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Abstract. The implications of state dependent, finite time er-
ror growth has been studied using singular values in a chaotic
2-dimensional map. Earlier studies have demonstrated the
superiority of the singular values over the Lyapunov number
in representing error growth over finite time scales, since they
take state dependency into account. In this work, linearized
error growth as given by singular values under operational
constraints like non-isotropic initial uncertainty and model
error is considered. It is demonstrated that the relevant singu-
lar values in the case of non-isotropic initial uncertainty are
quite different from the isotropic case. The effect of model
inadequacy on error growth is delineated.

1 Introduction

It has long been recognized that inaccuracies in weather fore-
casts result from uncertainties in the initial conditions and
model imperfections. The initial uncertainty has a number of
sources, including the paucity of observations and noise in
observations, making it impossible to accurately determine
the state of the atmosphere. Though the meteorological com-
munity was aware of the initial condition uncertainty prob-
lem (Thompson, 1957), its gravity was fully appreciated after
the discovery of “chaos” (Lorenz, 1963). Ever since, there
has been a spate of scientific papers in almost all branches
of science devoted to understanding, quantifying and analyz-
ing properties of chaotic systems. Techniques to improve the
prediction of chaotic systems has formed a sizeable subset of
these efforts.

In chaotic systems, an error in the initial condition grows,
on average, exponentially fast. Any small but finite error in
the initial condition tends to amplify rapidly, thus frustrating
attempts to accurately forecast a chaotic system. Many “geo-
physical systems” appear to be chaotic. The critical impor-
tance of determining the initial state accurately has prompted
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the application of techniques to pin down the initial state with
as much certainty as possible. Prominent among these tech-
niques are 4 dimensional variational analysis (Dimet and Ta-
lagrand, 1986), the Extended Kalman Filter (Evensen, 1992)
and the Ensemble Kalman Filter (Evensen, 1994).

One of the most popular diagnostics for quantifying the
evolution of error in initial conditions for chaotic systems
is the Lyapunov exponent (Oseledec, 1968). Several studies
have used the Lyapunov exponent formulation to analyze the
growth of error in dynamical systems (Smith et al., 1999).
The Lyapunov exponent as defined by Oseledec gives the av-
erage growth rate of error over the whole state space for in-
finite time. However, from a practical standpoint this growth
rate is not very useful since in real life we are generally inter-
ested in short term forecasts of some localized part of state
space. The concept of singular vectors and values (Strang,
1988) gives a more relevant measure for error growth than
the Lyapunov exponent. E. N. Lorenz (Lorenz, 1965) pio-
neered the interpretation of singular vectors and values in the
context of meteorology. The singular vectors are a function
of localized dynamics and finite time intervals rather than
global dynamics and infinite time intervals.

Much work on singular values and vectors in operational
Numerical Weather Prediction (NWP) has been done. But
the sensitivity of singular values and their distribution over
state space to the shape of initial uncertainty and to model
inadequacy remains by and large unexplored, though some
work has been done (Barkmeijer et al., 1998). The typical
assumptions of isotropic uncertainty and perfect models fail
in the real world, resulting in misleading estimates of singu-
lar error growths.

In the current study, the state dependent singular error
growth over finite time has been studied in a 2-dimensional
chaotic map, the Ikeda system (Ikeda, 1979). The Ikeda sys-
tem has been chosen to allow visual demonstration of the im-
pact of practical constraints on the distribution of the singular
values. To begin with, the advantage of singular values over
Lyapunov numbers is demonstrated. Next, the impact of the
above mentioned simplifications (isotropic initial uncertainty



352 V. M. Khade and J. A. Hansen: State dependent predictability

and perfect model) on singular error growth has been ana-
lyzed.

Section 2 below outlines the dynamical system employed,
the Ikeda map. It also introduces the idea of linearization
and the linear propagator. Section 3 delineates the theoretical
framework of Lyapunov and singular values. It is meant to
introduce the mathematics behind these concepts. Section 4
explains the methodology and results of the current study.
Finally, Sect. 5 summarizes the results.

2 Ikeda system and linearization

Though the exact nature of initial error growth will depend
on the system under consideration, some of its generic fea-
tures can be understood and possible issues elucidated by
studying low-dimensional chaotic systems. Of course, the
solutions obtained by using these systems need not scale to
high dimensional and more complex models, but the generic
results obtained can be illuminating. The Ikeda system has
been used by several authors (Smith et al., 1999; Hansen,
2001) to elucidate predictability studies. All work in this
study is restricted to the Ikeda system. A description of the
Ikeda system and its linearization is given below.

The equations of the Ikeda system are,

xi+1 = 1 + µ(xi cosθ − yi sinθ) (1)

yi+1 = µ(xi sinθ + yi cosθ), (2)

where

θ = a −
b

(x2
i + y2

i + 1)

a = 0.4, b = 6.0, µ = 0.9 and “i” denotes the step number.
Note that this system is a “map” as opposed to a “flow’. A
map is discrete in time while a flow (e.g. Lorenz, 1963) is
continuous.

Linearization of the Ikeda system is a crucial concept
since singular and Lyapunov error growth hinge on its va-
lidity. Linearization can be explained as follows. The
state space is defined by(x, y). Consider a point(xi, yi)

in the phase space. Consider the perturbed point given by
(x̃i, ỹi)=(xi + εx(i), yi + εy(i)) whereεx(i) = x̃i − xi and
εy(i) = ỹi − yi denote the perturbations (or the errors). The
evolution of(xi, yi) and(x̃i, ỹi) is described by the nonlinear
equations, Eqs. (1) and (2). Sincexi+1 andyi+1 are functions
of xi andyi one can introduce the notation,

xi+1 = F1(xi, yi)

yi+1 = F2(xi, yi).

Using the Taylor series, the evolution of linearized error is
given by,[

εx(i+1)

εy(i+1)

]
=

[
F ′

1x(xi, yi) F ′

1y(xi, yi)

F ′

2x(xi, yi) F ′

2y(xi, yi)

] [
εx(i)

εy(i)

]
, (3)

where

F ′

1x =
∂F1

∂xi

and so on.
The matrix on the right hand side (which is the Jacobian

of Eqs. 1 and 2) is called the linear propagator,

M i =

[
F ′

1x(xi, yi) F ′

1y(xi, yi)

F ′

2x(xi, yi) F ′

2y(xi, yi)

]
.

Suppose the error at theith step is

ε(i) =

[
εx(i)

εy(i)

]
.

Then the error at the(i + 1)th step is

ε(i+1) = M iε(i) (4)

assuming that the magnitude ofε(i), ‖ε(i)‖, is small enough
so that the linearity assumption holds. Though this relation
holds approximately for finite perturbations, it holds exactly
for infinitesimal perturbations. Equation (4) is the lineariza-
tion of the system equations about a non-linear trajectory.

The number of steps (or the time, in the case when the
system is a flow) over whichM is constructed is called the
optimization timeτ . M is called the “tangent linear model”.
M depends on the initial conditions and the optimization time
τ i.e. M = f (xi, yi, τ ). The tangent linear model is partic-
ularly useful because of this property which states that the
linearized error at thenth step can be evaluated by knowing
the initial error and the linear propagator over each of the in-
termediate steps. The validity of this linearization (i.e. the
proximity of the linear error evolution to the non-linear er-
ror evolution) will depend on the magnitude and direction of
the initial error andτ . In general, for a givenτ , the smaller
the initial error, the better the validity. The number of steps
over which linearity holds has to be ascertained before the
linear propagator is actually utilized. In the current work the
initial magnitude of errors has been chosen small enough so
that linearity holds for the number of steps over whichM is
constructed.

3 Lyapunov numbers, singular values and norms

A finite error in initial conditions grows nonlinearly. One
needs to define “indices” of error growth to quantify this er-
ror growth. Lyapunov numbers and singular values are such
“indices” of error growth, defined under linearized dynam-
ics. These accurately quantify the growth of errors insofar as
linearization holds.

3.1 Lyapunov numbers

Lyapunov vectors and numbers have been discussed in many
papers. The following discussion has been adapted from
(Ziehmann et al., 1998).
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Fig. 1. Distribution of the leading singular value (Lyapunov number in case of (a)) over the Ikeda attractor forτ = 1 for a perfect model
(black color indicatesσ1 < 0). (a) Lyapunov number=1.66, (b) σ1, initial isotropic distribution,(c) σ r

1 , initial non-isotropic distribution,
superscriptr represents “relevant”,(d) σ r

1 initial non-isotropic distribution,Pa rotated by an angle drawn fromN(0, 10◦).

Consider anm-dimensional state space. The Lyapunov ex-
ponents are defined assuming infinitesimal perturbations at
time t = 0. As discussed in Sect. 2, the linear propagator
M evolves forward the initial error (or perturbation) linearly
along the nonlinear trajectory over timeτ . Consider the ma-
trix,

O(x, τ ) = [M(x, τ )T M(x, τ )]1/2τ

where the superscriptT indicates the transpose of the matrix.
Oseledec (Oseledec, 1968) showed that if the limit ofτ →

∞ exists, then them eigenvalues of,

O(x) = lim
τ→∞

O(x, τ )

are independent of the statex. Then the Lyapunov exponents
are defined as,

3i = lim
τ→∞

1

τ
loge(pi)

for i = 1,m; wherepi, i = 1, m are the eigenvalues ofO.
By convention,3i > 3j for i < j . The leading Lyapunov
number is defined as,

L1 = e(1/τ)31 = p1.

L1 gives the average “factor” of growth of the fastest growing
direction over timeτ . i.e. if 31 has been calculated for a
finite timeτ = k1t , say wherek is the number of steps and
1t is the time step, then at each step the error grows by a
factor ofL1, so that at the end ofk steps it has grown by a
factor ofLk1t

1 .
Figure 1a shows the one step growth factor as given by the

Lyapunov number. The points shown are on the attractor and
each one is colored by the single leading Lyapunov number.
According to this picture, an error at any point in the state
space would grow by a factor of 1.66 overτ = 1. In general
it would grow by a factor of 1.66τ overτ steps. Note that by
definition the error growth given by the Lyapunov number is
uniform over the whole state space.
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3.2 Singular vectors and values

The subject of singular vectors has been treated by numer-
ous authors in linear algebra texts and the scientific literature
(Strang, 1988). The singular vectors and values are defined
for the linearized system of equations. Having calculatedM
over optimization timeτ , the singular vectors and values are
defined as follows.

M = U6VT , (5)

where

6 =
√

3.

U andV are called the left (or final time) and right (or initial
time) singular vectors, respectively and the elements of3,
which is a diagonal matrix, are the square of the singular val-
ues ofM . These can be obtained by either the singular value
decomposition i.e.SV D(M) or through the eigenvectors and
eigenvalues ofMT M andMM T . Note thatU andV define
orthonormal bases.

In the context of the Ikeda system, given a linear propaga-
tor constructed over a particularτ , U is 2X2, V is 2X2 and
there are 2 singular values. From Eq. (5),

Mvi = σiui,

wherei = 1, 2. The singular values can be written as,

σi =
‖Mvi‖

‖vi‖
,

whereσ1 > σ2.
These give the ratio of magnitudes of vectors aligned along

ui at final time to those aligned alongvi at initial time. The
interpretation of these vectors and values is of immense im-
portance from the standpoint of error growth under linearized
dynamics. Given an isotropic (i.e. having the same mag-
nitude in all directions) distribution of uncertainty at initial
time, the errors aligned alongv1 grow largest and at opti-
mization time align alongu1 (note that this assumes a norm,
which is discussed in more detail in the next subsection). The
corresponding growth factor is given byσ1. Those aligned
alongv2 grow the least with the corresponding growth factor
given byσ2. All other directions grow by factors that are be-
tweenσ1 andσ2. The leading singular value places an upper
limit on the prediction error of the system under linearized
dynamics and isotropic uncertainty; it provides an estimate
of the maximum error one can expect in the forecast.

In the case ofn dimensions, then singular values give
the n growth factors associated with then singular direc-
tions which form an orthonormal basis. An isotropicn-
dimensional sphere evolves into an ellipsoid at final time
whosen axes are given by theU vectors.

3.3 Norms

There are several ways in which “distance” can be measured
between two points in a phase space. This distance is de-
fined by a function known as the norm (Lipschutz, 1991). A

given uncertainty distribution may be isotropic with respect
to one norm, while being non-isotropic with respect to an-
other. Thus it is very important to specify the norm when
discussing uncertainty structure.

Let X be a real or complex vector space. Suppose there
is a function‖x‖ which assigns to eachx ∈ X a real num-
ber. This function is called a “norm” onX if it satisfies the
following axioms:

‖x‖ ≥ 0

‖x‖ = 0 iff x = 0

‖kx‖ = |k|‖x‖ wherek is a scalar

‖x + y‖ ≤ ‖x‖ + ‖y‖.

The vector spaceX with a norm is called a “normed vector
space”. There can be several functions which define different
norms as long as they satisfy the above axioms. For instance,
if x1, x2, ..., xn are components of a vectorx, then 3 possible
norms are,

‖x‖ = max(|xi |), i = 1, n

‖x‖ = |x1| + |x2| + ... + |xn|

‖x‖ =

√
|x1|

2 + |x2|
2 + ... + |xn|

2.

These are called theL∞, L1 andL2 (or Euclidean) norms,
respectively. The distance between two vectorsx, y ∈ X
denoted by the functiond(x, y) is dictated by the norm em-
ployed. If theL2 norm is used then,

d(x, y) =

√
|x1 − y1|

2 + |x2 − y2|
2 + ... + |xn − yn|

2.

It appears that the terms “norm” and “metric” have been
used synonymously in meteorology literature (Palmer et al.,
1998). Predictability studies using singular vector analysis
aim to find the directions in phase space at initial (i.e. anal-
ysis) time, that grow into the directions of largest error af-
ter some specified interval of time (called the optimization
time). There are several choices available for the “physical
dimension” of these perturbations such as total energy, en-
strophy and streamfunction variance. The state vectors can
be operated on by appropriate operators to obtain the pertur-
bations in a particular “physical dimension”. (The operator
chosen defines a norm on the space e.g.L2 norm, energy
norm, enstrophy norm, etc., Palmer et al., 1998). In gen-
eral, irrespective of the norm chosen, the analysis error struc-
ture may be non-isotropic.SV D(M) whereM is the linear
propagator, does not give the singular directions and values
which are relevant to predictability, since the non-isotropic
nature of the analysis error structure is not taken into con-
sideration. This drawback can be overcome by using the
covariance,Pa , of the analysis errors in the chosen norm’s

space. If
√

Pa−1 is used to transform the analysis errors then
the resulting transformed analysis errors are isotropic. Thus
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Fig. 2. Distribution ofσ r
1 (where superscriptr represents “relevant”) over the Ikeda attractor forτ = 1 and initial non-isotropic distribution

(black color indicatesσ1 < 0). (a) perfect model,Pa rotated by an angle drawn fromN(0, 30◦), (b) perfect model, off diagonal terms ofPa

neglected i.e. only variance is considered,(c) parametrically imperfect model,a = 0.404,(d) structurally imperfect model, first 6 terms of
sine and cosine series included.

SV D(M
√

Pa−1
−1

) gives the singular directions and values
relevant to predictability. It accounts for situations in which
large initial uncertainty (i.e. error) combined with small er-
ror growth lead to larger final time errors than small initial

uncertainty combined with large error growth. Using
√

Pa−1

as a transform is equivalent to usingPa−1 as a norm.Pa−1 is
called the analysis error covariance norm (Barkmeijer et al.,
1998). It is also called the Mahalanobis metric (Palmer et al.,
1998). Usually in realistic atmospheric models it is numer-
ically very expensive to calculatePa−1. Barkmeijer et al.
(1998) explores some methods of obtaining the estimates
of Pa−1. It so happens that if perturbations are measured
in energy then the analysis error distribution appears to be
isotropic (Palmer, 1994), which is advantageous since then
Pa−1 need not be calculated. In the work that follows, the
L2 norm is used and

√
Pa−1 is employed to transform the

non-isotropic analysis error distribution to an isotropic one.

4 Singular vectors and values in the Ikeda system

The concept of singular vectors and values presented in
Sect. 3.2 has been applied to the Ikeda system. Basically,
the question addressed is, do the (leading) singular values
change over the state space? This represents the state de-
pendence of error growth under numerous operational con-
straints.

The concept of singular error growth in the Ikeda system
can be illustrated with the following example. Figure 3 illus-
trates singular error growth at the point(0, −1) in the Ikeda
phase space. A Gaussian uncertainty distribution centered at
(0, −1), which is the truth, is generated at the initial time.
The perturbations to be evolved byM (not shown in the fig-
ure) are sampled from this distribution. The green circle
in Fig. 3a shows the 2ξ bound of this distribution whereξ
stands for standard deviation. This distribution is propagated
using the tangent linear model. At each step the truth and
2ξ bound of the ensemble are plotted. The tangent linear
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Fig. 3. Evolution of isotropic distribution over 3 time steps.V (shown in (a)) are the initial time vectors.U are the final time vectors which
are shown in (b), (c) and (d) forτ = 1, 2, 3, respectively. Superscript indicates the time step. The 2ξ bounds of distribution are shown in
each figure. Note thatU vectors are not scaled byσ . (a) Initial time singular vectors are for differentτ , (b) τ = 1, σ1 = 2.07,σ2 = 0.27,(c)
τ = 2, σ1 = 4.77,σ2 = 0.13, (d) τ = 3, σ1 = 13.77,σ2 = 0.03.

model stretches (or shrinks) and rotates each of the pertur-
bation vectors so that at each step an ellipse is generated.
Figures 3b, 3c and 3d show the ellipses atτ = 1, τ = 2
andτ = 3, respectively. Firstly, one is interested in the di-
rection in the future which has the maximum variance at the
forecast time (or optimization timeτ ) and the variance in this
direction relative to the initial variance can be regarded as a
quantitative measure of predictability. Secondly one is inter-
ested in knowing the direction at initial time that grows into
direction of maximum variance atτ . This knowledge can
be used to help one to reduce the error in the relevant initial
direction so that forecast errors at final time can be reduced.

The U, V and 6 are calculated by the SVD ofM con-
structed over eachτ , using theL2 norm on the space and
assuming an isotropic distribution of uncertainty at initial
time. The major and minor axis of these ellipses are given
by u1 andu2, respectively. The directions at initial time that

evolve into these directions at final time are given byv1 and
v2. Note that each time step has a unique set ofU andV
vectors, with the corresponding growth factors given by the
σ ’s. Hence, for instance, over one step any error aligned
alongv1

1 direction (shown in red, with arrowhead) will in-
crease in magnitude by 2.97 (which is the maximum) while
that aligned alongv1

2 direction (shown in red) will shrink
by a factor of 0.27 (which is the minimum). Note that the
superscripts indicate the time step while the subscripts give
the index of the singular vector (subscript 1 indicates lead-
ing singular vector). At final time, these directions will align
themselves alongu1

1 andu1
2 ,respectively as shown in Fig. 3b.

For τ = 2 errors aligned along the direction shown in black
(with arrowhead) in Fig. 3a, will grow the most (by a factor
of 4.77) and align itself along the direction shown in Fig. 3c.
Similarly the directions shown in magenta color in Fig. 3a,
evolve to those in Fig. 3d overτ = 3, with the maximum
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growth factor of 13.77 and a minimum of 0.03. Asτ → ∞

theU andV vectors converge to the same vectors.
Thus the singular vector formulation is very remarkable in

that it gives (1) the directions that would grow the most (2)
the directions to which they would grow and (3) the factors
by which they grow. The leading singular value represents
the worst case scenario for forecast error under the lineariza-
tion assumption.

4.1 Isotropic initial uncertainty

The above procedure of calculating the leading singular value
has been applied to a large number of points in the state
space so that its variation can be inspected. This motivates
the superiority of singular values over the Lyapunov num-
ber insofar as finite time forecast error studies are concerned.
Consider Fig. 1a. The “average over space via an average
over time” implicit in the definition of the Lyapunov number,
gives this uniform distribution, which belies the true nature
of finite time error growth, as is evident in Fig. 1b.

Figure 1b, shows the leading singular value forτ = 1 at
many points, as calculated assuming isotropic initial uncer-
tainty. This work has been done earlier (Smith et al., 1999);
but has been presented as a background to the results to fol-
low. The L2 norm, as defined in Sect. 3 has been used to
measure distances in the phase space. The error growth fac-
tor as given by the singular value in Fig. 1b shows significant
structure and variation. The errors in some parts of the state
space could grow by as much 2.97 while in other parts they
could actually shrink (these areas havingσ1 < 1 are col-
ored in black). A comparison of Fig. 1a and Fig. 1b shows
that the Lyapunov number is in fact quite a dubious measure
of finite time error growth. Note that the Lyapunov number
has the same value of 1.66 everywhere in the state space. In
areas like those around the origin, the forecast launched for
τ = 1 would be very good, as is evident from Fig. 1b. The
Lyapunov number gives a false impression that the forecast
will be poor in this region. On the other hand in regions
like those around(1, 0.5) the Lyapunov number artificially
enhances the forecast quality, while in reality the forecast
will be quite poor as is evident from Fig. 1b. The Lyapunov
number is all the more misleading for longer optimization
times (results not shown). For instance over 2 steps the Lya-
punov factor would be 1.662 while it is seen that singular
value varies quite a lot over the state space. This comparison
gives cogent reasons to decisively discard Lyapunov number
as a measure of finite time error growth and adopt the singu-
lar value as a far better substitute. The error growth as given
by the singular value is state and time dependent. The in-
formation given by the singular values not only diagnose the
forecast quality over state space but also could be useful for
data assimilation or targeting. Thus if the initial distribution
of errors is isotropic (in theL2 norm on the space) and the
model is perfect then Fig. 1b indeed gives a genuine picture
of forecast quality.

Operationally, data assimilation is used to generate initial
uncertainty distribution which renders it non-isotropic with

respect to theL2 norm. The next sub-section gives a brief
overview of data assimilation using the Ensemble Kalman
filter (EnKF).

4.2 Data assimilation

In this work the EnKF data assimilation (Evensen, 1994;
Houtekamer et al., 1998) will be used to produce an anal-
ysis and associated uncertainty. Letn be the dimension of
the state vectorx. Let the number of ensemble members be
N . The EnKF equations can be described as follows. For
i = 1, N ,

x
f
i (t) = F[x

f
i (t − 1)] (6)

Pf (t) =
1

N − 1
[Af (t) − Xf (t)][Af (t) − Xf (t)]T (7)

K(t) = Pf (t)H(t)T [H(t)Pf (t)H(t)T + R(t)]−1 (8)

xa
i (t) = x

f
i (t) + K(t)[yo

i (t) − H(t)x
f
i (t)] (9)

Pa(t) =
1

N − 1
[Aa(t) − Xa(t)][Aa(t) − Xa(t)]T .

x
f
i (t) is the first guess generated by a short term forecast.

Xf (t) andXa(t) arenXN matrices which give the ensem-
bles before and after assimilation, respectively. Thus each
column of Xf (t) and Xa(t) is an ensemble member i.e. a
different realization of the state and each row is a state com-
ponent.Af (t) andAa(t) arenXN matrices having the cor-
responding ensemble mean ofXf (t) andXa(t), respectively,
in each of its column. The mean is calculated by averaging
over each row ofXf (t) and Xa(t). Thus a particular ele-
ment in each column ofAa(t) (which is the same as each
of otherN columns) is an average over the corresponding
row in Xa(t). Pf (t) (dimensionnXn) gives the uncertainty
in the first guess in the form of its covariance matrix.R(t)

(dimensionmXn, wherem is the number of state variables
observed; for this workm = n) gives the uncertainty in the
observations. The Kalman gain termK(t) (dimensionnXm)
gives a measure of confidence one should place in the first
guess and the observations depending on their respective un-
certainties. H(t) is a map from the model space to obser-
vation space.yo

i (t) are the perturbed observations. The per-
turbed observations are obtained by renoising the observation
meanyo(t) i.e.yo

i (t) = yo(t) +
√

RN(0, 1), whereN(0, 1)

is the standard Normal distribution (see Burgers et al. (1998)
for details). xa

i (t) is the so called analysis which combines
the first guess uncertainty and the observation uncertainty,
thus providing the best estimate of initial condition. Finally
Pa(t) is the covariance matrix that provides an estimate of
uncertainty in the analysis. The Eqs. (6) through (9) assume
a perfect model.

All NWP centers employ data assimilation to produce the
best possible initial conditions. It is difficult to imagine that
the initial condition produced operationally by data assimila-
tion is isotropic. This is because the first guess is produced by
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Fig. 4. Singular vectors for non-isotropic distribution overτ = 1. The 2ξ bounds of distribution are shown.(a) isotropic (blue) and non-
isotropic initial (green) distributions and corresponding initial vectors.SV D(M) gives theV (shown in blue) ,U vectors andσ1 = 2.52,
σ2 = 0.32 are the singular values. These are relevant only for the isotropic distribution. The relevant singular directions for the non-

isotropic distribution arẽ̃v1 and ˜̃v2, shown in green.(b) each vector in the non isotropic distribution in (a) is operated on by
√

Pa−1. The
distribution (in green) which appears isotropic in this transformed space is shown. The relevant initial singular directionsṼ are given by

SV D(M
√

Pa−1
−1

) which are shown in green. The orthogonalṼ in (b) are transformed back (˜̃V = (
√

Pa−1
−1

)Ṽ) to the original space and

plotted as˜̃V in (a). Note that they are no longer orthogonal.(c) the evolved isotropic and non-isotropic distributions afterτ = 1 and final
time singular vectors.U andŨ are relevant to the isotropic and non-isotropic distributions, respectively. The relevant leading singular value
for non isotropic distribution isσ r

1 = 1.04, where the subscriptr represents “relevant”.σ1 = 2.52 for the isotropic distribution.(d) the
evolved distribution afterτ = 1 from rotated (θ = 20◦) initial distribution (not shown in (a)) is shown in pink. The singular values remain
almost the same but the singular directions (green in (c) and pink in (d)) are very different. The pink arrows in (a) show the initial singular
vectors for the distribution with rotatedPa .

propagating the model state forward and the evolved uncer-
tainty distribution will be elliptical. It would take a very spe-
cial observational uncertainty distribution to render the anal-
ysis uncertainty distribution isotropic. Hence if one wants to
carry out the singular analysis in a realistic scenario then a
non-isotropic error distribution has to be assumed rather an
isotropic one (with respect to theL2 norm in this case).

4.3 Impact of non-isotropic distribution

As stated above, when data is assimilated the initial uncer-
tainty distribution does not remain isotropic. The question
then is whether the directions given by theSV D(M) still
give the “relevant” singular values and initial and final time
singular vectors. The methodology to find these “relevant”
values is discussed below and illustrated in Fig. 4.
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Figure 4a shows an isotropic (blue circle) and a non-
isotropic (green ellipse) distribution of uncertainty at initial
time (the circle and ellipse shown are the 2ξ bounds for the
ensembles). The initial time singular vectors as given by the
SV D(M) satisfy,

M = U6VT

so that,

Mvi = σiui,

wherei = 1, 2.

The uncertainty distribution is propagated over one step.
The resulting distribution (2ξ bound) is shown in Fig. 4c.
The blue arrows,v1 and v2 in Fig. 4a are the initial time
singular vectors for an isotropic distribution (i.e. by using
SV D(M)) (the one with the arrow head is the leading). The
corresponding singular values are given byσ1 = 2.52 and
σ2 = 0.32. Any errors (whether in the isotropic or non-
isotropic distribution) aligned alongv1 in Fig. 4a will grow
by a factor of 2.52 and align themselves alongu1 in Fig. 4c.
Accordingly, the blue ellipse in Fig. 4c corresponding to the
initial isotropic distribution in Fig. 4a has its major and mi-
nor axis along theU vectors. The initial time non-isotropic
(green) ellipse in Fig. 4a evolves into the final time (green)
ellipse in Fig. 4c. But the (green) major and minor axis of
this evolved ellipse in Fig. 4c “are not” along theU vectors.
In fact the major axis of the evolved green ellipse in Fig. 4c is
aligned along a different direction labeledũ1. The variance
which is maximum along this direction characterizes the op-
erationally relevant predictability, rather than that alongu1.
The next question is what is the direction at initial time in
Fig. 4a that evolved into thẽu1 direction at final time? The
procedure to find these directions is delineated below.

Firstly, the non-isotropic distribution in Fig. 4a is oper-

ated on by
√

Pa−1, wherePa is the covariance matrix of the
non-isotropic distribution. This operation converts the non-
isotropic distribution to an isotropic distribution (Fig. 4b,
green circle is 2ξ bound).

The singular vectors and values are then given by the

SV D(M
√

Pa−1
−1

). Thus,

M ṽi = σ̃i ũi,

wherei = 1, 2.
Hence the initial direction (in the transformed space) that

grows most overτ = 1 is given byṽ1. But this direction
is valid only in the transformed space. The corresponding
direction in the original space is given by,

˜̃v1 = (
√

Pa−1
−1

)ṽ1.

It follows that,

σ r
1 =

σ̃1

‖˜̃v1‖
.

Similarly,

σ r
2 =

σ̃2

‖˜̃v2‖
.

Here the superscriptr stands for “relevant’.

The ˜̃v1 and ˜̃v2 are shown as green arrows in Fig. 4a. Note
that they are not orthogonal. These directions can be inter-
preted as follows. Any perturbation along˜̃v1 grows by a fac-
tor of σ r

1 = 1.04 which is smaller than the factor by which
an error aligned alongv1 will grow (σ1 = 2.52). But, the
error along˜̃v1 which ends up aligning itself along̃u1 at final
time happens to be larger than that alongu1. This is because
thoughv1 has a much larger growth factor than the˜̃v1 direc-
tion, the error in that direction is smaller at initial time. So the
direction at initial time (in Fig. 4a) that ends up as direction
of maximum variance at final time (in Fig. 4c), is dictated
both by the model dynamics and the structure of the initial
uncertainty. In fact there are many directions in Fig. 4a which
have higher growth factors thañ̃v1 and there are also direc-
tions which have larger initial uncertainty (e.g. the major axis
of the green ellipse in Fig. 4a), but˜̃v1 is the direction that has
the “right” combination of these two properties and thus it
aligns itself in the direction of maximum variance at the final
time. Thus the relevant singular directions and values when
the “initial uncertainty distribution is non-isotropic” is given

by theSV D(M
√

Pa−1
−1

) rather thanSV D(M). The ˜̃V, Ũ
and6̃r take into account both the uncertainty structure and
the dynamics of error growth. Note that the singular vector
and values given bySV D(M) are correct, in the sense that
perturbations in the non-isotropic distribution aligned along
v1 grow by a factor ofσ1; it is just that they are not relevant
from the stand point of finite time forecasting for this case.

The fact that the singular vectors and values relevant for
the non-isotropic case are different from those for isotropic
case has important implications for forecasting. Assuming
an isotropic distribution, when it is actually not, misinforms
one about the direction at initial time that will end up hav-
ing maximum variance at final time and the singular val-
ues could actually lead to inordinate estimates of forecast
error. SV D(M) gives the largest growing initial time di-

rection whileSV D(M
√

Pa−1
−1

) (Ehrendorfer and Tribbia,
1995) gives the initial time direction which results in the
largest error at forecast time.SV D(M) considers the dy-
namics but neglects the uncertainty structure i.e. assumes it

to be isotropic.SV D(M
√

Pa−1
−1

) gives the relevant infor-
mation from the point of view of predictability since it tells
what current errors are going to impact the forecast the most.

SV D(M
√

Pa−1
−1

) takes into account both the dynamics and
non-isotropic structure of the initial uncertainty distribution.

The operational reality of non-isotropic initial uncertainty
has been accounted for in Fig. 1c. The EnKF procedure out-
lined in Sect. 4.2 is implemented at each step withN = 100.
To begin with an initial isotropic ensemble is constructed
around a point (i.e. truth) with a prescribed standard devi-
ation (ε0

= 1% of attractor size, which is given by the aver-
age of the standard deviations ofx andy over the attractor) in
thex andy components, by drawing from a standard normal
distribution. Then the step given by Eq. (6) is implemented
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by propagating each of the ensemble members forward using
Eqs. (1) and (2). The truth is propagated forward as well.
Data is generated artificially by first displacing the truth in
a random direction byε0, and then an ensemble of observa-
tions is generated around this displaced value of truth, with a
prescribed standard deviation (ε0), drawing from a standard
normal distribution. The matrixR has the variances ofx and
y observational errors along its diagonal. The gain termK
is evaluated by usingR and the covariance of the ensem-
ble, Pf (H is set equal to the identity matrix). Finally data
is assimilated using Eq. (9), to produce the “best” ensem-
ble i.e. assimilated ensemble. The data is assimilated at each
step. At each step a forecast is launched from the mean of
the assimilated ensemble and the resulting singular vectors
and values are calculated according to the method outlined

above (i.e.SV D(M
√

Pa−1
−1

) is used to obtain the leading
singular value). The ensemble mean analysis is then colored
by the leading singular value.

The picture in Fig. 1c is profoundly different from the
isotropic case in Fig. 1b. There are far more regions where
the growth factor associated with the initial direction that
grows into the major axis of the final time ellipse is less than
1. (This information can be used, for example, for deciding
the direction in which the errors need to be reduced in or-
der to get better forecasts). The differences are more striking
for higher values ofτ (results not shown). This is the rele-
vant picture of the variation of 1 step forecast error over state
space for a perfect model and imperfect observations, not the
isotropic case of Fig. 1b.

By considering the non-isotropic uncertainty distribution
one has taken an important step toward simulating opera-
tional reality, but there are other issues that remain to be ad-
dressed. For instance it would be overtly cavalier to assume
that one has access to the correct covariance matrix in op-
erational forecasting. In all operational forecasting schemes
the covariance matrix used is erroneous. Because the ways
in which the operational covariance matrices are wrong are
unknown, we explore the implications of an incorrect covari-
ance matrix by introducing a very simple-minded error : we
randomly rotate the eigenvectors of the covariance matrix.
This issue has been treated in Fig. 4d. The direction (in pink,
with arrowhead) in Fig. 4a denoted by˜̃v1rot corresponds to
the leading initial time singular vector as calculated by rotat-
ing Pa through an angle ofθ = 20◦ (the 2ξ bound of this
rotated distribution is not shown in Fig. 4a). This rotated dis-
tribution is propagated forward by using the tangent linear
model and their 2ξ bound is shown in Fig. 4d as the pink
ellipse. The corresponding final time singular vector is de-
noted byũ1rot . It is observed that though the singular direc-
tions change dramatically, the singular values remain almost
the same (σ r

1 ' σ r
1rot andσ r

2 ' σ r
2rot ). Figures 1d and 2a

show the distribution ofσ1 whenPa is rotated through an an-
gle drawn fromN(0, 10◦) andN(0, 30◦), respectively. This
means at each point from which the forecast is launched,Pa

is rotated through a different angle chosen at random from
a Gaussian distribution with standard deviation 10◦ and 30◦.

Note that for smaller rotations the distribution remains the
same (Figs. 1c and 1d), but it changes dramatically for larger
rotations (Figs. 1c and 2a). This demonstrates that for this
system small angle errors can be tolerated well, but we again
emphasize that this is only one simple form of error in the
covariance matrix.

A variant of this operational issue is when the error vari-
ances are available but the error covariance are not. In this
case the distribution of singular values will look like those in
Fig. 2b. Note that it looks intermediate to the isotropic and
non-isotropic case. For this model using variances only is
better than ignoring the uncertainty structure.

The above discussion took into consideration some im-
portant aspects of finite time operational forecasting, which
mainly concerned the initial condition uncertainty. Model
inadequacy remains one of the most important stumbling
blocks in the path towards accurate forecast. In fact it is spec-
ulated that model inadequacy could be vitiating the forecast
more seriously than the initial condition uncertainty (Orrell
et al., 2001). The next section deals with the impact of model
inadequacy on forecast errors.

4.4 Impact of model inadequacy

An idea about the impact of model inadequacy on pre-
dictability can be obtained by looking at its effect on the
singular value distribution. The model error can be broadly
classified into parametric and structural categories. The para-
metric model error pertains to having the “wrong” value of
constants in a given model but the correct structure. In the
Ikeda system, the constants are given bya, b andµ. The
sensitivity of singular values to change in these parameters
has been studied. The Ikeda system given by Eqs. (1) and (2)
is treated as perfect model (or the system). Figure 2c shows
the singular values calculated from the Ikeda system in which
the value of parametera is higher by 1% as compared to that
in the perfect model. Data assimilation is performed as in
Sect. 4.3, so that Fig. 2c shows the impact of having both a
initial non-isotropic distribution and an imperfect model.

Comparing Fig. 1c with Fig. 2c one notes that the singular
values do not change much with small changes ina. Sim-
ilarly, it is noted that for small changes in values ofµ and
b the singular values do not change appreciably (result not
shown). Hence, one can conclude that the parametric error
does not affect the singular values to a large extent, for this
range of parametric error for this model. The impact is of
course dependent onτ . Larger impact is seen for longerτ
which means that models with parametric error are “good”
models for this system for shortτ .

Structural model error pertains to a situation in which the
functional dependence of one or more terms in the model is
different from the “correct” dependence. In the Ikeda model
such an error has been incorporated by replacing the cosine
and sine terms in the model (Eqs. 1 and 2) by the first 6 terms
in their series expansion. Thus the model with structural
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error is given by,

xi+1 = 1+µ

(
xi

6∑
n=0

(−1)nθ2n

2n!
− yi

6∑
n=0

(−1)nθ2n+1

(2n + 1)!

)
(10)

yi+1 = µ

(
xi

6∑
n=0

(−1)nθ2n+1

(2n + 1)!
+ yi

6∑
n=0

(−1)nθ2n

2n!

)
, (11)

where

θ = a −
b

(x2
i + y2

i + 1)

anda = 0.4, b = 6.0, µ = 0.9.
Data is assimilated as in the case of parametric error dis-

cussed above. The observations for assimilation are drawn
from the system (i.e. truth), while the ensemble members are
propagated using Eqs. (10) and (11).

Results are shown in Fig. 2d. Comparing Fig. 1c to Fig. 2d
one sees that there is large difference between the distribution
of singular values. Particularly in the region centered around
(1, 0.5), the regions of shrinking errors have decreased con-
siderably. One sees similar behavior around(0, 0). Also note
that the structural error changes the attractor structure and its
effect is seen clearly around the region(1, 0). For longer op-
timization times the impact of structural model error is more
spectacular. Figure 2d shows the impact of having a struc-
turally imperfect model and non-isotropic initial condition.
This is the scenario which is closest to the operational reality.
Note the large change in the distribution of the leading sin-
gular value in going from theoretical simplification (Fig. 1a
to the operational reality (Fig. 2d).

5 Conclusions

A cascade of predictability scenarios was presented in the
context of a 2-dimensional chaotic map, ranging from theo-
retical idealization to something akin to operational reality,
thus eliciting some of the issues impending accurate fore-
casts.

The singular value does a far better job in representing
finite time forecast errors than the Lyapunov number. The
leading singular value calculated assuming isotropic initial
uncertainty distribution changes over the phase space. Thus
forecast errors under “linearized dynamics” is “state depen-
dent”, over “finite time scales”. In some regions of the state
space all initial errors actually “decay”, showing local en-
hanced forecast quality. The regions of decaying initial errors
persist, (though they change location) for longer optimization
times. The singular error growth in most parts of the attractor
is rapid, in that errors can grow almost by a factor of 3 over
one step.

Operationally, due to noisy observations and assimilation
of data, the initial uncertainty is always non-isotropic. The
leading singular direction gives the direction of maximum
growth of initial errors. It is shown that these relevant di-
rections are quite different from those calculated assuming

an isotropic distribution. These directions depend both on
the growth factor given by the local dynamics and the error
magnitude given by the uncertainty structure. The method
to obtain these relevant directions and growth factors is the

SV D(M
√

Pa−1
−1

) rather thanSV D(M). The leading sin-
gular value distribution is quite different in the non-isotropic
case. Given the fact that calculation of covariance matrix
might be very expensive, using only the variances is a rea-
sonable approximation to using the full covariance matrix. It
is found that the singular values are robust to small rotations
of the covariance matrix while the singular vectors are fragile
to such rotations for this system.

Model error changes the distribution of singular values as
compared to the perfect model case. Qualitatively, it appears
that for the level of parametric and structural errors speci-
fied in Sect. 4.4 the structural error induces more change in
the distribution of singular values as compared to the per-
fect model than the parametric error for this model. It is,
of course, impossible to generalize this result to other mod-
els. For longer forecast times, the perfect model assumption
gives a highly misleading picture of error growth.

Though a method to find the relevant singular values and
vectors for initial non-isotropic uncertainty is available, it
seems difficult to get around the model inadequacy problem.
When only an imperfect model is at hand one is doomed to
get the wrong singular values. The comparison of scenarios
presented here clearly shows that idealizations (isotropic ini-
tial uncertainty and perfect model) can seriously hamper ac-
curate forecasts and motivates research into ways to reduce
model inadequacy.
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