1, and the task is to obtain
the (disaggregated) streamflow values (Zi)k, k=1, 2,...,p,
at a higher (or finer) resolutionT2, wherep=T1/T2. Let us
also assume that the values ofXi are distributed into (Zi)k
according to (Zi)k=(Wi)k*Xi , where (Wi)k are the distri-

butions of weights ofXi to (Zi)k and
p∑

k=1
(Wi)k = 1. As

the present study considers, for the purpose of convenience,
only streamflow data at successively doubled temporal reso-
lutions for disaggregation purposes, the parameterp is given
by p=T1/T2=2. A schematic diagram depicting such a disag-
gregation situation is presented in Fig. 1.

As the purpose is streamflow disaggregation (rather than
prediction), the procedure is simplified by working with
only the available streamflow series (rather than predict-
ing/generating the future streamflow values and disaggregat-
ing them). Let us now assume that information is available
about the history of distributions of weights (Wi)k (or Xi

and (Zi)k), i=1, 2,...,n, wheren<N , and the task at hand
is to obtain the distributions of weights (Wi)k and, hence, the
streamflow values (Zi)k at a finer resolution, wherei=n+1,
n+2,...,N andk=1, 2,...,p. In other words, streamflow val-
uesXi , i=1, 2,...,n, are used as the “training set” for the
model to learn the dynamics of disaggregation (or transfor-
mation), whereas streamflow valuesXi , i=n+1, n+2,...,N
are used as the testing test to assess the model performance.
Based on these information, the nonlinear deterministic dis-
aggregation approach is developed as follows. The procedure
adopted in the model is somewhat similar to the one gener-
ally used for prediction of nonlinear deterministic time series
(e.g. Farmer and Sidorowich, 1987; Casdagli, 1989, 1991).

As the basic problem is to understand the dynamic changes
that take place in the streamflow transformation process, it
is first of all necessary to represent the evolution of the un-
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Fig. 1. Schematic representation of distributions of weights of
streamflow transformation from one resolution to another.

derlying mechanism(s). This can be done by reconstructing
the multi-dimensional phase-space from the available single-
dimensional series,Xi , wherei=1, 2,...,N , as follows (e.g.
Takens, 1981):

Y j = (Xj , Xj+τ , Xj+2τ , ..., Xj+(m−1)τ ) (2)

wherej=1, 2,...,N − (m−1)τ /1t , m is the dimension of the
vectorY j , called as embedding dimension, andτ is the delay
time taken to be some suitable multiple of the sampling time
1t . Such a reconstruction (in a correctm dimension) allows
making connection between the current state (i.e.Y j ) and the
future state (i.e.Y j+T ) through a functional relationship

Y j+T = fT (Y j ) (3)

An appropriate expression forfT (i.e. FT ) is found using a
local approximation technique (e.g. Farmer and Sidorowich,
1987), which entails the subdivision of thefT domain into
many subsets (neighborhoods), each of which identifies some
approximationsFT , valid only in that subset.

With the above information, let us now consider determin-
ing how the streamflow dataXn+1 (i.e. the value at timen+1)
at resolutionT1 is disaggregated to values at resolutionT2,
i.e. determining the distributions of weights (Wn+1)k. The
phase-space for this case can be reconstructed using the se-
ries Xi , i=1, 2,...,n+1, according to Eq. (2), wherej=1,
2,..., (n+1) − (m − 1)τ /1t . Then, the disaggregation of
Xn+1 is made based onY j , j=(n+1) − (m − 1)τ /1t , and
its neighborsY ′

j for all j ′<j . The neighbors ofY j are found
on the basis of the minimum values of||Y j−Y ′

j ||. If only
one neighbor is considered, then the distributions of weights
(Wn+1)k of Xn+1 would be the distributions of weights of
the corresponding elementXj in the nearest vectorY ′

j . This
is called the zeroth-order approximation. An improvement to
this is the first-order approximation, which considersk′ num-
ber of neighbors, and the distributions of weights (Wn+1)k of
Xn+1 is taken as an average of thek′ values’ distributions
of weights of the corresponding elementsXj in the nearest
vectors. The optimal value ofk′ (i.e. k′

opt ) is determined by
trial and error (e.g. Casdagli, 1991). Having determined the
weights, the disaggregation of flow valueXn+1 observed at
the resolutionT1 to flow values (Zn+1)k at resolutionT2 is
obtained according to (Zn+1)k=(Wn+1)k*Xn+1.

The above procedure is repeated to obtain the distributions
of weights of streamflow valuesXn+2, Xn+3,..., XN , i.e.
(Wn+2)k, (Wn+3)k,..., (WN )k, and hence the streamflow val-
ues at the resolutionT2, i.e. (Zn+2)k, (Zn+3)k,..., (ZN )k. The
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Table 1. Statistics of Streamflow Data of Different Temporal Resolutions in the Mississippi River Basin at St. Louis, Missouri
(Unit=m3s−1ds , where ds is the scale of observation in days).

Statistic Daily 2-day 4-day 8-day 16-day

Number of data 8192 4096 2048 1024 512
Mean 5513.9 11027.7 22055.4 44110.8 88221.6
Standard deviation 3462.6 6908.1 13713.4 26995.2 52251.5
Maximum value 24100 48100 94300 183300 338500
Minimum value 980 1990 4030 8280 17430
Coefficient of variation 0.6280 0.6264 0.6218 0.6120 0.5923
Skew 1.4779 1.4771 1.4704 1.4559 1.4122
Kurtosis 2.5031 2.5081 2.5078 2.5066 2.3898

accuracy of disaggregation can be evaluated by comparing
the actual and the modeled disaggregated values using any
of the standard statistical measures. In the present study, the
disaggregation accuracy is evaluated using correlation coeffi-
cient (CC) and root mean square error (RMSE). Time series
plots and scatter diagrams are also used to choose the best
disaggregation results, among a large combination of results
achieved with varying number of neighbors and embedding
dimensions.

3 Study area and data used

In the present study, river flow data observed in the Missis-
sippi River basin is studied to evaluate the performance of the
nonlinear deterministic disaggregation approach. The Mis-
sissippi River, because of its enormous size and quantity of
flow, plays a major role in fulfilling various water demands
in a number of states in the United States and also in parts
of Canada. However, the river’s size and quantity of flow are
also primary reasons for the flooding and sediment transport
problems faced in these regions. The frequent floods in the
Mississippi River cause extensive losses of life and property.
The river is also a dominant mover of sediment and trans-
ports more sediment than any other river in North America
(e.g. Meade and Parker, 1985), in spite of the large dams that
have been built across its major tributaries. Discharging as
large as about 230 million tons of suspended sediment per
year to the coastal zone, the Mississippi River ranks sixth
in the world in suspended sediment transport to the oceans
(e.g. Milliman and Meade, 1983). The extensive flooding
and sediment transport problems caused by the Mississippi
River, often within the order of a few days, necessitate ac-
curate flow data at much higher resolutions than that are cur-
rently available, in order for flood forecasting and emergency
measures to be effective. For this reason, in the present study,
flow data observed in the Mississippi River basin is studied
for streamflow disaggregation purposes, in order to evaluate
the performance of the nonlinear deterministic disaggrega-
tion approach.

Flow data in the Mississippi River basin are measured at
a large number of locations throughout the basin. For the

present study, flow data observed in a sub-basin station of the
Mississippi River basin at St. Louis in the State of Missouri
(US Geological Survey station no. 07010000) are considered.
The sub-basin is situated at 38◦37′03′′ latitude and 90◦10′47′′

longitude, on downstream side of west pier of Eads Bridge at
St. Louis, 24.1 km downstream from Missouri River. The
drainage area of this sub-basin is 251 230 km2 (e.g. Chin et
al., 1975). The natural flow of stream at this gaging station
is affected by many reservoirs and navigation dams in the
upper Mississippi River basin and by many reservoirs and
diversions for irrigation in the Missouri River basin.

For the above station, daily flow measurements have been
made available from April 1948. However, there were some
missing data before 1960. As the use of continuous data
eliminates the possible uncertainties on data quality (that
could arise from interpolation and other schemes if the record
were to contain missing data), it is decided to use only the
data measured starting from 1 January 1961. The data con-
sidered in this study are those measured over a period of
about 22.5 years from 1961 to 1983 (amounting to 8192 val-
ues).

To evaluate the effectiveness of the disaggregation ap-
proach, an aggregation-disaggregation scheme (aggregation
followed by disaggregation) is used. First, the above daily
flow values are aggregated (by simple addition) to obtain
flow data at four successively doubled lower resolutions (i.e.
2-day, 4-day, 8-day, and 16-day). The nonlinear determin-
istic disaggregation approach is then employed to disaggre-
gate these aggregated data series to obtain flow data at the
successively doubled finer resolutions (i.e. from 16-day to
8-day, from 8-day to 4-day, from 4-day to 2-day, and from 2-
day to daily). Table 1 presents some of the important statis-
tics of these five flow series. As the minimum values indi-
cate, there are no zero values in the flow series. This elimi-
nates the problems faced by Sivakumar et al. (2001b) in their
study of disaggregation of rainfall series observed in the Leaf
River basin, even though this cannot be generalized for every
streamflow series.

Each of the above five series is used as follows in the im-
plementation of the disaggregation procedure. The entire se-
ries is divided into two halves. The first half of the series
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Table 2. 2-day to Daily Streamflow Disaggregation Results in the
Mississippi River Basin at St. Louis, Missouri.

Embedding Correlation Root mean square Optimal number of
dimension (m) coefficient (CC) error (RMSE) neighbors (k′

opt )

1 0.9981 260.867 150
2 0.9990 187.025 10
3 0.9991 183.801 3
4 0.9989 196.865 5
5 0.9988 207.081 10
6 0.9987 216.099 10
7 0.9986 227.645 5
8 0.9985 230.183 5
9 0.9985 234.772 10
10 0.9984 238.474 10

is used for phase-space reconstruction to represent the dy-
namics of the disaggregation process. As the phase-space
reconstruction is, in a way, done as a “training” or “learn-
ing” procedure to understand how the coarser (i.e. lower)
resolution series is disaggregated into the next finer resolu-
tion series, such a set is called “training set” or “learning
set.” Based on such a training procedure, the disaggrega-
tion is made only for one-fourth of the second half of the
series (that immediately follows the first half). This latter
set, essentially used to verify the effectiveness of the dis-
aggregation procedure through comparison between actual
and modeled disaggregated values, is called the “testing set.”
Therefore, the training and testing sets are selected in such
a way that disaggregation is made for the same period, ir-
respective of the disaggregation resolution. This is done, as
it would allow useful and consistent comparisons between
the disaggregation results obtained for the four disaggrega-
tion cases. This, in turn, could provide important information
about the performance or effectiveness of the nonlinear de-
terministic disaggregation scheme with respect to changing
(increasing/decreasing) scales.

4 Analysis, results and discussion

4.1 Analysis and results

The nonlinear deterministic disaggregation approach is now
employed to the above flow series. As mentioned above, dis-
aggregation between only successively doubled resolutions
(i.e. p=2) is considered. For each of the four disaggrega-
tion cases, the flow series is reconstructed in phase-spaces
or embedding dimensions (m) from 1 to 10 to represent the
transformation dynamics, and the number of neighbors (k′)
used in the disaggregation procedure is varied from 1 to 200.
However, to reduce the computational time, only nine differ-
ent combinations of numbers of neighbors (i.e. 1, 2, 5, 10, 20,
50, 100, 150, and 200) are considered. These combinations
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Fig. 2. Effect of number of neighbors on the performance of disag-
gregation of 2-day streamflow to daily streamflow in the Mississippi
River basin at St. Louis, Missouri:(a) correlation coefficient; and
(b) root mean square error.

are chosen (at different, but appropriate, intervals) in such a
way that the results would be able to reflect the sensitivity of
the disaggregation results to the number of neighbors used in
the disaggregation procedure.

With the above general information, the streamflow dis-
aggregation results obtained for each of the four disaggre-
gation cases using the nonlinear deterministic procedure are
presented in this section. However, for the purpose of brevity,
detailed results are presented only for the case of disaggrega-
tion of flow from 2-day to daily, and for the remaining three
cases, only the important results are highlighted.

4.1.1 Disaggregation of flow from 2-day to daily

Figures 2a and b present the accuracy of disaggregation (in
terms of correlation coefficient (CC) and root mean square
error (RMSE)) against the number of neighbors (for each of
the ten embedding dimensions) when the 2-day flow series is
disaggregated into daily flow series. As can be seen, in gen-
eral, for any embedding dimension, the disaggregation accu-
racy increases with increasing number of neighbors up to a
certain point and then saturates (or even decreases) beyond
that point. The minimum number of neighbors that corre-
sponds to the above saturation point is called as the “optimal
number of neighbors”,k′

opt . These results are presented in
a different form in Table 2, which includes also the optimal
number of neighbors. As can be seen, differentk′

opt values
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Table 3. 4-day to 2-day Streamflow Disaggregation Results in the
Mississippi River Basin at St. Louis, Missouri.

Embedding Correlation Root mean square Optimal number of
dimension (m) coefficient (CC) error (RMSE) neighbors (k′

opt )

1 0.9941 920.248 200
2 0.9961 745.735 20
3 0.9966 702.532 5
4 0.9958 770.948 5
5 0.9951 833.635 10
6 0.9948 860.788 10
7 0.9947 871.089 20
8 0.9945 882.668 20
9 0.9945 885.667 20
10 0.9945 882.886 20

are obtained for different embedding dimensions. Again, the
disaggregation results show a trend of increase in accuracy
with increasing embedding dimension up to a certain point
and then saturation (or even decrease) in accuracy beyond
that point. The smallest embedding dimension correspond-
ing to such a saturation point is called as the “optimal em-
bedding dimension”,mopt .

Figure 2 and Table 2 indicate that, even though almost
all of the ten combinations ofm and nine combinations of
k′ yield very good results, the best disaggregation results
(with CC=0.9991, RMSE=183.801) are achieved when the
embedding dimension is 3 and the number of neighbors is 3,
i.e. mopt=3 andk′

opt=3 (indicated in bold in Table 2). For
this case, Fig. 3 presents comparisons, using scatter diagram
(with the solid 1:1 diagonal line shown for reference), of
the actual daily flow series and the daily flow series disag-
gregated from the 2-day series (time series and scatter di-
agram comparisons for different combinations ofm andk′

(figures not shown) also indicate that the best results are in-
deed achieved form=3 andk′=3). As can be seen, the dis-
aggregated flow values are in excellent agreement with the
actual flow values, as the points are lying on an almost per-
fect diagonal line.

The fact that the best disaggregation results are achieved
for m=3 could be an indication that a three-dimensional
phase-space is essential to represent the important dynam-
ics involved in the flow transformation process between 2-
day and daily scales. In other words, the transformation dy-
namics may be governed by only three dominant variables
or mechanisms. This seems to suggest that the disaggre-
gation dynamics can be understood and modeled through a
low-dimensional approach. The near-accurate disaggrega-
tion results achieved using such an approach seem to pro-
vide further support to the above. The observations of low
mopt (=3) and smallk′

opt (=3) values also seem to present
clues to the presence of low-dimensional deterministic be-
havior in the underlying transformation dynamics (e.g. Cas-
dagli, 1989, 1991).

Figure 3
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Fig. 3. Comparison between modeled and observed disaggregated
values of 2-day streamflow to daily streamflow in the Mississippi
River basin at St. Louis, Missouri. The results are for embedding
dimension (m)=3 and number of neighbors (k′)=3.

At this stage, it is relevant to discuss the decrease in dis-
aggregation accuracy beyondmopt and k′

opt . If the under-
lying transformation dynamics is low-dimensional determin-
istic, then, conceptually, the disaggregation accuracy should
increase with increase in embedding dimension up to a cer-
tain point (i.e.mopt ) and attain saturation beyond that point.
A similar conceptual definition also applies for the number
of neighbors, where saturation in disaggregation accuracy
should be attained beyondk′

opt . However, the results ob-
tained for the case of flow disaggregation from 2-day to daily,
presented in Table 2 and Fig. 2, reveal a slightly different
story. While, as expected, an increase in disaggregation accu-
racy up tomopt (Table 2) andk′

opt (Fig. 2) is observed, there
is no saturation in disaggregation accuracy beyondmopt and
k′
opt , but a decrease in accuracy is observed. This is surpris-

ing considering the fact that any dimension beyondmopt (for
a particulark′) or any number of neighbors beyondk′

opt (for
a particularm) potentially include only additional informa-
tion about the dynamics in the phase-space reconstruction or
in the disaggregation procedure, as the case may be.

Having said that, the above pure theoretical explanation
and expectation is valid only for noise-free data series, such
as artificially generated ones. As noise is a prominent lim-
iting factor in the phase-space reconstruction and neighbor
searching procedures (e.g. Schreiber and Kantz, 1996), such
a theoretical expectation is difficult to meet with when one
deals with real data, which are always contaminated with
noise. The effect of noise (on prediction/disaggregation)
with respect to embedding dimension and number of neigh-
bors are discussed in detail in Sivakumar et al. (1999, 2001a,
b, 2002a, b) and, therefore, are not reported herein.

4.1.2 Disaggregation of flow from 4-day to 2-day, 8-day to
4-day, and 16-day to 8-day

Tables 3, 4, and 5 summarize the results of disaggregation
of flow from 4-day to 2-day, from 8-day to 4-day, and from
16-day to 8-day, respectively. The results presented therein,
for each case, are the best results achieved for each of the
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Table 4. 8-day to 4-day Streamflow Disaggregation Results in the
Mississippi River Basin at St. Louis, Missouri.

Embedding Correlation Root mean square Optimal number of
dimension (m) coefficient (CC) error (RMSE) neighbors (k′

opt )

1 0.9892 2470.02 200
2 0.9902 2350.76 50
3 0.9899 2381.36 50
4 0.9898 2401.80 100
5 0.9897 2411.06 100
6 0.9896 2425.62 100
7 0.9896 2418.28 150
8 0.9896 2425.59 200
9 0.9894 2440.80 200
10 0.9894 2445.44 200

ten embedding dimensions used in the phase-space recon-
struction, with the optimal number of neighbors for each di-
mension is also presented. From these results, the following
general observations may be made:

1. The disaggregation accuracy is very high for all of the
three disaggregation cases (with CC>0.974), irrespec-
tive of the embedding dimension used for the phase-
space reconstruction;

2. The best disaggregation results are near-accurate (with
CC>0.975);

3. The best disaggregation results are achieved when the
embedding dimension is low, i.e. typically 2 or 3 (the
only exception to this is the case of disaggregation from
16-day to 8-day, wherem=8 yields the best results, and
m=10 andm=3 yield, in order, the next best results) (in-
dicated in bold in Tables 4, 5, and 6);

4. The best disaggregation results are achieved when the
number of neighbors is small, i.e. typically below 20
(an exception to this is the case of disaggregation from
8-day to 4-day, for whichk′=50 yields the best results);
and

5. The disaggregation accuracy decreases with increasing
scale of aggregation, with the best results for the case
of disaggregation from 4-day to 2-day and the worst for
the case of disaggregation from 16-day to 8-day.

The first four of these observations are consistent with the
observations made earlier for the case of disaggregation from
2-day to daily. Also, a comparison of the results for all of the
above four disaggregation cases supports the fifth observa-
tion, with the best results obtained for the case of disaggre-
gation from 2-day to daily (see below more further details).

Figures 4, 5, and 6 compare, through scatter diagrams, the
actual and modeled disaggregated values for the cases of dis-
aggregation from 4-day to 2-day, from 8-day to 4-day, and

Table 5. 16-day to 8-day Streamflow Disaggregation Results in the
Mississippi River Basin at St. Louis, Missouri.

Embedding Correlation Root mean square Optimal number of
dimension (m) coefficient (CC) error (RMSE) neighbors (k′

opt )

1 0.9747 7441.11 100
2 0.9750 7398.83 150
3 0.9754 7342.64 20
4 0.9753 7358.45 20
5 0.9744 7478.98 200
6 0.9751 7388.94 10
7 0.9755 7325.99 10
8 0.9759 7258.19 10
9 0.9743 7493.35 200
10 0.9756 7315.44 5
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Fig. 4. Comparison between modeled and observed disaggregated
values of 4-day streamflow to 2-day streamflow in the Mississippi
River basin at St. Louis, Missouri. The results are for embedding
dimension (m)=3 and number of neighbors (k′)=5.

from 16-day to 8-day, respectively. The results shown are the
best results achieved for each of these three cases (except for
the last case), and are chosen from Tables 3, 4, and 5, respec-
tively. In the case of disaggregation from 16-day to 8-day, re-
sults corresponding to two different combinations: (1)m=3
andk′=20 (Fig. 6a); and (2)m=8 andk′=10 (Fig. 6b), are
shown. This is done because these two combinations yield
almost similar results but represent phase-space reconstruc-
tions at low and high embedding dimensions, respectively,
and, therefore, might provide interesting observations and fa-
cilitate better comparisons and interpretations.

As can be seen from Figs. 4, 5, and 6, there are, in general,
excellent agreements between the actual and modeled disag-
gregated flow values for each of the three cases (as for Fig. 6,
while an unambiguous identification of the better combina-
tion is not easy, the combination ofm=8 andk′=10 seems to
have an edge over that ofm=3 andk′=20). This indicates the
suitability of the nonlinear deterministic approach for under-
standing and modeling the flow disaggregation dynamics at
these disaggregation scales. Also, a decrease in disaggrega-
tion accuracy with increasing scale of aggregation is clearly
evident from the scatter diagrams.
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Figure 5
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Fig. 5. Comparison between modeled and observed disaggregated
values of 8-day streamflow to 4-day streamflow in the Mississippi
River basin at St. Louis, Missouri. The results are for embedding
dimension (m)=2 and number of neighbors (k′)=50.
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Fig. 6. Comparison between modeled and observed disaggregated
values of 16-day streamflow to 8-day streamflow in the Mississippi
River basin at St. Louis, Missouri:(a) embedding dimension (m)=3
and number of neighbors (k′)=20; and(b) embedding dimension
(m)=8 and number of neighbors (k′)=10.

4.2 Discussion of results

The decrease in disaggregation accuracy with increasing
scale of aggregationmayseem contradictory, since it is gen-
erally (but not necessarily) believed that data at coarser res-
olutions are less irregular when compared to that at finer
resolutions and, thus, are easier to deal with. Even if this
belief/expectation exists, it should be noted, in the present
case, that the transformation process between any two scales

is entirely different from the evolution process at the two in-
dividual scales. Therefore, when the task at hand is disag-
gregation, “coarser resolutions” do not necessarily mean less
irregular than “finer resolutions.” In view of this, the present
results could indeed be an actual reflection of the reality of
the flow transformation process at the four disaggregation
resolutions considered. On the other hand, the above results
could also be an indication of the “scaling range” present in
the river flow process. That is, a clear scaling range may ex-
ist between daily and 8-day scales (where the disaggregation
procedure is much more effective), and may disappear grad-
ually beyond such a resolution. Whether or not this is indeed
true needs to be investigated by studying resolutions coarser
than 16 days.

Having said that, it is also possible that the aggregation
procedure used to obtain data sets at different (coarser) reso-
lutions could hamper the ability of the present disaggregation
procedure in providing accurate results. This is essentially
because the coarser resolution data series (e.g. 16-day) con-
tain, in all probability, higher levels of noise than the finer
resolution series (e.g. daily), considering the facts that the
finest resolution series (i.e. daily) itself is contaminated with
noise and that data at other resolutions are obtained by sim-
ply adding the appropriate (number of) daily values. The
presence of noise in the data series of two different resolu-
tions certainly brings noise to the transformation (i.e. distri-
butions of weights) between the two resolutions. As a result,
the distributions of weights at coarser resolutions would, in
all probability, contain higher level of noise than that at finer
resolutions. The issue of noise on the outcomes of the disag-
gregation procedure has already been discussed and, there-
fore, is not reiterated at this stage.

One other observation that is worthy of mention is con-
cerned with the pattern of behavior (or lack thereof) in the
disaggregation accuracy with respect to the embedding di-
mension and the number of neighbors, for the four flow dis-
aggregation cases studied. For the case of disaggregation
from 2-day to daily (Table 2 and Fig. 3), there is a definite
pattern of increase in disaggregation accuracy with an in-
crease inm andk′ and then a decrease with further increase
in m andk′ (except form=1, in which case the phase-space
is largely inadequate). There is also some consistency in the
k′
opt for eachm (k′

opt typically below 10). These patterns are
observed also for the cases of disaggregation from 4-day to 2-
day (withk′

opt typically below 50) (Table 3) and from 8-day
to 4-day (withk′

opt typically above 100, except form=2 and
m=3) (Table 4). In other words, clearmopt andk′

opt exist for
these three cases. However, no definite pattern is observed
for the case of disaggregation from 16-day to 8-day (Table 5),
where the disaggregation accuracy fluctuates, in an irregular
manner, with respect to bothm and k′. The k′

opt for each
m also fluctuates significantly, ranging from 5 to 200. What
causes this situation is not clear at this moment, and further
investigations are needed in this area.
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However, the fluctuation with respect tom seems to start
at m=4, and there still seems to be a trend of increase in
disaggregation accuracy up tom=3, suggesting that a three-
dimensional phase-space could still be sufficient for this
case, just as it is for the other cases (for whichmopt is typi-
cally 2 or 3). The fact that there is no significant difference
between the results obtained atm=3 and atm=8 only seems
to support the above. However, one has to be cautious in pro-
viding such interpretations and conclusions, since there is al-
ways a possibility of getting trapped into a “local optimum”
rather than finding a “global optimum”. The determination
of mopt andk′

opt in the present disaggregation procedure (or
any phase-space reconstruction and neighbor searching pro-
cedure for that matter) is in itself an important problem to
be addressed, details of which are not discussed herein (the
interested reader is referred to, for instance, Jayawardena et
al. (2002) and Phoon et al. (2002) for details).

5 Summary, conclusions and future research potential

The present study introduced a nonlinear deterministic ap-
proach for streamflow disaggregation that treats the dy-
namics of flow transformation between (two) scales as a
deterministic chaotic process. As per this approach, the
flow transformation dynamics was represented first using a
phase-space reconstruction procedure and then disaggrega-
tion was made using a local approximation (nearest neigh-
bor) method. The performance of the approach was tested on
the streamflow series observed in the Mississippi River basin
(at St. Louis, Missouri), USA. Specifically, flow series of
successively doubled resolutions between daily and 16 days
(i.e. daily, 2-day, 4-day, 8-day, and 16-day) were studied, and
disaggregations were made only between successive resolu-
tions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and
16-day to 8-day). The results revealed the appropriateness
of the nonlinear deterministic approach for streamflow dis-
aggregation, as there were excellent agreements between the
actual values and the modeled values for all of the four disag-
gregation cases studied. In general, phase-space reconstruc-
tion in lower dimensions (typically 2 or 3) yielded the best
disaggregation results, a possible implication that the under-
lying transformation dynamics could be dominated by only
a few variables or mechanisms. The results also indicated a
decrease in accuracy with a change of disaggregation scale
from finer to coarser. While this could imply the existence
of a particular “scaling range,” (probably between daily and
8 days in this case) where the disaggregation procedure is
expected to be effective, further verification is necessary in
light of the potential limitations of the present approach for
noisy time series, among others.

The present study was different from the previous stream-
flow disaggregation studies in two important aspects: (1) The
study treated the dynamics of streamflow transformation as a
nonlinear deterministic process, whereas the previous stud-
ies assumed the underlying process as stochastic (through
parametric or non-parametric procedures); and (2) Whereas

most, if not all, of the past studies focused on streamflow
disaggregation between very coarse resolutions (e.g. annual
and monthly scales), the present study attempted disaggre-
gation between relatively much finer resolutions (e.g. daily
and weekly scales). In regards to (1), even though a direct
comparison between the present study and the past studies
could not be made, due essentially to the different disaggre-
gation scales studied, the near-accurate results achieved in
the present study indicate the suitability of the nonlinear de-
terministic approach for streamflow disaggregation. A com-
parison of the performance of stochastic and nonlinear de-
terministic approaches is expected to shed some light on the
usefulness and appropriateness of these approaches for the
specific disaggregation scale (finer or coarser) at hand, and
on the selection of the better approach for that scale. Efforts
are being made in this direction, details of which will be re-
ported elsewhere.

It is the authors’ opinion that the present study has equal
practical relevance and significance when compared to the
previous studies because of the finer disaggregation scales
studied, as mentioned in (2). Obtaining streamflow data
at much finer resolutions (e.g. daily scales and even finer)
is as equally important as that at coarser resolutions (e.g.
monthly). This is because (the availability of) finer reso-
lution data plays an important role in effectively forecast-
ing flood events and efficiently improving and implement-
ing flood warning and emergency measures, which normally
(must) happen within a few days or even a few hours.

A final remark on the possibility of dealing with stream-
flow disaggregation problem over all (or at least a large range
of) scales is in order. As the stochastic streamflow disaggre-
gation schemes have been found to provide very good results
for coarser resolutions (e.g. Lin, 1990; Maheepala and Per-
era, 1996; Tarboton et al., 1998) and as the present deter-
ministic disaggregation procedure has been found to perform
extremely well for finer resolutions, coupling of these two
approaches could potentially yield better results than those
that can be achieved when the two are performed indepen-
dently. In this regard, the coupling of nonlinear deterministic
approach and nonparametric approach (e.g. Tarboton et al.,
1998) could be a first step. As these two approaches pos-
sess important commonalities, such as: (1) they use historic
data in the analysis (to reconstruct the phase-space or to es-
timate the necessary joint probability density functions); (2)
they are data driven; (3) they restore summability; (4) they
view the allocation problem from a “local” sense rather than
a “global” sense; and (5) they are able to incorporate the non-
linear dependency that is present in the underlying dynamics,
it is hoped that their coupling could be done without much
difficulty. Whether this is indeed the case remains to be seen.
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