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Abstract. The implications of state dependent, finite time er- the application of techniques to pin down the initial state with
ror growth has been studied using singular values in a chaotias much certainty as possible. Prominent among these tech-
2-dimensional map. Earlier studies have demonstrated theiques are 4 dimensional variational analysis (Dimet and Ta-
superiority of the singular values over the Lyapunov numberlagrand, 1986), the Extended Kalman Filter (Evensen, 1992)
in representing error growth over finite time scales, since theyand the Ensemble Kalman Filter (Evensen, 1994).

take state dependency into account. In this work, linearized One of the most popular diagnostics for quantifying the
error growth as given by singular values under operationakvolution of error in initial conditions for chaotic systems
constraints like non-isotropic initial uncertainty and model is the Lyapunov exponent (Oseledec, 1968). Several studies
error is considered. Itis demonstrated that the relevant singuhave used the Lyapunov exponent formulation to analyze the
lar values in the case of non-isotropic initial uncertainty aregrowth of error in dynamical systems (Smith et al., 1999).
quite different from the isotropic case. The effect of model The Lyapunov exponent as defined by Oseledec gives the av-
inadequacy on error growth is delineated. erage growth rate of error over the whole state space for in-
finite time. However, from a practical standpoint this growth
rate is not very useful since in real life we are generally inter-
ested in short term forecasts of some localized part of state
space. The concept of singular vectors and values (Strang,

It has long been recognized that inaccuracies in Weatherforelh988|_) gives a more reIevaEntNmelz_asure foLr error glrgf\;vgt,h than
casts result from uncertainties in the initial conditions and"® yapunov expone_nt. -\ Lorenz (Lorenz, )_plo-
model imperfections. The initial uncertainty has a number ofneered the interpretation of singular vectors and values in the

sources, including the paucity of observations and noise irfONtext of meteorology. The singular vectors are a function

observations, making it impossible to accurately determineOf localized dynamics and finite time intervals rather than

the state of the atmosphere. Though the meteorological cor’ngIObaI dynamics apd infinite time intervals. _ )

munity was aware of the initial condition uncertainty prob- Much work on singular values and vectors in operational
lem (Thompson, 1957), its gravity was fully appreciated after N\umerical Weather Prediction (NWP) has been done. But
the discovery of “chaos” (Lorenz, 1963). Ever since, therethe sensitivity of singular values and their distribution over

has been a spate of scientific papers in almost all branche_%tate space to the shape of initial uncertainty and to model

of science devoted to understanding, quantifying and analyzl"@dequacy remains by and large unexplored, though some

ing properties of chaotic systems. Techniques to improve th&Vork has been done (Barkmeijer et al., 1998). The typical

prediction of chaotic systems has formed a sizeable subset @SSUMPptions of isotropic uncertainty and perfect models fail
these efforts. in the real world, resulting in misleading estimates of singu-

In chaotic systems, an error in the initial condition grows, lar error growths. )
on average, exponentially fast. Any small but finite error in N the current study, the state dependent singular error

the initial condition tends to amplify rapidly, thus frustrating 9rowth over finite time has been studied in a 2-dimensional
attempts to accurately forecast a chaotic system. Many “geothaotic map, the lkeda system (lkeda, 1979). The Ikeda sys-
physical systems” appear to be chaotic. The critical impor-tem has been chosen to allow visual demonstration of the im-

tance of determining the initial state accurately has prompted@ct of practical constraints on the distribution of the singular
values. To begin with, the advantage of singular values over

Correspondence tov. M. Khade Lyapunov numbers is demonstrated. Next, the impact of the

(vix@halo.mit.edu) above mentioned simplifications (isotropic initial uncertainty

1 Introduction




352 V. M. Khade and J. A. Hansen: State dependent predictability

and perfect model) on singular error growth has been anawhere
lyzed. IFy

Section 2 below outlines the dynamical system employed F;, = ™
the lkeda map. It also introduces the idea of linearization K
and the linear propagator. Section 3 delineates the theoreticand so on.
framework of Lyapunov and singular values. It is meantto The matrix on the right hand side (which is the Jacobian
introduce the mathematics behind these concepts. Sectiondf Egs. 1 and 2) is called the linear propagator,
explains the methodology and results of the current study. . .
Finally, Sect. 5 summarizes the results. M — [le(xl', yi) Fry(xi, y,-)]

Fy (xi, i) Fy(xi, yi)

2 Ikeda system and linearization Suppose the error at thé step is
Though the exact nature of initial error growth will depend . _ [Gx(i)} _
on the system under consideration, some of its generic fea- €y()

tures can be understood and possible issues elucidated by
studying low-dimensional chaotic systems. Of course, the
sQIuthns obf[alned by using these systems need not scale_ tp(iH) = Mieq )
high dimensional and more complex models, but the generic

results obtained can be illuminating. The lkeda system hasssuming that the magnitude f), |l€) ||, is small enough
been used by several authors (Smith et al., 1999; Hanserso that the linearity assumption holds. Though this relation
2001) to elucidate predictability studies. All work in this holds approximately for finite perturbations, it holds exactly
study is restricted to the Ikeda system. A description of thefor infinitesimal perturbations. Equation (4) is the lineariza-

Then the error at thé + 1)” step is

Ikeda system and its linearization is given below. tion of the system equations about a non-linear trajectory.
The equations of the lkeda system are, The number of steps (or the time, in the case when the

system is a flow) over whicM is constructed is called the

Xi+1 =14 ju(x; COSO — y; Sind) (1) optimization timer. M is called the “tangent linear model”.
) M depends on the initial conditions and the optimization time

Yi+1 = p(x; SING + y; COSY), (2)  tie.M = f(xi,, 7). The tangent linear model is partic-
ularly useful because of this property which states that the

where linearized error at the”* step can be evaluated by knowing
b the initial error and the linear propagator over each of the in-
-4 m termediate steps. The validity of this linearization (i.e. the

proximity of the linear error evolution to the non-linear er-

a=04,b=6.0,u = 0.9 and 7" denotes the step number. ror evolution) will depend on the magnitude and direction of
Note that this system is a “map” as opposed to a “flow’. A the initial error andr. In general, for a given, the smaller
map is discrete in time while a flow (e.g. Lorenz, 1963) is the initial error, the better the validity. The number of steps
continuous. over which linearity holds has to be ascertained before the

Linearization of the lkeda system is a crucial conceptlinear propagator is actually utilized. In the current work the
since singular and Lyapunov error growth hinge on its va-initial magnitude of errors has been chosen small enough so
lidity. Linearization can be explained as follows. The that linearity holds for the number of steps over whidhis
state space is defined ky, y). Consider a pointx;, y;) constructed.
in the phase space. Consider the perturbed point given by
(%i, Yyi)=(xi + €xi), Vi + €ya)) wheree, ;) = X — x; and
€yi) = 3i — yi denote the perturbations (or the errors). The 3 Lyapunov numbers, singular values and norms
evolution of(x;, y;) and(X;, y;) is described by the nonlinear . L . )
equations, Egs. (1) and (2). Singe 1 andy, 1 are functions A finite error in initial conditions grows nonlinearly. One

of x; andy; one can introduce the notation, needs to define “indices” of error growth to quantify this er-
ror growth. Lyapunov numbers and singular values are such
Xi+1 = F1(x;, yi) “indices” of error growth, defined under linearized dynam-
ics. These accurately quantify the growth of errors insofar as
Viv1 = Fa(xi, yi). linearization holds.

Using the Taylor series, the evolution of linearized error is 3.1  Lyapunov numbers
given by,
Lyapunov vectors and numbers have been discussed in many
exit | _ [ Fi@xiyi) F 1}, iy yi) | [ exiy (3) Ppaers. The following discussion has been adapted from
€y(i+1) B Zx(xl’ yi) F. (x,', ¥i) €y(7) (Ziehmann et al., 1998).
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Fig. 1. Distribution of the leading singular value (Lyapunov number in case of (a)) over the Ikeda attractoefdrfor a perfect model
(black color indicates; < 0). (a) Lyapunov number=86, (b) o1, initial isotropic distribution,(c) o7, initial non-isotropic distribution,
superscript represents “relevant(d) o7 initial non-isotropic distributionP“ rotated by an angle drawn froM(0, 10°).

Consider am-dimensional state space. The Lyapunov ex-for i = 1, m; wherep;,i = 1, m are the eigenvalues @.
ponents are defined assuming infinitesimal perturbations aBy convention,A; > A fori < j. The leading Lyapunov
timer = 0. As discussed in Sect. 2, the linear propagatornumber is defined as,

M evolves forward the initial error (or perturbation) linearly
. . : ) Ly =eW/OAL — o
along the nonlinear trajectory over time Consider the ma- 1 P1

trix, . .
L1 gives the average “factor” of growth of the fastest growing

direction over timer. i.e. if A1 has been calculated for a
finite timet = k Az, say where is the number of steps and
At is the time step, then at each step the error grows by a
factor of L1, so that at the end df steps it has grown by a
factor of LA4!.

Figure 1a shows the one step growth factor as given by the
Lyapunov number. The points shown are on the attractor and
each one is colored by the single leading Lyapunov number.
According to this picture, an error at any point in the state
space would grow by a factor of@6 overt = 1. In general
it would grow by a factor of 66" overt steps. Note that by

1 definition the error growth given by the Lyapunov number is
Ap= lim —loge(pi) uniform over the whole state space.

O(x,7) = [M(x, )" M(x, 1)IY#

where the superscrifit indicates the transpose of the matrix.
Oseledec (Oseledec, 1968) showed that if the limit of>

oo exists, then the: eigenvalues of,

Ox) = rIi_)moo O(x, 1)

are independent of the state Then the Lyapunov exponents
are defined as,
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3.2 Singular vectors and values given uncertainty distribution may be isotropic with respect
to one norm, while being non-isotropic with respect to an-

The subject of singular vectors has been treated by numeigther. Thus it is very important to specify the norm when

ous authors in linear algebra texts and the scientific literaturejiscussing uncertainty structure.

(Strang, 1988). The singular vectors and values are defined | et X be a real or Comp|ex vector space. Suppose there

for the linearized system of equations. Having calculdfed s a function|x| which assigns to each € X a real num-
over optimization timer, the singular vectors and values are per. This function is called a “norm” oX if it satisfies the

defined as follows. following axioms:
where .

x| =0iff x =0
T =VA.

] _ ) o llkx|| = |k|||x|| wherek is a scalar
U andV are called the left (or final time) and right (or initial

time) singular vectors, respectively and the elementd of | x + y| < ||lx| + ||y].
which is a diagonal matrix, are the square of the singular val-
ues ofM. These can be obtained by either the singular value The vector spacX with a norm is called a “normed vector
decomposition i.eSV D(M) or through the eigenvectors and space”. There can be several functions which define different
eigenvalues oM”M andMM 7. Note thatU andV define  norms as long as they satisfy the above axioms. For instance,
orthonormal bases. if x1, x2, ..., x, are components of a vecter then 3 possible

In the context of the Ikeda system, given a linear propaga-horms are,
tor constructed over a particular U is 2X2,V is 2X2 and
there are 2 singular values. From Eq. (5), x|l = max(xi]), i = 1, n

Mv; = oju;, lxll = |xa] + [x2| + ... + |x,]

wherei = 1, 2. The singular values can be written as,

M, ||
0i = ol These are called theco, L1 andL; (or Euclidean) norms,
respectively. The distance between two vectory € X

whereoy > o3, _ _ _ denoted by the functiod(x, y) is dictated by the norm em-
These give the ratio of magnitudes of vectors aligned anngployed If theL» norm is used then

u; at final time to those aligned along at initial time. The
interpretation of these vectors and values is of immense im- B ’ ) ’
portance from the standpoint of error growth under linearized? %> ¥) = \/|x1 =yl vz = yal " A X =yl
dynamics. Given an isotropic (i.e. having the same mag-
nitude in all directions) distribution of uncertainty at initial
time, the errors aligned alongy grow largest and at opti-
mization time align along (note that this assumes a norm,
which is discussed in more detail in the next subsection). Th
corresponding growth factor is given lby. Those aligned
alongv, grow the least with the corresponding growth factor
given byo,. All other directions grow by factors that are be-

Il = a2 4+ b2l + .+ .

It appears that the terms “norm” and “metric” have been
used synonymously in meteorology literature (Palmer et al.,
1998). Predictability studies using singular vector analysis
aim to find the directions in phase space at initial (i.e. anal-
%/sis) time, that grow into the directions of largest error af-
ter some specified interval of time (called the optimization
time). There are several choices available for the “physical
tweeno; ando,. The leading singular value places an upperdimension" of these pert_urbatiqns such as total energy, en-
limit on the prédiction error of the system under linearized strophy and streamfunctlorj variance. The statg vectors can
d . d isotropi taintv- it i imat be _opergted on by approprla_te op_erator_s to obtain the pertur-

ynamics and I1Sotropic uncertainty, It provides an estimatey ;s iy o particular “physical dimension”. (The operator
of the maximum error one can expect_ln the forecast. _ chosen defines a norm on the space &gnorm, energy
hln the cars]ef oh d|men3|qns,dth@ ﬁ'”g;"?“ valtluej_ give norm, enstrophy norm, etc., Palmer et al., 1998). In gen-
:ioi: \?vrr(;\é:vr: foarlfrfogsn ?)Srfr?c():;ac}fma\?”éa;is S'R%uizgtrc')r;z' eral, irrespective t_)f the norm chosen, the anqusis error struc-
) . . S . .__ture may be non-isotropicSV D(M) whereM is the linear
dimensional spher_e evolves into an ellipsoid at final t'mepropagator, does not give the singular directions and values
whosen axes are given by the vectors. which are relevant to predictability, since the non-isotropic
33 Norms nature of the analysis error structure is not taken into con-
sideration. This drawback can be overcome by using the
There are several ways in which “distance” can be measure§ovarianceP“, of the analysis errors in the chosen norm’s

between two points in a phase space. This distance is despace. If¥ P¢~1is used to transform the analysis errors then
fined by a function known as the norm (Lipschutz, 1991). A the resulting transformed analysis errors are isotropic. Thus
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Fig. 2. Distribution ofo; (where superscript represents “relevant”) over the Ikeda attractorfos 1 and initial non-isotropic distribution
(black color indicates < 0). (a) perfect modelP* rotated by an angle drawn fromi(0, 30°), (b) perfect model, off diagonal terms Bf'
neglected i.e. only variance is considerégj,parametrically imperfect modet, = 0.404,(d) structurally imperfect model, first 6 terms of
sine and cosine series included.

SVDMy/Pa—t 1) gives the singular directions and values 4 Singular vectors and values in the lkeda system

relevant to predictability. It accounts for situations in which

large initial uncertainty (i.e. error) combined with small er- The concept of singular vectors and values presented in
ror growth lead to larger final time errors than small initial S€ct. 3.2 has been applied to the Ikeda system. Basically,

uncertainty combined with large error growth. Usi (7@“_1 the question addressed is, do the (leading) singular values
as a transform is equivalent to usiRg - asan;)rmP“‘l is change over the state space? This represents the state de-

called the analysis error covariance norm (Barkmeijer et al_,pen.dence of error growth under numerous operational con-

1998). It is also called the Mahalanobis metric (Palmer et al_’stramts. . .

1998). Usually in realistic atmospheric models it is numer- The t_:oncept of s_lngular error_growth in the I_keda system

ically very expensive to calcula® . Barkmeijer et al. can be |_Ilustrated with the following e)_(ample._ Figure 3illus-
grates singular error growth at the poii® —1) in the lkeda

(1998) explores some methods of obtaining the estimate h AG ; wainty distributi tered at
of P71, It so happens that if perturbations are measureop0 as<1a SF\)Nar(\;ieh i tﬁust?atﬂ uincer:lrrlt); (;s rtl tE Ioirr]ﬂfc;ie?t?rf a
in energy then the analysis error distribution appears to be~> ) ch 1S the truth, 1S generated at the initia €

isotropic (Palmer, 1994), which is advantageous since then he perturbations to be evplvgd M/ (r!ot shown in the f|g-
pa—1 need not be calculated. In the work that follows. the ure) are sampled from this distribution. The green circle
' in Fig. 3a shows the&2bound of this distribution wherég

. I/ —1:
L2 no m: IS _used Ian. pe ('js ::tr);plt(_)ye(: to tr.anfforr.n the stands for standard deviation. This distribution is propagated
non-isotropic analysis error distribution to an ISOtropic one. using the tangent linear model. At each step the truth and
2& bound of the ensemble are plotted. The tangent linear
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Fig. 3. Evolution of isotropic distribution over 3 time stepg.(shown in (a)) are the initial time vectorb. are the final time vectors which
are shown in (b), (c) and (d) far = 1, 2, 3, respectively. Superscript indicates the time step. BEhbdunds of distribution are shown in
each figure. Note thdd vectors are not scaled lay. (a) Initial time singular vectors are for different (b) = = 1,01 = 2.07,00 = 0.27,(c)

T =2,00=477,00=0.13,(d) r = 3,01 = 13.77,02 = 0.03.

model stretches (or shrinks) and rotates each of the perturevolve into these directions at final time are giverwhyand
bation vectors so that at each step an ellipse is generatedy,. Note that each time step has a unique set/aindV
Figures 3b, 3c and 3d show the ellipsesat 1,7 = 2 vectors, with the corresponding growth factors given by the
andt = 3, respectively. Firstly, one is interested in the di- o’s. Hence, for instance, over one step any error aligned
rection in the future which has the maximum variance at thealong v% direction (shown in red, with arrowhead) will in-
forecast time (or optimization time) and the variance in this  crease in magnitude by 2 (which is the maximum) while
direction relative to the initial variance can be regarded as ahat aligned along;% direction (shown in red) will shrink
guantitative measure of predictability. Secondly one is inter-by a factor of 027 (which is the minimum). Note that the
ested in knowing the direction at initial time that grows into superscripts indicate the time step while the subscripts give
direction of maximum variance at. This knowledge can the index of the singular vector (subscript 1 indicates lead-
be used to help one to reduce the error in the relevant initiaing singular vector). At final time, these directions will align
direction so that forecast errors at final time can be reducedthemselves along} andu% ,respectively as shown in Fig. 3b.

The U, V and ® are calculated by the SVD d¥l con- Fo_rr = 2 errors gllgn_ed along the direction shown in black

. (with arrowhead) in Fig. 3a, will grow the most (by a factor

structed over each, using theL, norm on the space and

assuming an isotropic distribution of uncertainty at initial of 4.77) and align itself along the direction shown in Fig. 3c.

. . ) ) . .~ Similarly the directions shown in magenta color in Fig. 3a,
time. The major and minor axis of these ellipses are given g : .
evolve to those in Fig. 3d over = 3, with the maximum

by u1 andu,, respectively. The directions at initial time that
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growth factor of 1377 and a minimum of @3. Ast — o respect to the.o norm. The next sub-section gives a brief

theU andV vectors converge to the same vectors. overview of data assimilation using the Ensemble Kalman
Thus the singular vector formulation is very remarkable in filter (EnKF).

that it gives (1) the directions that would grow the most (2)

the directions to which they would grow and (3) the factors 4.2 Data assimilation

by which they grow. The leading singular value represents
y 9 g sing B In this work the EnKF data assimilation (Evensen, 1994;

the worst case scenario for forecast error under the lineariza " L 1998) will b q q :
tion assumption. Houtekamer et al., ) will be used to produce an anal-

ysis and associated uncertainty. lkebe the dimension of
4.1 Isotropic initial uncertainty the state vector. Let_the number of engemble members be
N. The EnKF equations can be described as follows. For

The above procedure of calculating the leading singular valué = 1, N,

has been applied to a large number of points in the state f
. . . . . ; =Fx/(t-1

space so that its variation can be inspected. This motivated @ Lxi (¢ = DI ©)

the superiority of singular values over the Lyapunov num- 1 ;

ber insofar as finite time forecast error studies are concemed?’ (1) = N—_l[Af(t) — XIOIAT (1) = X/ )] )

Consider Fig. 1la. The “average over space via an average

over time” implicit in the definition of the Lyapunov number, g (1) = P/ (t))H(®)T [H@)P! (1)H@)T + R@#)] L (8)
gives this uniform distribution, which belies the true nature
of finite time error growth, as is evident in Fig. 1b. x40 = x{ () + KOy (@0) = HOx] ()] (9)

Figure 1b, shows the leading singular value fo= 1 at
many points, as calculated assuming isotropic initial uncer-
tainty. This work has been done earlier (Smith et al., 1999);
but has been presented as a background to the results to fol-
low. The L, norm, as defined in Sect. 3 has been used to xf (1) is the first guess generated by a short term forecast.
measure distances in the phase space. The error growth fag/ (r) andX?(r) aren X N matrices which give the ensem-
tor as given by the singular value in Fig. 1b shows significantbles before and after assimilation, respectively. Thus each
structure and variation. The errors in some parts of the stateolumn of X/ () and X“(¢) is an ensemble member i.e. a
space could grow by as muck9Z while in other parts they different realization of the state and each row is a state com-
could actually shrink (these areas havimg < 1 are col-  ponent.A/ (1) andA“(¢) arenX N matrices having the cor-
ored in black). A comparison of Fig. 1a and Fig. 1b showsresponding ensemble meanf (r) andX“(r), respectively,
that the Lyapunov number is in fact quite a dubious measurén each of its column. The mean is calculated by averaging
of finite time error growth. Note that the Lyapunov number over each row ofX/ (r) and X%(r). Thus a particular ele-
has the same value of6b everywhere in the state space. In ment in each column of%(¢) (which is the same as each
areas like those around the origin, the forecast launched foof other N columns) is an average over the corresponding
7 = 1 would be very good, as is evident from Fig. 1b. The row in X%(z). P/ (r) (dimension: Xn) gives the uncertainty
Lyapunov number gives a false impression that the forecasin the first guess in the form of its covariance matriX(z)
will be poor in this region. On the other hand in regions (dimensionm Xn, wherem is the number of state variables
like those aroundl, 0.5) the Lyapunov number artificially observed; for this worlk: = n) gives the uncertainty in the
enhances the forecast quality, while in reality the forecastobservations. The Kalman gain tei{z) (dimension: Xm)
will be quite poor as is evident from Fig. 1b. The Lyapunov gives a measure of confidence one should place in the first
number is all the more misleading for longer optimization guess and the observations depending on their respective un-
times (results not shown). For instance over 2 steps the Lyaeertainties. H(¢) is a map from the model space to obser-
punov factor would be .66% while it is seen that singular vation spacey?(¢) are the perturbed observations. The per-
value varies quite a lot over the state space. This comparisoturbed observations are obtained by renoising the observation
gives cogent reasons to decisively discard Lyapunov numbemeany, (1) i.e. y?(r) = y, (1) + VRN (0, 1), whereN (0, 1)
as a measure of finite time error growth and adopt the singuis the standard Normal distribution (see Burgers et al. (1998)
lar value as a far better substitute. The error growth as giverfor details). x¢(¢) is the so called analysis which combines
by the singular value is state and time dependent. The inthe first guess uncertainty and the observation uncertainty,
formation given by the singular values not only diagnose thethus providing the best estimate of initial condition. Finally
forecast quality over state space but also could be useful foP“(¢) is the covariance matrix that provides an estimate of
data assimilation or targeting. Thus if the initial distribution uncertainty in the analysis. The Egs. (6) through (9) assume
of errors is isotropic (in th&> norm on the space) and the a perfect model.
model is perfect then Fig. 1b indeed gives a genuine picture All NWP centers employ data assimilation to produce the
of forecast quality. best possible initial conditions. It is difficult to imagine that

Operationally, data assimilation is used to generate initialthe initial condition produced operationally by data assimila-
uncertainty distribution which renders it non-isotropic with tionisisotropic. This is because the first guess is produced by

1
P = A = XU ONAY (W) = X 01"
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Fig. 4. Singular vectors for non-isotropic distribution over= 1. The Z bounds of distribution are showi(a) isotropic (blue) and non-
isotropic initial (green) distributions and corresponding initial vect&t8.D(M) gives theV (shown in blue) U vectors andry = 2.52,

o2 = 0.32 are the singular values. These are relevant only for the isotropic distribution. The relevant singular directions for the non-
isotropic distribution arél and\:/z, shown in green(b) each vector in the non isotropic distribution in (a) is operated or’By~1. The
distribution (in green) which appears isotropic in this transformed space is shown. The relevant initial singular diveatiergiven by

SVDMvpa—1 1) which are shown in green. The orthogoifain (b) are transformed back/(= (v P¢~1 1)\7) to the original space and

plotted asV in (a). Note that they are no longer orthogon@l) the evolved isotropic and non-isotropic distributions aftee 1 and final

time singular vectorsJ andU are relevant to the isotropic and non-isotropic distributions, respectively. The relevant leading singular value
for non isotropic distribution is] = 1.04, where the subscriptrepresents “relevant’o; = 2.52 for the isotropic distribution(d) the

evolved distribution after = 1 from rotated § = 20°) initial distribution (not shown in (a)) is shown in pink. The singular values remain
almost the same but the singular directions (green in (c) and pink in (d)) are very different. The pink arrows in (a) show the initial singular
vectors for the distribution with rotatefef’.

propagating the model state forward and the evolved uncer4.3 Impact of non-isotropic distribution

tainty distribution will be elliptical. It would take a very spe-

cial observational uncertainty distribution to render the anal-

ysis uncertainty distribution isotropic. Hence if one wants to AS stated above, when data is assimilated the initial uncer-
carry out the singular analysis in a realistic scenario then dainty distribution does not remain isotropic. The question
non-isotropic error distribution has to be assumed rather adhen is whether the directions given by tli&’ D(M) still

isotropic one (with respect to thie, norm in this case). give the “relevant” singular values and initial and final time
singular vectors. The methodology to find these “relevant”

values is discussed below and illustrated in Fig. 4.
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Figure 4a shows an isotropic (blue circle) and a non-
isotropic (green ellipse) distribution of uncertainty at initial
time (the circle and ellipse shown are the fBounds for the

ensembles). The initial time singular vectors as given by the

SV D(M) satisfy,
M =UxVv’

so that,

Mv; = oju;,

wherei =1, 2.

The uncertainty distribution is propagated over one step
The resulting distribution @ bound) is shown in Fig. 4c.
The blue arrowsp1 and v, in Fig. 4a are the initial time
singular vectors for an isotropic distribution (i.e. by using
SV D(M)) (the one with the arrow head is the leading). The
corresponding singular values are givenday= 2.52 and
o2 = 0.32. Any errors (whether in the isotropic or non-
isotropic distribution) aligned alongy in Fig. 4a will grow
by a factor of 252 and align themselves along in Fig. 4c.
Accordingly, the blue ellipse in Fig. 4c corresponding to the
initial isotropic distribution in Fig. 4a has its major and mi-
nor axis along théJ vectors. The initial time non-isotropic
(green) ellipse in Fig. 4a evolves into the final time (green)
ellipse in Fig. 4c. But the (green) major and minor axis of
this evolved ellipse in Fig. 4c “are not” along thevectors.

In fact the major axis of the evolved green ellipse in Fig. 4cis
aligned along a different direction label@d. The variance

which is maximum along this direction characterizes the op-

erationally relevant predictability, rather than that alang
The next question is what is the direction at initial time in
Fig. 4a that evolved into th&, direction at final time? The
procedure to find these directions is delineated below.
Firstly, the non-isotropic distribution in Fig. 4a is oper-

ated on by P¢~1, whereP“ is the covariance matrix of the
non-isotropic distribution. This operation converts the non-
isotropic distribution to an isotropic distribution (Fig. 4b,
green circle is 2 bound).

The singular vectors and values are then given by theection whileSV D(M

-1
SVDMvPa—1 7). Thus,
Mv; = 6u;,

wherei =1, 2.
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Here the superscriptstands for “relevant’.

The?)l aﬂdl:)z are shown as green arrows in Fig. 4a. Note
that they are not orthogonal. These directions can be inter-
preted as follows. Any perturbation aloﬁg grows by a fac-
tor of o] = 1.04 which is smaller than the factor by which
an error aligned along; will grow (o1 = 2.52). But, the
error alongw; which ends up aligning itself aloriy at final
time happens to be larger than that aleng This is because
thoughvy has a much larger growth factor than thedirec-
tion, the error in that direction is smaller at initial time. So the

direction at initial time (in Fig. 4a) that ends up as direction

of maximum variance at final time (in Fig. 4c), is dictated
both by the model dynamics and the structure of the initial
uncertainty. In fact there are many directions in Fig. 4a which
have higher growth factors than and there are also direc-
tions which have larger initial uncertainty (e.g. the major axis
of the green ellipse in Fig. 4a), buit is the direction that has
the “right” combination of these two properties and thus it
aligns itself in the direction of maximum variance at the final
time. Thus the relevant singular directions and values when
the “initial uncertainty distribution is non-isotropic” is given

by theSVD(M+y/Pe—1 1) rather thanSV D(M). TheV, U
and £, take into account both the uncertainty structure and
the dynamics of error growth. Note that the singular vector
and values given by V D(M) are correct, in the sense that
perturbations in the non-isotropic distribution aligned along
v1 grow by a factor obr; it is just that they are not relevant
from the stand point of finite time forecasting for this case.

The fact that the singular vectors and values relevant for
the non-isotropic case are different from those for isotropic
case has important implications for forecasting. Assuming
an isotropic distribution, when it is actually not, misinforms
one about the direction at initial time that will end up hav-
ing maximum variance at final time and the singular val-
ues could actually lead to inordinate estimates of forecast
error. SVD(M) gives the largest growing initial time di-

Vpa—1 l) (Ehrendorfer and Tribbia,
1995) gives the initial time direction which results in the
largest error at forecast timeSV D(M) considers the dy-
namics but neglects the uncertainty structure i.e. assumes it

-1
to be isotropic.SVD(MvP+~1 ") gives the relevant infor-

Hence the initial direction (in the transformed space) thatmation from the point of view of predictability since it tells

grows most overr = 1 is given bywv;. But this direction

is valid only in the transformed space. The correspondingSVD(M /Pa_fl

direction in the original space is given by,

~ -1
i1 = (VP )iy

It follows that,

o1
o] = —=—.
oLl
Similarly,
02
ro__
(Tz —_ =

o2l

what current errors are going to impact the forecast the most.

) takes into account both the dynamics and
non-isotropic structure of the initial uncertainty distribution.

The operational reality of non-isotropic initial uncertainty
has been accounted for in Fig. 1c. The EnKF procedure out-
lined in Sect. 4.2 is implemented at each step with= 100.

To begin with an initial isotropic ensemble is constructed
around a point (i.e. truth) with a prescribed standard devi-
ation €° = 1% of attractor size, which is given by the aver-
age of the standard deviationsxo&ndy over the attractor) in
thex andy components, by drawing from a standard normal
distribution. Then the step given by Eq. (6) is implemented
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by propagating each of the ensemble members forward usinjlote that for smaller rotations the distribution remains the
Egs. (1) and (2). The truth is propagated forward as well.same (Figs. 1¢c and 1d), but it changes dramatically for larger
Data is generated artificially by first displacing the truth in rotations (Figs. 1c and 2a). This demonstrates that for this
a random direction by, and then an ensemble of observa- system small angle errors can be tolerated well, but we again
tions is generated around this displaced value of truth, with &mphasize that this is only one simple form of error in the
prescribed standard deviatioe}, drawing from a standard covariance matrix.

normal distribution. The matriR has the variances afand A variant of this operational issue is when the error vari-

y observational errors along its diagonal. The gain t&fm  5nces are available but the error covariance are not. In this

is evaluated by usin@® and the covariance of the ensem- 446 the distribution of singular values will look like those in

ble, P"i (H is set equal to the identity matrix). “Fina’l,ly data rig. 2b. Note that it looks intermediate to the isotropic and
is assimilated using Eq. (9), to produce the "best” ensemyqn_isotropic case. For this model using variances only is
ble i.e. assimilated ensemble. The data is assimilated at eagfhiter than ignoring the uncertainty structure.

step. At each step a forecast is launched from the mean of The ab di ion 100k int derati .
the assimilated ensemble and the resulting singular vectors € above discussion ook Into consideration Some 1m-

and values are calculated according to the method outline(ﬁ’Ortant aspects of finite time operational forecasting, which
mainly concerned the initial condition uncertainty. Model

-1
above (i.e.SVD(MvPe~1 ) is used to obtain the leading inadequacy remains one of the most important stumbling
singular value). The ensemble mean analysis is then coloreg|ocks in the path towards accurate forecast. In fact it is spec-
by the leading singular value. ulated that model inadequacy could be vitiating the forecast
The picture in Fig. 1c is profoundly different from the more seriously than the initial condition uncertainty (Orrell
isotropic case in Fig. 1b. There are far more regions whereet al., 2001). The next section deals with the impact of model
the growth factor associated with the initial direction that inadequacy on forecast errors.
grows into the major axis of the final time ellipse is less than
1. (This information can be used, for example, for deciding 4 4
the direction in which the errors need to be reduced in or-
der to get better forecasts). The differences are more striking
for higher values of (results not shown). This is the rele- An idea about the impact of model inadequacy on pre-
vant picture of the variation of 1 step forecast error over statedictability can be obtained by looking at its effect on the

space for a perfect model and imperfect observations, not théingular value distribution. The model error can be broadly
isotropic case of Fig. 1b. classified into parametric and structural categories. The para-

. . : . ... . metric model error pertains to having the “wrong” value of
By considering the non-isotropic uncertainty distribution . .
constants in a given model but the correct structure. In the

one has taken an important step toward simulating opera: .
tional reality, but there are other issues that remain to be adl—keda system, the constants are givendby and .. The

) . . sensitivity of singular values to change in these parameters
dressed. For instance it would be overtly cavalier to assum y 9 g P

that one has access to the correct covariance matrix in o %as been studied. The lkeda system given by Eqgs. (1) and (2)

erational forecasting. In all operational forecasting scheme%IS tregted as perfect model (or the system). Figure 2.C shqws
the covariance matrix used is erroneous. Because the wa he singular values calculated from the Ikeda system in which
. ; . . ; ¥Re value of parameteris higher by 1% as compared to that
in which the operational covariance matrices are wrong are e perfect model. Data assimilation is performed as in
unknown, we explore the implications of an incorrect covari- P C . P :

, . ) : . ) Sect. 4.3, so that Fig. 2¢c shows the impact of having both a
ance matrix by introducing a very simple-minded error : we .~ - ; L :
randomly rotate the eigenvectors of the covariance matrix.InItIaI non-isotropic distribution and an imperfect model.
This issue has been treated in Fig. 4d. The direction (in pink, Comparing Fig. 1c with Fig. 2c one notes that the singular
with arrowhead) in Fig. 4a denoted By,., corresponds to  values do not change much with small changes.irSim-
the leading initial time singular vector as calculated by rotat-11@rly. it is noted that for small changes in valuesofand
ing P* through an angle o = 20° (the Z bound of this b the singular values do not change appreciably (result not
rotated distribution is not shown in Fig. 4a). This rotated dis- Shown). Hence, one can conclude that the parametric error
tribution is propagated forward by using the tangent lineardoes not affect the singular values to a large extent, for this
model and their 2 bound is shown in Fig. 4d as the pink ange of parametric error for t_h|s mo<_:ie|. The impact is of
ellipse. The corresponding final time singular vector is de-CoUrse dependent an Larger impact is seen for Ionger )
noted byiiy,.;. It is observed that though the singular direc- Which means that models with parametric error are “good
tions change dramatically, the singular values remain almostnedels for this system for short
the samed; ~ of,,, ando} ~ o} ). Figures 1d and 2a Structural model error pertains to a situation in which the
show the distribution of; whenP“ is rotated through an an- functional dependence of one or more terms in the model is
gle drawn fromN (0, 10°) and N (0, 3(°), respectively. This  different from the “correct” dependence. In the Ikeda model
means at each point from which the forecast is launcR&éd, such an error has been incorporated by replacing the cosine
is rotated through a different angle chosen at random fromand sine terms in the model (Egs. 1 and 2) by the first 6 terms

a Gaussian distribution with standard deviatior 240d 30. in their series expansion. Thus the model with structural

Impact of model inadequacy
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error is given by, an isotropic distribution. These directions depend both on
5 o 6 ool the gr_owth fa}ctor given by the Iopal dynamics and the error

N Z (=" N (=1)"0 (10) magnitude given by the uncertainty structure. The method
= 2n! = (2n +1)! to obtain these relevant directions and growth factors is the

-1
SVDMvPe~1 ) rather thanSV D(M). The leading sin-
_ O (~1re2tt 8 (~1)"6?" 11 gular value distribution is quite different in the non-isotropic
Yitl = R 2_(:) (2n +1)! +i —  2n! - (A1) case. Given the fact that calculation of covariance matrix
"= "= might be very expensive, using only the variances is a rea-
where sonable approximation to using the full covariance matrix. It
b is found that the singular values are robust to small rotations
of the covariance matrix while the singular vectors are fragile
to such rotations for this system.
anda = 0.4,b = 6.0, « = 0.9. Model error changes the distribution of singular values as
Data is assimilated as in the case of parametric error discompared to the perfect model case. Qualitatively, it appears
cussed above. The observations for assimilation are drawthat for the level of parametric and structural errors speci-
from the system (i.e. truth), while the ensemble members ardied in Sect. 4.4 the structural error induces more change in
propagated using Egs. (10) and (11). the distribution of singular values as compared to the per-
Results are shown in Fig. 2d. Comparing Fig. 1c to Fig. 2dfect model than the parametric error for this model. It is,
one sees that there is large difference between the distributioaf course, impossible to generalize this result to other mod-
of singular values. Particularly in the region centered arouncels. For longer forecast times, the perfect model assumption
(1, 0.5), the regions of shrinking errors have decreased congives a highly misleading picture of error growth.
siderably. One sees similar behavior arog@d). Also note Though a method to find the relevant singular values and
that the structural error changes the attractor structure and itgectors for initial non-isotropic uncertainty is available, it
effectis seen clearly around the regidn0). For longer op-  seems difficult to get around the model inadequacy problem.
timization times the impact of structural model error is more When only an imperfect model is at hand one is doomed to
spectacular. Figure 2d shows the impact of having a strucget the wrong singular values. The comparison of scenarios
turally imperfect model and non-isotropic initial condition. presented here clearly shows that idealizations (isotropic ini-
This is the scenario which is closest to the operational realitytial uncertainty and perfect model) can seriously hamper ac-
Note the large change in the distribution of the leading sin-curate forecasts and motivates research into ways to reduce
gular value in going from theoretical simplification (Fig. 1a model inadequacy.
to the operational reality (Fig. 2d).

0=q— —
(2 +y?+1)
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