Nonlinear Processes in Geophysics (2004) 11: 283— .
SRef-ID: 1607-7946/npg/2004-11-281 Nonlinear Processes

in Geophysics

© European Geosciences Union 2004

Null modes effect in Rossby wave model

V. Goncharov! and V. Pavlo?

Linstitute of Atmospheric Physics, Russian Academy of Sciences, 109017 Moscow, Russia
2UFR de Matlématiques Pures et Appligas, Universé de Lille 1, 59655 Villeneuve d’Ascq, France

Received: 8 July 2003 — Revised: 1 April 2004 — Accepted: 5 April 2004 — Published: 28 May 2004

Abstract. The problem of the null-modes existence and modern theories of wave interactions have been formulated
some particularities of their interaction with nonlinear in terms of normal modes.

vortex-wave-like structures is discussed. We show that the Before proceeding further, let us remind the reader that

null-modes are fundamental elements of nonlinear wavethe concept of interacting waves is extensively used in wave

fields. The conditions under which null-modes can mani-physics and provides explanations for numerous collective

fest themselves are elucidated. The Rossby-Hasegawa-Mimeffects. Its essence is that wave interaction is effectively real-

(RHM) model is used for the illustration of features of null- ized only when the so-called resonance conditions on phases

modes-waves interactions. (frequencies and wave vectors) of interacting waves are sat-
isfied (see for example Zakharov et al., 1985 and references
therein).
For instance, in hydrodynamical systems, as experiments
1 Introduction show (seeKadomtsey 1965 Petviashvili and Pohotelov

1989 and References therein), stationary flows sometimes
The purpose of the paper is to consider features of wave inappear as a result of intense field fluctuations. In geophysics,
teractions in inhomogeneous, anisotropic, nonlinear media irit is well-known that stationary (zonal) flows in atmospheres
a case when proper valuesy, for interacting wave modes, of rotating planets always coexist with intense surrounding
ag, turn to zero in some domain df-space. We present a wave fields. Based on the analogies from other branches
new approach to solving the problem based on the Hamil-of wave physics, it was once natural to assume that one of
tonian formulation of fluid dynamics (see Appendix A). We the principal mechanisms for stationary flow generation is
analytically study a new class of structures that can exist inthe nonlinear interactions of waves. However, in geophys-
two-dimensional flows governed by equations similar to theical hydrodynamics, application of the traditional approach
Rossby-Hasegava-Mima (RHM) onddasegava and Mima  to concrete situations is sometimes accompanied by difficul-
1977 Kadomtsey1965 Similon and Sudar99Q Krall and ties. For example, the attempt to explain the appearance of
Trivelpiece 1973 Petviashvili and Pohotelg989. These  stationary flows in the framework of three-wave resonance
structures, termed below null-modes, turn out to be an im-interaction of waves governed by the Rossby equations has
portant element in the theory of wave interactions and pro-failed: it has been shown that such a three-wave mechanism
voke a variety of intriguing questions. One task is to un- of interactions cannot be responsible for generation of sta-
derstand what physical reality corresponds to the basic statttonary flows (se&onguet-Higgins and Gill1969 Pedlosky
(null-modes) of the wave system when the proper valugs, 1986.
for interacting wave modes;, become zero in some domain  This theoretical result has instigated the approach which is
of the k-space. Another one is to explore how the presenceleveloped below.
of null-modes modifies the wave interaction process as com- Let us remind the reader a few important facts. There
pared to the analogous well-studied process in homogeneousxist various versions of the so-called Hamilton approach
media. Finally, how does one develop field variables for the(HA) to field systems (see Dirac, 1958; Bogolubov and
proper functions evolving in such a situation? Answers toShirkov, 1959; Lundgreen, 1963; Seliger and Whitham,
these questions are of fundamental interest because so far dlp68; Bretherton, 1970; Zakharov et al., 1985; Holm et al.,

1985; Abarbanel et al., 1986; Salom, 1988; Dubrovin and
Correspondence tov. Pavlov Novikov, 1989; Goncharov and Pavlov, 1993; Zakharov and
(vadim.pavlov@univ-lillel.fr) Kuznezov, 1997, and references theirein).
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The canonical version of the HA uses the following ba- The article is structured as follows: Sect. 2 specifies the
sic assumptions: the system under consideration is describduhsic model and establishes some general results. In Sect. 3,
by a set of canonical variables, symbolically marked herewe discuss the canonical formulation of the Hamiltonian de-
by p andq. Generally, more than one pair of variables ex- scription for fluid dynamics of nonlinear, dispersive, non-
ists. The Fourier transformation of field variables fram  homogeneous media. The Hamiltonian formulation for a
space intok-space, (p, ¢)—(py. qx) is achieved, in or- Rosshy-Hasegawa-Mima-like wave model is also proposed.
der to identify the spectral wave components. A disper-The crucial importance of the proper introduction of normal
sion relationship between the frequency and the wave vecvariables in such systems is highlighted in Sect. 4. We con-
tor of the components is given by=w;. Normal variables, sider the RHM-model as an example to which the HA can
ax, a;, are introduced by a linear transformation from ¢) be directly applied to obtain analytical results. In Sect. 5, we
to (ax, a;) as coefficients for developing, ¢ over corre-  discuss a linear approximation and explain where the null-
sponding eigenfunctiongy (x). In a homogeneous medium, modes hide. In Sect. 6, the features of three-wave inter-
fr(x)~expik - x. The Hamiltonian of the system is the full actions are analyzed. A nonlinear collision of three wave
energy expressed in terms of canonical variablgp, ¢]. packets is considered in Sect. 7. The null-mode mechanism
In terms of normal variables, the quadratic part of the of flow generation is considered in Sect. 8 and in Sect. 9,
Hamiltonian developed in a functional series with respectwhere all obtained results are discussed. In summary, we
to field variables,H|[p, ql=H>+Hs+..., is presented as have found that specific structures (null-modes) can exist in
Ho= [ dk wrara_x and equations for normal modes evolu- strongly nonlinear and anisotropic wave systems. These not

tion have the formd,ax=—ié H/éa;; and d;ay=+id H /Say. evolving in time structures (in linear approximation with re-
Here, a;=a_k, 6H/Su is a functional derivative with re- spect to fields perturbations) correspond to the basic phys-
spect to field variable. One assumes thatH [ p, q]<+o0, ical state when the stream-functiodr, is zero. The struc-

which means that there are not of field perturbations at infin-tures cannot be uncovered when one works with linearized
ity: a physical problem of wave interactions is always con- equations, and, in some sense, they may be considered as
sidered in terms of wave packets. “sleeping” ones. However, their presence can be observed
Difficulties do not arise when the frequency of a wave When nonlinear interactions are taken into account with spe-
mode depends on the absolute value of the wave vecgific resonant conditions. One goal of the work was to
tor, wx=wy, i.e. when the medium is homogeneous and find the conditions when such structures could be brought
isotropic. In this case, the Hamiltonial, is positive and 10 light, in order to experimentally observe a generation of
remains positive when transformatida> —k is made. Diffi-  Null-modes (i.e. observe the phenomenon of generation of
culties appear when the media is anisotropic and proper valuime-independent flows by interacting wave fields). The real-
wx depends on any particular direction, for example, wheniZation of these conditions is so difficult that without prelim-
wg~ky. Such a dependence follows, for instance, from theinary theoretical analysis the effect may neither be guessed,
linearized version of Eq6j. Obviously, in this case, result- Nnor observed experimentally.
ing frequency cannot be simply introduced into the expres-
sion for H> becausdi, becomes null in this case. There is
also no support or a motivated physical reason for including2 Basic model

the absolute valugog| into H>. _ _ _ _ _ _

For this reason only, a detailed analysis of the problem isWe con5|d(_er a two-dimensional f|u_|d motion, '_cyplcz_al exam-
essential ples of which are large scale horizontal motions in planet

' _ _ _ atmospheres, hydrodynamical motions of a strongly magne-

The paper aims to achieve several goals: (i) to formulateyjzeq plasma, etc. Such motions are described in the frame-
in a brief and relatively complete form, the fundamentals of 51k of the two-dimensional model of an incompressible
one of the Hamilton approach versions; (i) to formulate the perfect fluid. The velocity field is characterized in such a sit-
concept of normal modes when the Hamiltonian of a system 5tion by two components only=(v1, vy, 0). The suppres-
is defi_ned by_ an ope_rator expression; (iii) to introduce thegign of the third velocity componentg, can be caused by
canonical variables; (iv) to apply the developed methodologyseyeral physical causes. The evolution equations in this case
to the enigmatic physical phenomenon. It should be notedye traditionally formulated in terms of generalized vortic-
that without complying with certain rules, the procedure for ity @ which is introduced by the relatic=cur! v. For two-

introducing canonical variables, and normal variables as &jimensional motions, only one component of vorticieg, is
. . 1 n»
consequence, is not as elementary as it could be expected. not nyll. The condition of incompressibilitj v v=4; v; =0,

In this article we perform the study in terms of general- permits to introduce the stream-functioh, via the relation
ized potentials (“canonical” field variableg) and g, when v;=¢;;0; W, wherei, j=1, 2, ¢; is an antisymmetrical unit
the transition from field variables (velocities components)tensoreio=1= — €31, €11=€22=0.

(v1, v2) to (p, ¢) is carried out, on the one hand, with-  The evolution of two-dimensional vorticity-like systems
out a decrease of phase space dimension and, on the othgfe governed by the equation

hand, complying with the gauge invariance of the theory (see

Sect. 3). Q2 =—-(v-V)Q, Q)
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which can be written as energy to obtain a dimensionless expressionHorthe di-
mensionless stream-functioy, will be governed by the di-

0 Q = —(02¢)012 + (1Y) 0292, (2)  mensionless evolution equation in the plane

The right part of this equation can be rewritten in terms 3, (A — 1)y + 8,y + J[¥, Ay] = 0. (6)

of Jacobian, J[a, b], where the Jacobian is defined as
Jla, b]l=01a d2b—0dpa d1b=¢;;0;ad;b. Equation @) con- where the vorticity and the stream-function are related by the

serves the full energy of the fluid motion relationship

Hzgfdxpr. 3) Q=—-(A-Dy+y. )

The full energy of the fluid is then transformed into
We suppose that all field variables and their derivatives, i.e. 1 1
all perturbations, vanish in infinity. Also, background sta- g — g — —[dx v = ——/dx V(A — D)y (8)
tionary flows are presumed to be absent. 2 2
The generalized vorticity(2, and the stream-functiony,

are related in general case by the operator relationship 3 Hamiltonian approach

@=LV ) The model governed by Eq2-4) (see also Eqs6(8)) illus-

The specification of a concrete physical model is assured b)tzra;es "E[r;]e Ham;!tonulam syztem ]\c’vc'ith a fmﬂefr;umzer of ;;lelds
a relation between the stream-function and vorticity. and with a confinual nUmber of degrees ot reedom charac-
. . . o terized by the index. For this reason, functional derivatives
So, for a two-dimensional Euler equation, the indicated . : . .
. . L with respect to field variables are used. To address the is-
relationship has the forre=—Av, i.e. Ly=—Aqvr. Here, . . .
A—52+52 the two-dimensional Laplacian. Below we wil sue we use the version of the HA given in Goncharov and
x Y ' Pavlov (1984, 1993, 1997, 1998, 2001, 2002) and Pavlov et
frequently usec=x;, y=x».

. l. (2001). Inf i I ibli h
There exist other models (for example, the mod—a (2001). Information on supplementary bibliography can

B . . . be found in Zakharov et al. (1985).

els of so-called “screened” vortices) with the operator We wi L .
< 5 . : e will call the system a Hamiltonian one if it evolves
L=—(A—1/a“), wherea is some space scale defined by the according to
choice of the model. Such models are largely used to de- 9
scribe (i) different plasma motions based on the Hasegawa- , ,. 8H
Mima equation (Hasegava and Mimal977 Similon and %t = {ui, H} = /dx {ui, ”j}(;uj(x/)'
Sudan 1990), (ii) axial electronic vorticesKrall and Triv-
elpiece 1973, (iii) the quasi-geostrophic barotropic motions Here, the Hamiltonian of the systen#{, is the quantity-
(see below), etc. There exist even more complex examplesnergy-functionally dependent on the fields, the operator
(Gruzinoy, 1992. 8/8u is the operator of the functional derivative. The deriva-

Let us provide as an illustration one visual example. Intives of dynamical variablesi’[u], are calculated by using

the geo-astrophysical context, it is typical to use a quasithe relatiorsu; (x)/du;(x")=8;;6 (x—x').

9)

geostrophic barotropic model defined by the relationship The Hamiltonian structure of the system described by
Eqg. ) includes the Hamiltonian given by the total energy,

O—iw + By, B= @cosﬁo. (5) H apd the fupctiqqal Poisson brac;k{et J. This.bracket _

a is antisymmetric, bilinear, and satisfies the functional Jacobi

A ) R ) . identity presented symbolically in the following form
Here, L can be given byL.=—(A—1/a%). The term linear

in y accounts, in the first approximation, for the sphericity {4, {B, C}} + {B, {C, A}} +{C, {A, B}} =0, (10)
effect (8-effect), i.e. the variation of the Coriolis force with

latitude 9. Equation B) is used in analyzing large-scale mo- Condition Eq. {0) must be obligatory satisfied for Hamilto-
tions in an atmosphere considered as a thin layer of a fluichian systems.

rotating with the angular velocityg. Let us note that Eq2j Conservation of energy follows from the given formula-
describes in this context two-dimensional fluid motions evention of governing equations, sineed, H={H, H}=0.

if L andWw depend on the vertical coordinate

Equations 2—4) form the closed system of equations for 3.1 Noncanonical formulation
Q,w.

Below, we consider the simplest case of two-dimensional
motions where the stationary densjty—=po, is independent
on the vertical coordinate In the integralH, after integrat-
ing on z, z-dependence vanishes. Choosing mass, distance, , . 8H
time scales for whiclpp=1, a=1, =1 and scaling the full Q2 ={Q, H} = /dx {Q, }ﬁ' (11)

[Systems which evolve according to Eq&—4), give an ex-
ample of such Hamiltonian systems. In fact, E@s4) can
be rewritten as
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Let us show how the brackéR, ©'} is calculated for con- In this context, some comments on the subject must be
crete situations. Using expressio énd (L1), we obtain  made.
that What is the essence of the proposal “to introduce canoni-
cal variables"? Obviously, one possible way is to express the
{Q,H} = fdx/ y'{Q, Q. (12)  field variables, for example , in terms of generalized poten-

) o ] ] tials, p, ¢, which satisfy some (canonical) conditions. Thus,
Here and further, the prime indicates that a field variableyg nrohlem is reduced to a search of a functional dependence
d/epen/ds/on the primed two-dimensional space coordinatg, ,, .| The dependence and corresponding canonical vari-
x'=(x’, y'). Onthe other hand, using E@)(we can exclude  gpje5 of such a type are known as Clebsh representations. It

9§2 from Eq. (L1). The following step is to introduce the Ja- a5 A Clebsh (1859) who pioneered using of similar trans-
cobian under the integration operator where the propertie$omations for a hydrodynamical velocity in an incompress-

of delta function are used. The regrouping of the integrandi,e fiuid (see for exampléamb, 1932. For some (sim-

terms (all field variables vanish at infinity) yields plest) systems, the canonical variables (potentigland p
for incompressible fluid are introduced by=0; &+ porq
/ / / /
/dx v 6 (x-x). Q) -{e a}]=0 (13)  (a review of more complex situations is givenGoncharov

The expression in the square brackets is zero becausaend Paviov(1993). Constraintdiv v=0 signifies that the

Eq. (13 is satisfied for anyy. Therefore, the Poisson bracket ]E)Oortzr:]t'i:gz);a?eg;bﬁgr?llgiztisefrhoan\]misfsjgiragpr; bTehceause
for the potential vorticityQ can be written as P = %lpoig).

vorticity is defined via the Clebsh potential by the expres-
(.2)=706x-x).Q). (14)  sion Q;=¢;jx3; pdkq. For two-dimensional flows;=3 and

the tensor Levy-Civita;;; becomess;i=¢ ;. However, it

is clear that there is some functional arbitrary rule for choos-
t'rng of a canonical basigp, g) for the given physical field

v;. To remove this arbitrary rule, one postulates that the the-
ory must possess the gauge invariance. The criterion for
emoving the arbitrary rule is a possibility of the existence

. ) . ) f such canonical transformations under which all physical
sy_stems Is functionally d_ependent of_the field variables. B_y(measured) quantities of the theory are kept invariant. This
this reason, the canonical formulation of the problem 'Sprinciple is called the principle of gauge invariance, gener-
sometimes more preferable. ates in turn some specific laws of conservation which elim-
inate an over-determination of the system. The existence of
such laws means, from a geometrical standpoint, that an evo-

The initial physical system is described by evolution equa_lution of the system is realized on some surface in the sym-
tions of Euler which are formulated in terms of “measurable” Plectic space, ¢ which is fixed by indicated lows of conser-
physical variables, i.e. in terms of velocities, v> . Below, Vation.

we will describe the same system in terms of canonical vari- ©One can show that the relationship between the velocity
ablesp, g for which the functional Poisson brackets have the ©0mponentsi1, vz and the potentialg, ¢ is given by the
form : {pJ]/} =5(x —x'), {p’ p/} — {q’q/} =0, i.e. when suff|C|_entIy cumbersome nonlinear differential-integral ex-
the corresponding Poisson’s brackets for field variables ardr€ssion

|ndep?ndent ?n field variables. Syph a choice is presented B8N — 1) v = £,y (61909} p + dap + x201q). (17)
more “natural” because the transition v,— p, ¢ conserves
the same number of field variables, i.e. the same dimension Let us demonstrate this formula for a single pair of cano-
of the phase space. In this case, an evolution of the systemical variablesp, ¢, i.e. for plane flows when only one pair
based on Eq.6) will be described by an alternative, cano- of potentials is used. In this case, we have:

nical, form. It signifies that the canonical variables satisny

This expression satisfies the Jacobi requirement, Hg), (
which are necessary for Poisson brackets. The resul
Eq. (14), can be obtained also by the direct calculation of
the bracket on the canonical basis.

However, the formulation in terms of vorticity is some-
times uncomfortable because the Poisson bracket for suc

3.2 Canonical formulation of RHM-like wave model

equations =J(p.q) = ¢ij0ipdjq. (18)
SH SH The variableg, p composing the canonical basis have mean-
dq = S ahp= T3 (15) ing of the canonical coordinate and the canonical momen-

o . tum, respectively. Thus, evolution equations formulated in
where the Hamiltoniar/, the total energy expressed in terms terms of canonical variablgs, ¢ are given by

of canonical field variableg, ¢, is given by
oH oH
1 p=——y 0hg=—. (19)
H = 5 dx ¥ (p, ¢)(A = DY (p. q), (16) 8q ép
. . . After calculating the functional derivatives @f, one finds
and wherey is expressed in terms @f, p. Variablesq, p
have the meaning of the generalized coordinate and momen-

tum, respectively. dp=J(p.¥), dhg=1J(q. V). (20)
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Let us consider a quasi-geostrophic model (see Sect. II)The goal of such a transformation is, first, to obtain the dis-
with 8£0 The basic dimensionless relationship between thepersion relationship for wave components and, second, to ap-

stream-function and the generalized vorticity is given by

Q= Llﬁ + xo, (21)

ply the results of the theory to interacting wave components
with fixed wave vectors.
In this case, according to Eq4d.5-17), the Fourier com-

which is expressed by Eql®) too. For this reason, we ponents evolution is governed by nonlinear equations

have the expression which gives a relationship between the

stream-function and canonical variabjgandg

Ly +x2=1J(q.p). (22)

Let us suppose now that a state of dynamical equilibrium ex-

6H

—, 31
S0 (31)

e oH L
lqk_apltv tpk—

The asterisk*) denotes the complex conjugate.
Concerning a possibility of the Fourier transformations,

ists. The equilibrium values of variables corresponding towe have supposed that the background flows are absent and
this state are marked by index_et us suppose that the back- all field variables (perturbations) vanish rapidly in infin-

ground flow is absent, i.e/;=0. However, even ifiy;=0,

ity, i.e. even|x|y¥—0 when|x|—o0. Such a supposition is

the problem arises for determining the nontrivial equilibrium largely used in the framework of traditional approaches in

values for the canonical variables (see for exanfptm-
charoy 1984. So, we can find from Eqs20) and (8) that
the stationary statej, =0, is determined by

0 ps = 0, 01qs = 0,

x2=J (Ps,qs) »

(23)
(24)

where Eq. 24) follows from the two definitions of the vor-
ticity presented above. Evidently, the solutions of E2B)(

are two time-independent functions which satisfy only one
Eqg. (24). For this reason, we can choose one of the potentials

ps Or g arbitrarily. Choosing the functiop; as

PS = xla (25)
we obtain

1
qs = Ex% (26)

All physical (“measurables”) fields do not change in this H[p, ¢q] = %/dk (kzJr 1) Wal?,

case.

physics when models of wave packets are considered. In
this case, all physical operators are transformed according
to A(x, V)— Ag(—i Vg, ik). Multiplying Eq. (17) by the ex-
ponent, integrating over the space coordinate and neglecting
terms in infinity, we can find that the stream-function com-
ponenty and the canonical variables’ componegis px

are related by the relationship

" 1 7. Iqk
= - iopy — k—
, 2177 o

dk1dks
+/ o Qiy Pk, (0162 — 02k1)8 (k1 + k2 — k)]- (32)
Here,x ando are longitudinal and transversal components
of the wave vectok, i.e.k=(x, o). The operators act on all
variables which are positioned to the right of them.

The Hamiltonian is given by the simple expression

(33)

Now, it is convenient to introduce new canonical variableswhere the functionyx has to be expressed in terms of the

P=p—ps. ¢ =q—gqs, (27)

canonical variablesy, px.
The Hamiltonian Eq.33) is the functional polyfimial of

which in the equilibrium regime satisfy to the condition the fourth order with respect to field (canonical) varialglgs

Py=q;=0.
In terms of perturbationg’, ¢/, relationship 18) and Q0)
are written as

Ly = x2014" + 320"+ J (¢ P') (28)
§H

atq/ = 5_}7/ =J (q/ + x1, I//) ’ (29)

Btp’ = _S_q/ =J <§X2 + 17/, Iﬂ) . (30)

Omitting the prime, one sees that EB8)is transformed into
Eq. (17) if we apply to Eq. 28) operatore;;9;.

Let us move now intok-space, using the symmetric

Fourier transforms defined by the formula

Zr = / deZ(x) exp(—ik - x).

pr. It can be written as

H(p,ql = Ha2[p,ql+ H3lp, ql + Halp, q1. (34)

where Hy[ p, ¢] describe linear effects, anids 4[p, g] non-
linear effects of interacting perturbations into the system.

4 Normal variables

The problem of introducing normal variables is not trivial
because operator combinations appear in Bg). (Similar
combinations will appear ifi2[p, q]-.

Let us write Egs. 1) in a matrix form

3 78
upy =—iJ——r,
Uk u+

k

(35)
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where (+) denotes the Hermitian conjugate. The column To formulate the problem on eigenfunctions and eigenval-
vectorsuy and so-called symplectic matrix are arranged  ues, we must substitus,= f, exp(—iw?) in Eq. @5), as-

as suming that, in general, the eigenvecttj?ﬁ are operators
. non-commuting with the eigenvalues-wy. In doing so, we
Dk A 0 —i .
u= ( ) = ( ) (36) obtain
Gk i 0
The Poisson brackets can be written as Hiefx = J fren =0, (46)
[uk, k/} = —iJs(k—K). 37) It should be noted that as far gk #wi /. this prob-
lem cannot be reformulated in the form

Let us consider small field perturbations relative to basic
unperturbed state. In this case, the leading term into th
Hamiltonian H is the quadratic ternt[p, g] with respect
to canonical variablep andg. This approximation corre-
sponds to the linear approximation for evolution equations. r
For Hz[p, ¢q], we can write the following representation

Hk wkf) }k =0

which is traditional for expressmns with no operators.
Using the propertiesd;= , J=—J*, we can derive
om Eq. @6) the dual I|near problem

1 N I:Ik}ik + j}ikw_k =0. 47)
Hy = é/dk u:Hkuk, (38) .
Comparing Eq.46) with Eq. @7) shows that it and f,
Y . . Ak
The matrix operatoH; have the following structure are an eigenvalue and an eigenvector them , and f_,
R are too. Therefore, all the eigenvalues and the eigenvectors
5 _ [ Ak Bk of problem Eq. 46) have dual nature and can be split into
H;, = S (39) - )
B Cx such pairs. In the simplest case when a model has only one

wave branch, the problem E¢46) has a single pair of eigen-

where matrix elementi; is a function ofe and«, while n ok ) ) )
vectors(fk, f_k) and a corresponding pair of eigenvalues

elementsBy, and Cy are operators. These elements are ex-

pressed by (@, —w—k).
5 In this case, according to general theory ten&tsrcharov
Ap = g ’ (40) and Pavloy1993 because matrlcersk andJ are Hermitian
K+1 and, in addition Ay is positively determined, there are good
R iock 9 . 9 K2 9 groupds forAb*eIieving that, on the one hand, the eigenvec-
Br = ¥+ 100 G = T 9o Kk21 100 41)  tors f, and f_ form the system of orthonormal functions

. ] . subjected to the conditions
By definition (see below), normal variableg (¢) are in-

troduced as coefficients in decomposition }";: Jfe=1 j:j}ik =0, (48)

up = frax + fopay, (42)  onthe other hand, all the eigenvalues are realXig.=0.
Thus, normal variableg, (1) are introduced as coefficients

wheref., f*, are vector-column eigenfunctions. in decomposition of the column vectay, on the eigenvec-

In terms of normal variables, the two equations of evolu- Al ak
tion Eqg. @5) are transformed into tors (_fk’ f—k> by qu @2). _
Using orthonormality property Eq48), from Eq. @2) it
dap = — H da; = 5H (43) is easy to obtain the relations
5 *’ (Sak
A4 oA N
ar = fyJux = —ut, J fy, (49)

In linear approximationH — Ho. The Hermitian matrix
operator H;, at Eq. @8) has a typical structure Eq39). and next, by employing Eq37), to calculate
Considering the fact tha#l is Hermitian, H> is real, and . ) ,
ux=u*,, one sees that lak, ap}y = —id (k—K)., {ak,ap)=0. (50)

On the basis Eg.50), the matrix equation of motion

S
He = H = Hoy Eq. (35) takes form

It means that
0H 6H
N N N N N N Btak = —l—*, B,a;: =i—. (51)
Ap = A+ A*,, Cr= Cy =C*, Br=B. (44) day dak
Substituting Eqg. 8) into the Hamiltonian Eqs.35), we To find solutions for} andwy in an explicit form in what
obtain the linear equation follows we assume for simplicity that matrix elemety is

A . a usual function while matrix elemeng, andC;, are non-
(Ja, + in) up =0. (45)  commuting operators.
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In this case one can show that according to E6) éigen-
vector f, is given by

—1/( 5 .
Fi= (_Ak <Bl" * “”")) . (52)

The eigenvaluey;, and the normalizing factat , in turn,
can be found from orthonormality conditions E48) which
is convenient to reformulate, using E§Z, as

Ok — W_f = —i (Aké]_:A,:l — ék) , (53)

_ A pta-lp
©-kok = Ak <Ck Bk Ak Bk) ’ (54) Fig. 1. A general dispersion law for the Rossby-like waves and null
lex|? = (or + o) "t Ax. (55) ~ modes.

Here,wy, is the eigenvalue of the problem), is a normaliza-

. o X : ¢ 5 Linear approximation
tion coefficient. To find the eigenvalug, and the normaliz-

ing factorex, we must resolve conditions EqQ&3-55) with  |n the linear approximation, when interaction of Rossby-like
Egs. 89) and @1), which lead to waves is ignored, the Hamiltonian takes form
or o= s6) to= [ dkorlaf >0, (63)
k“+1
w_gwk =0, (57) and, as earlier discussed, is positively defined sitce0 in
2 o2 accordance with Eq.5Q). Due to the presence &f(—«)-
ekl = (58) function in the dispersion law Eq5%), null modes defined

. .
(k + 1) @k + @) above as normal modes with positive components,aire

eliminated in a linear approximation. Once initially estab-
From Egs. $6-58), we find lished, these modes remain unchanged without any phys-
ical consequences or effects because, in accordance with
k6 (—K) s9) EO 62), in a linear approximation we have

@il Aok

wr =

v (x) = _1 Re/ dk |k|7Y? wrage™™
whered («) is the Heaviside functior® () =1 if «>0, and 2n
6 (k) =0 if k<0. This law of wave dispersion is shown in =y R4 yVM, (64)
Fig. 1. For <0 it describes the well-known Rossby-like
waves. The domain of >0 corresponds to so-called null
modes.

Summing up this section, we list the basic relationships

and hence they make zero contribution to the stream-
function, Y™ =0, even if their amplitudes are distinct from
zero.

As we shall see later, this is no longer the case in a nonlin-
ear approximation.

_ -1/2 g
Gk = o il ™% (ak—aZy) (60) The null-modes correspond to the state witk-0. How-
112 0 0 (k) ever, using the traditional consideration where governing
pr = —1 k|7 sign (k) || — + ay . . . ;
do equations are formulated in terms of a stream-function, it

Py a_g with =0 correspond. On the other hand, discovering that

the stream-functiont=¥[p, ¢] depends in reality on ca-
The stream-function is defined via the normal variables bynonical field variables(p, ¢) which arise from transition

B ( 9 0 (_K)> . } (61 is very difficult to guess to which physical reality the states

expression (v1, v2)—(p, q), it becomes clear that, even wheétip, g1
is null, it does not automatically follow thgh and g are
P . 1 also equal to zero. A physical reality, with, g0 assur-
Yk = — l«| (okax+o_ga’y) — ing ¥[p, ¢]=0, can exist: the stream-function can turn to

2n (k2 T 1) zero, for example, when field amplitudes (normal variables)
or other characteristics of the wave field vanish in a certain
x /dkldkz Piydiey (0162 — 02k1) 6 (k —k1—k2) . (62)  §omain ofk-space (null-modes). In this connection, it be-
comes clear that null-modes can in principle be initiated by
wherepy, gx have to be expressed by E§1J. some nonlinear wave interactions.
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6 Three-wave interactions

To find the types of wave interactions admissible by normal ko
waves dispersion Eg59), we must consider resonance con- 0 @Z<g————————————————— 12
ditions which take null modes into account. Becawge 0, 7 k
and hence the so-called waves of the negative energy are ab- k1 s

sent, the main contribution at the first order of perturbation /

theory is made by the three-wave interactions corresponding ,
to the resonance conditions K e

k—ki—k>=0, op—owp, —wk,=0, (65) -6

which describe decay process€8—1+2) and inverse
processes-mergind+2—0).

Of special interest are the interactions between two
Rossby-like waves and a null mode which arise whenever
one of wave-vectors, for exampke, has a positive compo-
nentko while components andx; are negative. In this case,
wave-vectors of interacting Rossby-like modes form a locus
where

Fig. 2. Locus of the null-mode wave-vector tails merging with a
(66) Rossby-like mode. Dashed-line vectioy denotes the null mode,

Wk = Ok solid-line vectorsk andk4 denote the Rossby-like modes.

According to Eq. §6), the tips of vectorg andk1 must lie on
the circle with radiusr:,/w;z/4—1 and the center at point 7 Nonlinear collision of three wave packets

(“"1: Y2 O) as graphically represented in Fig. We consider the interaction of three narrow-band wave pack-
In order to proceed further, we must also know the Hamil- ets whose typical wave-vectoks, k», k3 satisfy the reso-

tonian of the three-wave interactions which is responsiblenance conditions

for resonance Eqg.66), and ignore all other feasible non-

resonant terms which can be eliminated with the aid of thek1 = k2 + ks, ok, = i, + @k (69)

canonical transformation. Thus, we arrive at the Hamiltonian Let us assume that

with a general structure
J a (k) = ay (k) + az (k) + as (k)

H3 = } fdkdklde (a}:aklakz Vi kpoky) + c,c) where each of, is nonzero only ifj=k—k, are small. Fast
2 dependence anandx for each wave packet is excluded with
x8 (k —k1—k2), (67)  transformation

where functiorVy , x, is called the interaction factor or cou- ¢, (q) = ay (k, + q) expi (wg,t — knx).
pling coefficient. The coupling coefficierif x, x, can be
obtained by expanding Eq3®) into a functional power se-
ries of normal variables with subsequent collecting of terms
proportionate taw*aa andaa*a*. Because our interest is Uy (x) = (Zn)flqu ey (q) €%
only in resonance interactions, functiof x, x, is defined

only on the surface described by EG5). Therefore, if we  which have significance of complex envelopes for wave-

restrict ourselves to the three-wave interactions, terms Protrains, and using a band narrowness of the wave packets, we
portional to(wy —wg, —wi,) can be omitted in the computa- optain

tion of Vie, ket by

Following the standard procedure (see, akharov and
Kuznetsoy 1986, using new variables

.3
After some algebra, we find H= IE Z Uy / dxu,Vu +V / dxujusuz +c.c., (70)
i (O1K2 — K102) "= » . . -
Vikiky = W (wk102 - wk201) where envelope velocities, and interaction coefficienV
2 which is a function of the wave-vectoks, k2, k3, are ex-
% <f@ ) + 26 (c1) + 2o (K2)> pressed as
o o1 o2

v, = dwy, /0k
+ (w2 — wryk1) — (0162 — K102) " K/ Ok

2
) < dor  dony a%) } ) = (+1) " |2~ 02~ 1200, (71)
V = Vi, kp ks (72)
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Now, let us consider interaction between two Rossby-likewhere f;= f; (t;) are arbitrary, square-integrable, complex
wave packet&, k1 and the null mode packéb. So farasin  functions, andF; are determined by
this casex1, k2 <0 butk3>0, from Eq. 68) we have

“+o00 2
i (o2K3 — K20’3)2 dwg, OJwg, F1 = / ds |f1|27 Fo= / ds |f2|2,
V=- — . (73)
27 /K 1K2K 3] do1 do2 71 —o0

+00
The space-time evolution of the packets can be describe 2
from equations (;:3 = f ds | f3l°- (77)
73
0H ) o _
duj = R To interpret correctly the initial-value problem in terms of
“j characteristic coordinates, =2, t3, we note that due to the

minus signs in Eq.75), fixing any two of the characteristic
coordinates would send the third characteristic coordinate to
du1 + v1Vuy = —i Vuous, +00 if t——00, Or to—o¢ if t—+00. Thus, the initial states
will be located where any one of the characteristic coordi-

which take the form

Oup + v2Vur = —i VF¥uqul, . :

e 2, *2 N s nates approachesco, and the final states will be located

Orug = =iV u5us. (74)  \where any one of the characteristic coordinates approaches
+o00. Therefore, quantities

8 Null-mode mechanism of flow generation “l+ = lim w;, uy = lim u, (78)

7, —+00 T;—>—00

As shown byLonguet-Higgins and Gil(1969), the mech-  correspond to the initial and final profiles, respectively.
anism of a direct triad resonance which takes into account considering the integral characteristic

only Rossby-like modes, cannot be responsible for exciting

zonal flows if weak corrections for sideband resonance arg + _ /dx |ui

ignored. This conclusion is completely confirmed by our re- !

sults and is readily apparent from E§8] whereby coupling

coefflcu.a'nthl,kz,kg vanlshgs ak1=k>. ) convenient formula for their calculation
As will be shown later, in contrast to the cited works, our

approach which uses the null-mode concept admits the geny+ _ S,&

eration of zonal flows due to direct triad resonance E) (' Y

involving two Rossby-like wave packeksg, k> and a packet

of null modeks. These resonances are governed by the sys- x /drjdrkajak In (l+ (F1+F2) F3|’i=i°°) - (80)

tem of three nonlinear Eqs69) which in general can be

solved by inverse scattering method when initial envelopeswheres;=sign 3; F; andg/?=,/v2v3 — (v1v2)? is the Jaco-

are non-overlapping. Using this technigd@@kharov(1976 bian of transformation Eq76).

obtained special solution describing a physically important Denoting

effect — a parametric decay of a pump wave into secondary oo

waves. Y; = / ds |fil?, i=123, (81)

—0o0

S =/dx|u;|2 (79)

as initial and final intensities of the packets, we can obtain a

8.1 Noncoplanar case xv2#0 we can compute the initial and final integral intensities of the

wave packets.

As shown byZakharov(1976), in the initial stage when
the wave packets is absent, the integral intensities wf,
u2, andus are determined as

Consideru1, up as envelopes of Rossby-like waves fixed in
the initial stage at——oo when the null-mode packets
is absent. Then, using characteristic coordinates?, t3

defined as
g1/2
X = —V1T] — V2Tp, ¢ = —T1 — T2 — 13, (75) If = T / d12d130203In (1 + F2F3)
Zakharov’s solution can be presented in the form _ g1/? IN(L+ YoYs) (82)
=7 2Y3),
Uy = 1 ffs g1/2
V1t (Fi+ F)Fs I = > | dradtzdidzIn (1+ (F1+ Y2) F3)
1 Afs v
Upg = & s g2 Y1Y3
V1+(F1+ F2)Fs3 =—In(1+—>, (83)
. ¥ F \% 14 YoY3
ua= L Jiffs 76) o+
ST TVIT (Rt ) R Iy =0 (84)



290 V. Goncharov and V. Pavlov: Null modes effect in Rossby wave model

In final stage we have all three packets with intensities which show that; <0 andv,>0. Thus, these packets move
1/2 towards each other and after some time collide generating
I = _gT dtodt30293In (1 + (Y1 + F2) F3) nuII—modg packet:s. At the final stage at— oo, when
Rossby-like wave packets run away into infinities, all that re-
_ i/z in(1 YoYs3 (85) mains in the interaction region is the immovable null-mode
N + 1+ Y1Y3) ’ packetuz which will never leave the place of its creation.
1/2 This situation corresponds to the special solution

Iy =% | dradrsdndsin (1+ FiF3)
v _ _2pi/mui(v2—vy)

1/2

- gT In(1+ Y1Y3), (86) VUD_ )
1/2 X (e”z g T ptz 26"”) , (99)
Iy = _gT dtadtsdndzIn (1 + (FL + Fa) Y3) p1v1t p2v2
2p2+/v2 (v2 — v1)
1/2 2 - _
A R (L I @n VD
1+ YT+ 12) p1v1 — p2v2
] ) ] . ) N X (e"l — —e"”) , (100)
It is convenient to introduce the renormalized intensities piv1 + pov2
I =g RVIE ®8) . Apip2(v2—v) Vv (101)
Then, eliminating quantitie¥y, Y», Y3 from Egs. 82-87), V (p1v1+ p2v2) D
we can express final intensitigs™ (i=1,2, 3) in terms of  \yere
the initial ones as
JS=J1r 47 —n [1+ A (dz* - 1)] : 89) M =piE—vi—&). (102)
P n2=p2(& —vat —§2), (103)
Jy =In [1+ et (eJZ — 1)] : (90) D= (&M e (&2 + 7 2)
J; =—J3 +In [1 +elt (eJZ+ — 1)] . (91) _Me—m—nz’ (104)
(p1v1 + pav2)?

8.2 Coplanar case Solutions of this sort were first considered bgkharov and

Manakov(1973. According to Egs. 49) and (00), wave

In a coplanar case whan xv>,=0, Egs. {4) become i / _
packetsu1, up are characterized by arbitrary amplitudes

u1+v10u1/9§ = —iVuous, (92)  butthe widths of the packets are related. From Et2)(and
g + v2du/d& = —iV*uqu}, (93) (103 it follows that if / is the width of packet, the width of
lig = —i V¥uyus (94) packetus is vy /v2 times smaller, where in accordance with

Eq. ©9), v1/v2>1.
and describe the evolution in time and one spatial dimension
of the three-wave resonant interaction. The spatial variable
& used as a coordinate along the line of propagatignis 9 Estimates and conclusion
related tax by expression
. After the two original wave packets; anduy, beat against
§ = xcosp +ysing, (95)  each other for some time, they escape from the interaction
As shown in Fig2, angley defines the direction of the prop- region leaving behind the null-mode packes, Thus, at the
agation(—m/2<¢<m/2). Together with frequenayy, itcan  final stage, in accordance with Eq4], we have the residual

be used for parameterization of the resonant triplet field

= i i £
R JEERE SR L o9
ki2=—-—(1,0)+ Sks, 97) 1283

’ 2w1 2

Because this disturbance is immovable, it will never leave the
place of its creation.

Using Eq. 76) and assuming thatis a slow variable, i.e.
da/dx=0da/dy=0, we can compute residual fields. At first,
from Eqgs. 60) and 61), we obtain

wherer:,/wl‘z/4—1.

We consider the situation when in the initial stage at
t— —00, Rossby-like wave packets, u» are localized at in-
finities (§=400) and the null-mode packag is absent. Ve-

locities of the wave packets can be evaluated from relationsq 3 lial~Y2a explikax) + c.c., (106)
= |0wg/0k| = :fr (98) = —k3| |1/2< + i > a expiksx) + (207)
— e —— = K K a 1 X C_C.,

b2 O/ Oli=k 2w1r cosp F 1 P S Y 03 °
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Next, from Eq. 17) we find the stream-function instance, with the Feynmann diagram technique which orig-
_ ) inally seemed to be merely a simplification method in the
¥ = ¥ exp2iksx) +c.c., (108)  perturbation theory.
where its envelopé is expressed as The analogous situation has happened with the HA which
is based on the fundamental fact that governing equations
J= io3 k3| a? (109) of a hydrodynamical system possess a hidden Hamiltonian
o 4k§ +1° structure.

To gain greater insight into the physical significance of

the results, we make some numerical estimates for an oceafyppendix A Hamilton approach

model. In geostrophic approximation, the basic parame- ) _ . o
ters are defined as=./gh/f, B=d.f, where f, g and There exist different methods which use the adjective
h denote the Coriolis force, the acceleration of gravity "Hamiltonian”, and there are numerous papers with fitles
and the mean depth of layer. Choosing50 km (baro- where the adjective “Hamiltonian” is used. That is why,
clinic Rossby radius), we consider middle latitudes whereWhen talking about the Hamiltonian method, it is neces-
p=10"3cm-1s1. Then, in accordance with Eq5) we  Sary to define more precisely which one of the versions

parameters an become unity: so-called “Hamiltonian description” can mean different ap-
proaches.

L=a=50km T =(fa) =2 1CFs (110) The point of the departure for one of the approaches is
the integral (action) of a hydrodynamical system taken in the

Let us suppose that in the initial state two Rossby-
wave packets with wave vectorde;={—1.59, 2.45}
and  kp,={-5.45,1.41} move with velocities ¢ _ dt Llu;, du;]
v1={-0.049 —-0.086 and v,={0.025 —-0.014, and ’
have ¥0=1.2.10"2 and y9=2.6.10"5, respectively. As _ A
numerical simulation shows, these packets generate a =/dt{ /dfo[“’ x, x1]0ujxy) | — Hlul}. (A1)

null-mode packet wittk3={3.86, 1.03} andy9=2.3.10"%. , , ,
Let us conclude with a few remarks. In this paper, we H€re.L is the Lagrangian of the hydrodynamical systeih,

have considered the simplest model which possesses boffi e Hamiltonian of the same systef is the partial
strong dispersion and strong inhomogeneity and nonlinearger'vat've_Of aflelq variable with respect to tl_me. _Varlatlo_ns
ity. However, this model has permitted us to show how the®f the action,s, with respect to hydrodynamical field vari-
null-mode concept changes traditional ideas about the influ?‘ble,s":(“k) lead to the evolution equatiotf=0, which is
ence of nonlinear interactions. We have also discussed th§auivalent to

basis for the proposed approach and highlighted important R SH
non-trivial generalization for the operator expressions of nor—/dxl“’ik[”; x, x1] dup(x1) = Su;(x)

mal variables. . o
The choice of the method is motivated by several reasons1€r€: 8/8u, are the operator of functional derivation,

Successful solution of a problem of theoretical physics often®ik is the symplectic form defined by the condition
depends on which descriptive formalism, i.e. the mathemati @ik (X, ¥11=0A;[u(x1)1/0ux(x)—8 Ax[u(x)]/6u; (x1).
cal framework, is chosen (s&akharoy 1985. In fact, there The approach proceeding from the extremum of Bq.)(

may exist several analytical approaches which under consis2d based on the use of equations E®)(has a wide dis-

tent application lead to the same final result. TheoreticiansSémination. Reviews on applications of the variational prin-

however, often tend to be biased in favor of one while instinc-CIpIe of least action with a hydrodynamical Lagrangian den-

tively resisting attempts aiming to explore others: they claimSity; ¢an be found in works oBretherton(1970; Henyey
that new approaches do not contribute anything new. Con(1983; _Salmon(1988 (see also publications relevant to this
sequently, not all possible analytical frameworks are treated®SPeCt iMAbarbanel et al(198; Holm et al.(1989 and ref-

equally and some get pushed out by the others. As an exanfrences therein; in context of the Hamiltonian formulation of

ple, in medieval times European universities developed sevROssby wave model see for instarigach (2002).

eral coexisted algorithms for arithmetic division, but all of _ 1h€ other version of the Hamiltonian description proceeds
them except for the single one are obsolete nowadays. Howl'oM the evolution equations in the form

ever, the prevailing method should not be the one thatis mos}, ;. (x) = (u;, H}

habitual. The “best” scheme should be the one that is most

adequate for the problem in question. In fact, after the pe- = /dxl{ui(x)y uj(x1)}
riod of implementation and adaptation, the framework itself

may start affecting the style of thinking and enriching sci- Here, {u; (x), u;(x1)} is the functional Poisson brackef,
entific language. Finally, it may begin to define the way in is the Hamiltonian of the hydrodynamical system (gener-
which new physical problems are stated. This happened, foally speaking, the full energy of a fluid). This latter form

form

(A2)

. A3
Suj(x1) (A3)
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seems to be preferable sometimes from the physical point ofmethod is rather economical because an asymptotic expan-
view since it arises naturally in many known hydrodynamical sion can be made in the beginning; d) the physical meaning
models. of the results of calculations obtained for a particular system
A particular case, the canonical form of the Hamilton ap- can be easily revealed. In early 1970s, (see w&akharov
proach, is given by the set of equations in terms of functionaland Faddeev1971), it became apparent that the majority of

derivatives nonlinear evolution equations integrated by the inverse scat-
SH SH tering method possess a Hamiltonian structure, i.e. they are

0rqi = P 0 pi = 52 (A4) the infinite-dimensional analogues of the Hamilton equations
pi ai of classical mechanics.

whereg;, p;, i=1,2,...N are canonical variables, ar is Approximately at the same time the general physical es-

the Hamiltonian of the system. sence of the Hamiltonian approach was realized. It became

Equations £2) and @A3) would become equivalentifthere clear that in classical physics many of the conservative mod-
existed a one-to-one transformation, i.e. if there existed relae|s which use a field concept, possess a hidden Hamilto-

tion nian structure. Many hydrodynamical models happened to
R be among them.
/dxz @ij[u; x1, x2]{uj(x2), ue(xs)} The construction and successful use of canonical vari-
— 8i18(x1 — x3). (A5) ables for studying surface gravity wav&akharov(1968

presented one of the most impressive examples of the ap-
Such a scenario is realized when the functional Poissorplication of the Hamiltonian approach in hydrodynamics and
brackets are non-degenerated. In this case, it would be alizave an impetus to elaborate the general wave theory for non-
solutely irrelevant which of the formulations was taken as alinear, dispersive media in the framework of the canonical
point of departure. Hamiltonian formalism. The issue of determining canonical
However, for systems with degenerated functional Poissorvariables was essential to the development of the Hamilto-
brackets{u;, u;}, which admit solutions ofu ;, C;}=0for  nian method. For many fluid dynamic systems, the canonical
CasimirsCy, transformations EqAGS) are impossible. Such  variables in Clebsch representation have been introduced in
a situation is observed for hydrodynamical models (see, foran intuitive way (examples are givenSeliger and Whitham
example, Arnold, 1978). 1968 Zakharov and Kuznezow997). There even exists an
If from the beginning one is forced to work within the class opinion that the canonical variables may only be guessed (see
of models determined by evolution Eq82), it is necessary  L'vov, 1994). In reality, it is not correct, there exists a regu-
to go through the process not only of searching for the cadar procedure for finding canonical variables (&@ncharov
nonical variables, but also ascertaining their connection withand Pavioy1993 1997.
physically-observed field quantities (for example, one needs |f the Hamiltonian approach EqAB) merely offered a
to elucidate the sense of multi-valued Clebsch representanew vision of familiar results, it would deserve little atten-
tions), then invent models of hydrodynamic systems with un-tion. However, enough evidence has accumulated that the
usual properties, and so on. Hamiltonian approach, together with the methods of mod-
Even if the necessary structure of the Lagrangian isern classical mechanics (sBeibrovin and Novikoy 1989
guessed or selected in some intuitive way, the use of the variarnold, 1978, comprise a powerful tool for fluid dynamics
ational principle Eq. A1) requires the formulation of addi- research. Conservation laws, stability conditions, asymptotic
tional postulates concerning latent constraints, the physicahpproximations and useful variable transformations, all ac-
interpretation of which is not always obvious. quire logical motivation and transparency that is often lack-
In the historical context, the Hamiltonian description in the ing when the corresponding manipulations are applied di-
forme of Eq. A3) is directly driven from physically-based rectly to the traditional evolution equations.
presumptions about the type of evolution of hydrodynami-
cal systems and their internal properties (G@mcharov and  AcknowledgementsThis work was partly supported by the Rus-
Pavloy, 1997). sian Foundation for Basic Research (grant No.00-05-64019-a).
The Hamiltonian approach EgAB) was initially devel- ~ The authors thank A. Dyment and E. P. Tito for useful remarks.
oped in fluid dynamics mainly for pragmatic goals, as a me-
thod of solving some concrete hydrodynamical problems.Edited by: A. R. Osborne
For example, it appears to be very effective in finding non- R€viewed by: two referees
linear evolution equations for interacting waves (for detalils,
see Zakharov et al., 1985). It was immediately noticed tha
the Hamiltonian method possesses a number of advantagest‘:ﬁe‘terenceS

comparison with traditional approaches. In particular, @) theapananel H. D. I.. Holm. D. D.. Marsden. J. E.. and Ratiu. T. S.-

Hamiltonian approach is not tied to a particular choice of  Nonjinear stability analyzis of stratified fluid equilibria, Phyl.
“field coordinates”. Specific features of a mediumturnoutto  Trans. Roy. Soc., London A 318, 349-409, 1986.

be unessential to a large extent; b) many versions of the perarnold, V. I.: Mathematical Methods of Classical Mechanics,
turbation theory may be simplified and standardized; c) the Springer-Verlag, New York, 1978.
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