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Abstract. Electron-acoustic solitary waves are studied in
an unmagnetized plasma consisting of non-thermally dis-
tributed electrons, fluid cold electrons and ions. The Sagdeev
pseudo-potential technique is used to carry out the analysis.
The presence of non-thermal electrons modifies the paramet-
ric region where electron acoustic solitons can exist. For pa-
rameters representative of auroral zone field lines, the elec-
tron acoustic solitons do not exist when eitherα > 0.225 or
Tc/Th > 0.142, whereα is the fractional non-thermal elec-
tron density, andTc(Th) represents the temperature of cold
(hot) electrons. Further, for these parameters, the simple
model predicts negatively charged potential structures. In-
clusion of an electron beam in the model may provide the
positive potential solitary structures.

1 Introduction

Bursts of broadband electrostatic noise (BEN) emissions
have been observed in auroral and other regions of the mag-
netosphere, e.g. polar cusp, plasma sheet boundary layer
(PSBL). Frequencies of these emissions range from ion
plasma and lower hybrid frequencies to electron plasma fre-
quency and above. However, most of the power is concen-
trated in the vicinity of ion plasma and lower hybrid frequen-
cies. Ion and electron beams are also commonly observed
during the BEN events. The generation of low frequency
part of BEN can be explained by the linear theory of ion
and electron-beam instabilities such as, ion- and electron-
acoustic instabilities. However, no linear electrostatic wave
mode has been identified in the frequency range between
electron plasma and cyclotron frequencies i.e. to explain the
high frequency part of the BEN.

High time resolution observations have shown that the
BEN consists of small scale, large amplitude magnetic field
aligned electric field structures. Electric field amplitude can
reach up to 100 mV/m in dayside auroral zone and more in
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auroral kilometric radiation(AKR) source region. Such large
value of electric fields suggest that the nonlinear effects have
a bearing in the generation of BEN. Electrostatic solitary
structures have been observed in the auroral acceleration re-
gion (Temerin et al., 1982; Bostrom et al., 1988; Dubouloz et
al., 1991a, b; Mozer et al., 1997; Ergun et al., 1998; Bounds
et al., 1999), in Earth’s high altitude polar magnetosphere
(Franz et al., 1998), in Polar cap boundary layer (Tsurutani
et al., 1998), in the plasma sheet boundary layer (Matsumoto
et al., 1994; Omura et al., 1994), on cusp field lines (Cattell et
al., 1999) and in AKR source region (Pottelette et al., 1999).

These small scale, large amplitude electrostatic spiky
structures are interpreted as solitary waves with veloci-
ties from few hundred to few thousand km/s and parallel
scale sizes 100–1000 m. Dubouloz et al. (1991) studied the
electron-acoustic solitons in unmagnetized plasma with two
electron-component (cold and hot) and motionless ions. It
was shown that the high frequency extension of BEN in
dayside auroral zone could be generated by the electron-
acoustic solitons passing by the satellite. Later on above
study was extended to magnetized plasma to explain the tur-
bulence generated by the gas of electron-acoustic solitons
(Dubouloz et al., 1993) in dayside auroral zone. Mace et
al. (1991) studied the arbitrary amplitude electron-acoustic
solitons in a two electron component plasma. The above
mentioned models are unable to explain the positive polar-
ity of observed solitary structures. Berthomier et al. (2000)
and Singh et al. (2001a) have studied the electron-acoustic
solitons in four-component plasma. Berthomier et al. (2000)
showed that, depending upon the beam velocity, tempera-
ture and density, electron-acoustic solitons can have posi-
tive polarity. Mamun et al. (2002) have studied the obliquely
propagating electron-acoustic solitary waves in a magnetized
plasma. Lakhina et al. (2003) presented a review of some the-
oretical models for solitary structures of the boundary layer
waves. Recently, Berthomier et al. (2003) showed that the
small amplitude Debye length scale positive potential struc-
tures described as electron-acoustic beam solitons can form
in the auroral plasma at FAST and POLAR altitudes.
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Energetic electrons distributions are also observed in the
different regions of the magnetosphere. Cairns et al. (1995)
used non-thermal distribution of electrons to study the ion-
acoustic solitary structures observed by the FREJA satel-
lite. It was shown that solitons with both positive and neg-
ative density perturbations could exist. We study the ef-
fect of non-thermal electron distribution on the nonlinear
electron-acoustic waves in an unmagnetized three compo-
nent plasma consisting of non-thermal electrons, cold elec-
trons and ions. Our choice of non-thermal distribution of
electrons is prompted by its convenience rather than as pre-
cise fitting of the observations. We expect that the inclusion
of the non-thermal electrons will change the properties as
well as the regime of existence of solitons.

2 Formulation

We consider a homogeneous, unmagnetized three component
plasma consisting of non-thermal hot electrons, fluid cold
electrons and ions. The non-thermal distribution for the elec-
trons is given by (Cairns et al., 1995)
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wherenoh is the hot electron density,vth is the thermal speed
of the hot electrons andα is a parameter which determines
the population of energetic non-thermal electrons. The distri-
bution of electrons in the presence of non-zero potential can
be found by replacingv2/v2

th by v2/v2
th − 2φ. Thus, integra-

tion over the resulting distribution function gives the follow-
ing expression for the electron density (Cairns et al., 1995)

nh = noh(1 − βφ + βφ2)exp(φ), (2)

and the other governing equations of the model are given by
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where j = c, i represents cold electrons and ions, respec-
tively, Zj = ± 1 for electrons and ions respectively, and
µj = mj/me, β = 4α/(1+3α), whereα determines the pop-
ulation of non-thermal electrons. We have normalized the
densities byno = noc + noh = noi , velocities by thermal ve-
locity of hot electrons,vth =

√
Th/me, lengths by effective

hot electron Debye length defined asλdh =

√
Th/4πnoe2,

temperature by hot electron temperatureTh, time by inverse
of electron plasma frequencyω−1

pe =

√
me/4πnoe2, the po-

tential byTh/e, and, the thermal pressure bynoTh.

The stationary solution to Eqs. (2–6) can be found by us-
ing the transformationξ = x − Mt; M is the velocity of the
moving frame, and applying the appropriate boundary condi-
tions. The integration of the Poisson Eq. (6) yield the energy
integral given by

1
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whereV (φ) is the Sagdeev potential given by
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whereµi = mi/me. The first term on the right hand side
(r.h.s.) of Eq. (8) represents the hot electron contribution to
the Sagdeev potential. In the absence of non-thermal elec-

trons, i.e. forα = β = 0, the term reduces to usual Boltz-
mann distributed hot electron contribution (Mace et al., 1991;
Singh et al., 2001a). The second and third term on the r.h.s.



S. V. Singh and G. S. Lakhina: Electron acoustic solitary waves 277

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
−8

−6

−4

−2

0
x 10

−3

φ

V
(φ

)

α = 0.1 

α = 0.0

M=1.0 

M=1.1 

M=1.0 

M=1.1 

Fig. 1. Figure 1 shows the comparison of the Sagdeev potential
profiles for the Maxwellian (α = 0) and non-thermally (α = 0.1) dis-
tributed electrons for different values of the Mach numberM. Other
parameters arenoc = 0.35,noh = 0.65, Tc/Th = 0.01= Ti/Th.

of Eq. (8) represents the cold electron contribution. The last
two terms on the r.h.s. of Eq. (8) give the contribution of ions
to the Sagdeev potential.

3 Numerical results

The soliton solutions of Eq. (7) exist when the usual con-
ditions, namely,V (φ)= 0, dV (φ)/dφ = 0 at φ = 0 and
V (φ) < 0 for 0< |φ| < |φo|, whereφo is the maximum am-
plitude of the solitons, are satisfied. Equations (7) and (8)
are solved numerically for the soliton amplitude and Sagdeev
potential, respectively. The typical parameters considered
for the numerical evaluation are: cold electron density,noc

= 0.35, hot electron density,noh = 0.65, cold to hot electron
temperature ratio,Tc/Th = 0.01= Ti/Th, andα = 0.1

Figure 1 shows the variation of Sagdeev potentialV (φ)

with normalized potentialφ for the above mentioned pa-
rameters for various values of soliton Mach numberM in-
dicated on the curves. It is interesting to point out that for
Maxwellian electrons (α = 0), the numerical results show
that soliton solution exists for 0.76<M < 1.106. However,
for α = 0.1, soliton solutions exist for 0.9< M < 1.525 and
for α = 0.2, the range of Mach numbers for which soliton
solution exists is 1.07< M < 2.172 for the above mentioned
parameters. This implies that the Mach number regime in
which soltions can exist gets modified with the inclusion of
non-thermal electron distribution. In the presence of non-
thermal electron population, the soliton can exist for larger
soliton speeds or Mach numbers.

Figure 2 shows the comparison of the soliton profiles for
the Maxwellian (α = 0) and non-thermally (finiteα) dis-
tributed electrons for Mach number,M = 1.1 and cold to hot
electron temperature ratio,Tc/Th = 0.01. It can be seen from
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Fig. 2. Figure 2 shows the comparison of soliton profiles for the
Maxwellian (α = 0) and non-thermally (α = 0.1, 0.15) distributed
electrons forM = 1.1. Other parameters are the same as in Fig. 1.
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Fig. 3. Figure 3 shows the variation of soliton profiles for various
values ofTc/Th as shown on the curves forM = 1.1 andα = 0.1.
Other parameters are same as in Fig. 1.

the figure that amplitude of the solitons decreases as the pop-
ulation of the non-thermally distributed electrons increases.
For the parameters of Fig. 2, soliton solutions do not exist
beyond an upper limit ofα = 0.225.

Figure 3 shows the variation of soliton profiles for the
non-thermally distributed electrons for different values of
Tc/Th as shown on the curves forα = 0.1 and Mach num-
ber,M = 1.1. The amplitude of the solitons decreases with
the increase inTc/Th ratio and there exist an upper limit of
Tc/Th = 0.142 beyond which the soliton solutions are not
found.
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4 Discussion

The choice of non-thermal distribution for energetic elec-
trons used in our model is due to its convenience rather than
as a precise fitting model of what is observed. It must be
emphasized here that the inclusion of non-thermal electrons
leads to the reduction in amplitude of the soliton and increase
in the range of Mach numbers, for which the soliton solution
exists. The electron acoustic solitons do not exist for when
eitherα > 0.225 orTc/Th > 0.142 for the parameters consid-
ered here.

For the parameters representative of auroral zone condi-
tions, we obtain only negative electron-acoustic solitary po-
tential structures in an unmagnetized plasma consisting of
cold and non-thermally distributed electrons and ions. The
normalized electric field amplitude,dφ/dξ of these struc-
tures can be obtained by numerically integrating Eq. (7).
The absolute value of the electric field comes out to be in
the range of 2–100 mV/m, while the observed amplitude can
reach up to several hundred mV/m. The soliton velocities can
be obtained from the range of Mach numbers for which the
soliton solutions are valid and are found to be in the range of
4000–6000 km/s corresponding to the hot electron tempera-
ture of 100 eV. From Figs. 2 and 3 the soliton width is found
to be in the range of 10–150 m. There is qualitative agree-
ment between the predicted amplitudes, speeds and widths of
the solitons and the observed solitary waves by POLAR and
FAST spacecrafts. However, there is an important difference
between the predictions of simple model discussed here and
the observations in the sense that whereas the model predicts
negatively charged potential structures, the observed solitary
structures have positive potential.

Berthomier et al. (2000) have shown the existence of pos-
itive potential structures in a four component electron-beam
plasma system, in small amplitude limit and in a very limited
range. Therefore it is necessary to include an electron beam
in the analysis to get the positive potential structures to bring
the model closer to observations. This is beyond the scope of
the present paper. It will be included in the further work on
electron-acoustic solitary waves.

We have presented a simple 1-D model for the electron
acoustic solitons. The stability of solitons in 2-D and 3-D
needs to be examined. Recently, Berthomier et al. (2003)
have developed a model of 3-D electrostatic structures. They
have shown that in small amplitude limit, 3-D shape of the
fast-moving coherent structures can be produced by non-
linear fluid model of 3-D electron-acoustic beam solitons.
At FAST altitudes the model predicts spheroidal structures
while at higher altitudes it predicts solitary waves elongated
across the magnetic field.

Useful information about the life-time of the electron-
holes and ion heating is provided by the 2-D and 3-D particle
simulations of the electron-beam driven instabilities(Omura
et al., 1999; Goldman et al., 2000; Singh et al., 2001b). 3-D
simulations of the electron-beam driven electron holes reveal
that initially a large number of electron holes are formed.
They continuously merge with each other and at a later time,

only few electron holes are left and they decay by emit-
ting low-frequency electrostatic whistler waves just above
the lower hybrid frequency (Singh, 2003). Recently, Muschi-
etti et al. (2002) have given a 3-D Bernstein-Greene-Kruskal
(BGK) model to explain stretched solitary waves along the
magnetic field lines observed in the downward current re-
gions of the auroral zone. A full kinetic theory would be
required to explain all features of the observed solitary struc-
tures.
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