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Abstract. In the framework of the canonical model of hy- tremely large and steep ocean breaking waves imposes a haz-
drodynamics, where fluid is assumed to be ideal and incomard to fishing boats, ships, and off-shore oil facilities. To
pressible, waves are potential, two-dimensional, and symunderstand physical mechanisms that give rise to extreme
metric, the authors have recently reported the existence of areaking waves and to model them correctly it is necessary to
new type of gravity waves on deep water besides well studiedjain detailed knowledge of the form and dynamics of steep
Stokes waves (Lukomsky et al., 2002b). The distinctive fea-water waves.
ture of these waves is that horizontal water velocities in the The canonical problem about the propagation of surface
wave crests exceed the speed of the crests themselves. Suglves on deep water (see Sect. 2) was the first essentially
waves were found to describe irregular flows with stagnationnon-linear problem in hydrodynamics. Its analysis during
point inside the flow domain and discontinuous streamlinesaimost two hundred years gave the origin to many fields of
near the wave crests. non-linear dynamics such as solitary waves, modulation in-
In the present work, a new highly efficient method for stabilities, strange attractors, etc. Stokes (1847) was the first
computing steady potential gravity waves on deep water isvho considered surface waves of finite amplitude (Stokes
proposed to examine the character of singularity of irregularwaves). Small amplitude waves are sinusoidal. As the
flows in more detail. The method is based on the truncatedvave amplitude grows, the crests become steeper and sharper
fractional approximations for the velocity potential in terms whilst the troughs flatten. Stokes (1880) conjectured that

of the basis functions /{1 — exp(yo — y — ix))", yo be-  such waves must have a maximal amplitude (the limiting
ing a free parameter. The non-linear transformation of thewave) and showed the flow in this wave to be singular at
horizontal scaler = x — ysiny, 0 < y < 1, is addi-  the crest forming a 120corner (the Stokes corner flow).

tionally applied to concentrate a numerical emphasis on theviuch later, Grant (1973) suggested that this singularity, for a
crest region of a wave for accelerating the convergence of thgvave that has not attained the limiting form, is located above
series. For lesser computational time, the advantage in accuhe wave crest and forms a stagnation point with streamlines
racy over ordinary Fourier expansions in terms of the basisneeting at right angles. Longuet-Higgins and Fox (1978)
functions exjn(y + ix)) was found to be from one to ten proved this numerically after extending Stokes flows analyti-
decimal orders for steep Stokes waves and up to one decimahlly outside the domain filled by fluid. The following ques-
digit for irregular flows. The data obtained supports the fol- tion resulted: why the flow in the limiting Stokes wave has
lowing conjecture: irregular waves to all appearance reprethe 120 singularity instead of the 90one, as in any wave
sent a family of sharp-crested waves like the limiting Stokeswith lesser amplitude? Because of this Grant (1973) conjec-
wave but of lesser amplitude. tured that a continuous approach to the limiting amplitude is
possible only if the Stokes corner flow has several coalesc-
ing singularities. However, it has not yet clear where these
multiple singularities arise from.

From old times the wave motion of the ocean bewitched and A new era in developing the theor.y O.f steep gravity waves
extremely attracted the attention of mankind. Up to now theStartEOI from the work of Longuet-Higgins (1975), where he

problem of understanding specific features of water Wavegoun(iljthat many <c:jharacter|tst|cs of gratwty wa:ve_s, fsucr:_ as
and their modelling represent a real challenge both from sci-s’?(;:e » ENergy, alr']t (;nomen um, are nodr:onosotnlli: unt(): |tonts
entific and engineering points of view. Occurrence of ex- 0! the wave ampliude, as was assumed from S1okes, but at-

tain total maxima and then drop before the limiting wave
Correspondence tov. P. Lukomsky (lukom@iop.kiev.ua) is reached. Longuet-Higgins and Fox (1977) constructed
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asymptotic expansions for waves close to the°i@@sped used truncated Fourier expansions for the velocity poten-
wave (almost highest waves) and showed that these depefial and the elevation of a free surface in the plane of
dences oscillate infinitely as the limiting wave is approached.spatial variables (a physical plane). Debiane and Kharif
Nevertheless, strict numerical verification of such oscilla- (see Gandzha et al., 2002) confirmed the existence of ir-
tions seems to be a real challenge up to the present timagegular waves using inverse plane Longuet-Higgins method
with only the first relative maximum and minimum having (Longuet-Higgins, 1986), where the spatial coordinates are
been thoroughly investigated (see, e.g. Longuet-Higgins andepresented as Fourier series in velocity potential and stream
Tanaka, 1997). function, the corresponding coefficients being evaluated by
Tanaka (1983) showed that gravity waves steeper than theolving quadratic relations between them. Finally, Clam-
wave with maximal total energy become unstable with re-ond (2003) also obtained irregular flows by applying his new
spect to two-dimensional disturbances having the same peenormalized cnoidal wave (RCW) approximation. In spite
riod as an undisturbed wave (superharmonic instability). Jil-of this progress, irregular waves at present are only approxi-
lians (1989) investigated the form of such instabilities andmate and not enough accurate numerical solutions. The fol-
showed that they lead to wave overturning and breakinglowing question has to be answered then: what are the form
The conjecture was made that wave breaking is a purely loand properties of irregular wave when its numerical error
cal phenomenon around the wave crest which, in the casganishes, that is, what real physical solutions do irregular
of spilling breakers and more gently plunging breakers, oc-waves approximate?
curs independently of the flow in the rest of a wave. Pro- Ordinary Fourier expansions used by Lukomsky et al.
ceeding with this idea Longuet-Higgins and Cleaver (1994)(2002a) become not efficient enough for approximating ir-
and Longuet-Higgins et al. (1994) suggested that superharegular waves and even Stokes waves close to the limiting
monic instability results in the crests of almost highest Stokesone due to slow descending of the Fourier coefficients. Thus,
waves to be unstable (crest instability). Longuet-Higgins anda more efficient method is necessary for these tasks. Up
Tanaka (1997) strongly supported the conclusion that superto now the most precise and efficient way for calculating
harmonic instabilities of Stokes waves are indeed crest instathe properties of two-dimensional surface waves is Tanaka’s
bilities. Finally, Longuet-Higgins and Dommermuth (1997) method of the inverse plane (see Tanaka, 1983, 1986). The
showed that crest instabilities lead (i) to wave overturningkey idea of his method is to map the inverse plane into a
and breaking or (ii) to a smooth transition of a wave to aunit circle by means of the Nekrasov transformation. Then
lower progressive wave having nearly the same total energyboundary conditions are transformed to an integral equation,
followed by a return to a wave of almost the initial wave which is solved iteratively. The accuracy of obtained solu-
height. The latter fact generated a new question: what is the¢ions is drastically improved by concentrating a numerical
nature of such a transient phenomenon? A possible explana@mphasis on the crest region using further transformation of
tion would be found if superharmonic instability resulted in variables. As a result, Tanaka’s method is the only one be-
a bifurcation to a new solution, as usually takes place in non4ing capable of evaluating the second maximum of the phase
linear dynamics. However, up to this time it was assumedspeed and even further higher order extremums. In spite
that the Stokes solution is unique and free of bifurcations inof all the advantages of Tanaka’s method and his program,
keeping with the uniqueness argument of Garabedian (1965where it is implemented, we are interested in improving the
The only bifurcation known to occur is the trivial one of a methods of the physical plane since they can be applied for
pure phase shift at the point of energy maximum (Tanakacalculating 3-D waves as well and can be generalized to the
1985). case of non-ideal and compressible fluid, in contrast to all the
The above results are all related to Stokes waves, for whiclinverse plane methods.
the speed of fluid particles at the wave crests is smaller than Thus, the purpose of this paper is to present a new method
the wave phase speed, equality being achieved for the limitin the physical plane for calculating two-dimensional poten-
ing wave only. Thus, the traditional criterion for wave break- tial steady progressive surface waves on the fluid of infinite
ing is that horizontal water velocities in the crest must ex- depth (see Sect. 3). The method is based on the fractional
ceed the speed of the crest (Banner and Peregrine, 1993Fourier approximation for the velocity potential recently in-
Lukomsky et al. (2002a,b) have recently provided evidencetroduced by the authors (Gandzha et al., 2002; Lukomsky
(although numerical and not completely rigorous) for the ex-et al., 2002c) and the non-linear transformation of the hori-
istence of a new family of two-dimensional irrotational sym- zontal scale for concentrating a numerical emphasis near the
metric periodic gravity waves that satisfy the criterion of wave crest. The first term of such a fractional Fourier ap-
breaking. A stagnation point in the flow field of these waves proximation was independently derived by Clamond (2003)
is inside the flow domain, in contrast to the Stokes waves ofand was called a renormalized cnoidal wave approximation.
the same wavelength. This makes streamlines exhibit discon- In Sect. 4, fractional Fourier approximations are applied
tinuity in the vicinity of the wave crests, with near-surface for calculating regular and irregular flows. In Sect. 4.1, great
particles being jetted out from the flow. Because of this suchnumerical advantage of fractional approximations over or-
waves and flows were called irregular (in contrast to regulardinary Fourier approximations is demonstrated when cal-
Stokes flows). culating almost highest Stokes waves. Although the accu-
To calculate irregular flows Lukomsky et al. (2002a,b) racy of the results is still less than the ones obtained us-
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ing Tanaka's method, proposed fractional Fourier approxi- YA

mations have a potential to become almost as effective as the N

method of Tanaka. An additional set of stagnation points

is found to exist above the crest area of Stokes waves suf. A 0 X
porting the conjecture of Grant (1973) that the 13thgu- J =)

larity of the limiting wave is formed of several coalescing
90r singularities. In Sect. 4.2, the profiles of irregular waves
are demonstrated to reveal the Gibbs phenomenon usuall
taking place when a discontinuous function or a continuous
function with discontinuous derivatives are approximated by _.

. . . Fig. 1. The laboratory frame of reference.
continuous truncated Fourier series. Moreover, even regu-
lar Stokes waves very close to the Stokes corner flow are

also demonstrated to exhibit the similar Gibbs phenomenon once the velocity potential and the wave phase speed are
in accordance with the observation of Chandler and Grahankngwn, particle trajectories in the wave related frame of ref-

(1993). The data presented resulted in the following assumpgrence (streamlines) are found from the following differential
tion: irregular waves are very likely to approximate a family equations:
of sharp-crested waves like the limiting Stokes wave but of

lesser amplitude. Concluding remarks are given in Sect. 5. d_‘j =dg 0, y)—c, 2_? =, (6, y); (5)
Each streamline is characterized by a constant value of a
2 The canonical model stream functiony (6, y) in the wave related frame of ref-

erence. The velocity potential and the stream function
Consider the dynamics of steady potential two-dimensional¥ (¢, y) = ¥(¢, y)+cy in the laboratory frame of reference
periodic waves on the irrotational, inviscid, incompressible are connected by means of the Cauchy-Riemann conditions:
fluid with unknown free surface under the influence of grav- . _
) , : Dy =W,; &, =Yy (6)
ity. Waves are assumed to propagate without changing their
form from left to right along thec-axis with constant speed This makes possible introducing the complex poteriiiat=
c relative to the motionless fluid at infinite depth (see Fig. 1). ® + i ¥ so that
Grawtly waves and rglated fluid flows are governed by the<I> — —ic(R—R*), W=c(R+R*), Ry=iRy: )
following set of equations
whereR = iW*/2¢c, * is the complex conjugate. In terms of

Ppp + Dyy =0, —0c0 <y <nb); (1) the complex functiorR (9, y), the dynamical and kinematic
(c — D)2+ D2+ 27 =2, y=n0): ) boundary conditions (2), (3) are as follows:
3 ) ;
(c—=Pg)ng + Py =0, y=n(); 3) ic? (Ro — R}) + ZCZRQRZ +n=0, y=n(); (8)
Py =0, d, =0, y =—o0; (4) R, n)+ R*(0, n) —n=0. 9)

Since the velocity potential and the stream function are de-
fined to within an arbitrary constant the integration constant
in Eq. (9) is included into the stream function to make= 0

at the free surface. Theh|,_,@) = ¢ij = 0 and the stream
function at infinite depthV'|,—_, = ¢ — I, where

wheref = x — ct is the wave phaseh (0, y) is the velocity

potential (the velocity is equal v ®), n(0) is the elevation

of the unknown free surface, andis the upward vertical

axis such thay = 0 is the still water level. Herein Eqg. (1)

is the Laplace equation in the flow domain, Eq. (2) is the dy-

namical boundary condition (the Bernoulli equatichis the 2 1)

Bernoulli constant), Eq. (3) is the kinematic boundary con- 1 =

dition (no fluid crosses the surface), Eq. (4) is the condition I'=s / do / P00, )dy =W ly=p@) —W ly=—co -

that fluid is motionless at infinite depth. The dimensionless 0 -

variables are chosen such that Iength and time are norma|5 the wave impu'se averaged over the period_ The quantity

ized by the wavenumbérand the frequency/gk of alinear  kx — /¢ is the mass flux transferred by a wave over the

wave, respectively being the acceleration due to gravity. In period and is called the Stokes flow.

this case, the dimensionless wavelengts 2. In addition to the Laplace equation and the boundary con-
When the total mass of the fluid is assumed to remain unditions, an initial condition should be assigned. Since the

changed the wave mean level coincides with the still watercanonical model is energy conservative, the wave total en-

level, thatisy = O, the overdash designating averaging overergy can be used instead to characterise wave properties.

the wave period. The Bernoulli equation then results in theFor this purpose, however, the crest-to-trough heighor

Levi-Civita relationg2 = 0, whereg? is the squared velocity the wave steepness = H /A are the more convenient pa-

at the free surface in the frame of reference moving togetherameters since they monotonously increase starting from lin-

with the wave (the wave related frame of reference). ear waves up to the limiting configuration. Thus, using the
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Egs. (1), (8), (9), (4) of the canonical model the following Eq. (11), expansions (10) and (12) are equivaleX at co
quantities are to be found as the functions of the wave steepand the convergence of (12) follows from the convergence
nessA: the complex functiorR (9, y), the elevatiom () of of Eqg. (10). For finiteN andyp ~ 1, however, a fractional
the free surface, and the wave phase speed Fourier expansion converges much more rapidly than an or-
dinary Fourier expansion. The reason is that a finite number
of terms in Eq. (12) always corresponds to an infinite num-
ber of terms in Eq. (10) that is especially important for waves
with sharpening crests.

The zero constant term in expansions (12) and (10) is de-

When working in the plane of spatial variables the solutionsfined by the value of the stream function at infinite depth:

3 The method for obtaining solutions

3.1 Fractional Fourier approximations

to the Laplace equation (1) in the flow domain are usually 1 1
looked for as the following truncated Fourier series ag =& = % Vy——oo = > n — K). (14)
C
N
R®, y) = ZS” exp(n(y+i0)). (10) Expansions (12), (10), and, in general, any function
=0 R(@®, y) = R(y + i9) all satisfy the Laplace equation (1)

| exactly. The latter fact was also used by Clamond (1999,
2002a,b) for calculating steep gravity waves. Fourier ex-2003) (for finite and infinite depth, respectively) to introduce

pansions (10), however, become ineffective for steep wave? renormalization principle that allows reconstructing the ve-

with sharpening crests close to the limiting wave due to slow ocity potential in the whole domain once the velocity po-

descending of the Fourier coefficients. Because of this Weten_ual at the bottom '(or any other Igvel) 'S known. _By ap-
lying such renormalization to the first-order periodic solu-

proposed (Gandzha et al., 2002; Lukomsky et al., 2002c) Y . . .
more effective set of functions to expand the velocity poten-tIOn of KdV equation Clamond (2003) obtained the velocity

tial on the basis of the following Euler formula (see Ham- potential pelng exactly_ the same to the first te_mch € 1) .
of expansion (12), which he called a renormalized cnoidal

This approach was applied by the authors (Lukomsky et al

ming, 1962) wave (RCW) approximation. There may be other possibili-
s I n ties to improve ordinary Fourier expansion (10) besides the
ZU” © = Z (1 _ Z_1)"’ proposed fractional expansion (12). However, one should ad-
n=1 n=1 ; ditionally assure the convergence of series that makes con-
¢, = Z (_1)nlc:llizlo,nl, (11) structing such generalized expansions much more difficult.
el One can see from the expansion of derivatives
C,* being the binomial coefficients. By choosin@, y) = N1
exp(y — yo +i6); o, = &, exp(nyo) the following one-  Ry(0, y; yo) = —iRg = Z BuT" (0, y; yo),
parametric expansion for the velocity potential is obtained n=1
after truncating the series: Bn = na, — (n — Da,—1 €Xp(—yo), (15)
N in which follows directly from Eq. (12), that the boundary con-
R(®. y: yo) = Z (1—exp(o—y — )" dition at infinite depth (Eq. 4) is also satisfied exactly.
n=0 Hereafter, only the symmetric waves are considered. In
_ i o this case, the coefficients, andg, are real (in general, they
=5 (exp(—yo) — exp(—y — iG))" are complex numbers for nonsymmetric waves). After taking
v into account expansions (12) and (15) the boundary condi-
— T, y: yo), (12) tions (8), (9) at the free surface attain the following form:
n=0 N+1
T®, y; yo) = (eXp(—yo) — exp(—y — i6)) ™, (13) 202(2 B, RE(T™) —
where the normalized coefficientg = ¢, exp(—nyo) were 1\::1N+1

introduced to overcome infinite exponents)at — oo; _ Re(T"MT* 12)) — —1n): (16
ap = &. Approximation (12) shows a formal correspon- n;ln;lﬂnlﬂ"z & )> ny=n@:; (16)

dence with Pag-type fractional approximates. Because of N

thls ,\,Ne pallgd expansion (12) a “fractional Founer expan- 5 Z o, RE(T™) — 1 =0, y = 7(6). (17)
sion”. Itis singular in a countable number of isolated points
y = yo, 0 = 2k, k € Z, their location being determined
by a free parameteyy. Singular points are to be located  Note that Egs. (16) and (17) &t — oo are equivalent to
outside the flow domain for calculating potential waves. At boundary conditions (8) and (9), in the class af-geriodic

yo = oo, fractional Fourier expansion (12) reduces to or- functions (subharmonic waves with multiple periods are not
dinary Fourier expansion (10) with, = (—1)"«,. Due to  taken into account in expansions 12).

n1=0
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3.2 Nonlinear transformation of the horizontal scale 8y, n, 1S the Kronecker delta. The coefficiemg'l) and

- "2 are the Fourier harmonics of the functions(R&t)
To solve boundary conditions (16) and (17) one should assigmng Rg7717* "2), respectively:

an appropriate approximation to the unknown elevagica

n(0) of the free surface. In the plain of spatial variables, the ) 1 2
. . niy) _ _— ni 7
Fourier series Y = Zn/Re(T (000, n(x))) exp(—iny)dy,
o) 0
nO)= > 1n €Xind), n-n =1, (18) i
n=-e0 gl m2) — Z/Re(T”lT* "2) exp(—iny)dx. (23)
are often used. Note that the collocation method can be 0

used instead but it is less efficient than expansion (18) (Se§pey were calculated using the fast Fourier transform (FFT).

Lukomsky et al., 2002b). The mean levgk= 1o should be  tha'7er0 termg and, therefore, the Stokes flokvare found
zero for exact solutions. For approximate solutions (when the&om the kinematic equations (22)at= 0:

series are truncated)p becomes nonzero due to Levi-Civita

relation not being held exactly and can be used to estimate 1 ) W) g _7 o
the precision of approximate results. %0 = 5" > omig™. K =17 — 2.

Adequate description of sharpening profiles close to the m=1

limiting one requires taking into account excessively large The truncation of Egs. (21), (22) was chosen for the fol-
number of modes due to extremely slow descending of thdowing reasons. Since the set of kinematic equations (22)
Fourier coefficients. This highly restricts practical applica- is linear over the coefficients, (» = 1, N), they can be
tion of Eq. (18). The following non-linear transformation found in terms of the harmonio;é”) without using dynami-

of the horizontal scale originally suggested by Chen andcal equations (21). To proceed in such a way, it is sufficient

N
(24)

Saffman (1980) to take into account only the firgt kinematic equations.
. , Then the restM + 1 variablesc, n(()"), 2 (= 2, M)
00 y)=x—ysinx, 0<y <1 (19)  are found from dynamical equations (21). The last un-

. R - ) ;
allows overcoming this difficulty by stretching wave crests to known parameten,”” is determined by the wave steepness

a more rounded configuration. As a result, the Fourier serieg! = ((0) — 1(m)) /27 as follows

[(M-1)/2]
M v _ T, »)
NG vy =y 0 exping), %) =nl, (00 " =4 2; Tent1 (29)
n=—M n=

. . . _the square brackets designating the integer part. Since the
in the x-space with stretched crests are much more efﬁmen(mave steepnesa is an integral characteristic, some wave
(Lukomsky et al., 2002c). Due to nonlinear transformation

properties may be missed when using it as a governing pa-
(Eq. 19) any finite numben/ of the coefficientsn,(,”).qt rameter. Thus, we additionally use the first harmopicof
v # 0 corresponds (o infinite number of the coefficients the elevation in the-space (a spectral characteristic) as an
n. = ny) in ordinary Fourier seriesy( = 0), the associ-  independent variable instead of the wave steepness. In this
ated relations being presented in Appendix A. Thus, the rolesgse  the first harmonie!”” in the x-space is expressed in

of the parametey for the series (Eqg. 18) in horizontal co- terms ofny and the rest of the harmoni@é”) (n = 2. M)

g;criilgg\t(egqlslt (r)])e ir??/rgrii(t:(;\Itzﬁor%?ng;ethe parameggfor the by means of the expression (Al)at= 1 instead of Eq. (25).

' The set of Egs. (21), (22) was solved by Newton’s method,
the Jacoby matrix being given in Appendix B. Starting values
for new calculations were taken from previous runs. For large

By means of Eq. (20) the boundary conditions (16), (17) at€noughN and M, the Jacoby matrix was found to become
the free surface are reduced to the following system of nonbadly conditioned. Because of this the program realization

3.3 Numerical procedure

linear algebraic equations was_implemented in art_)itrary precision computer arithmetic.
For instance, computations &t= 150, M = 2.5N demand
D, =c2d, — ) =0, n=0, M; (21) 160-digit arithmetic that is ten times more accurate than the
N machine one. Note that such a run is equivalent in computer
K, =2 Z ) — =0 n=1 N; (22) timeto arun withV = 250, = 4N gsing ordinary Fgurier
P approximations and because of this takes approximately 4
times lesser computer memory.
where The truncation numberd and M are chosen for the fol-
N1 N4l lowing reasons. By fixing the numbe¥ in expansion (12)

d =2 B (,(nl) _ Bup(2 = Sy, ny) tIM0 n2)>, an approximate configuration of the velocity potential is as-
" nlz:1 B nz:Z,,l " e nrn signed. To find out a proper truncation of the series (Eq. 20)
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for the elevation associated with this configuration, the num- The horizontal and vertical accelerations of fluid particles
ber M should be increased until the revision of solutions for are as follows:

greaterM becomes less than chosen accuracy. Then the pre-,
cision to which boundary conditions (9) and (8) are satisfied 97 = Dpy (Pg — ¢) + Dy Py,
defines the absolute errors connected with a truncation of thed?

potential and elevation, respectively. Absolute errors of thed?y _

dynamical and kinematic conditions divided by the constantdr2 — ©yo (Pg =) = Dop ©y3 (30)
terms contained in these equations, that is, the Bernoulli con-

stantc? and the Stokes flov , respectively, produce the cor- where

responding relative errors. The overall relative erfomax N+2

of an approximate solution is agreed to be the maximal rel-®gs (0, y) = —2c Y _ i, IM(T" (0, ¥)): (31)
ative error in boundary conditions (8) and (9) all over the n=1

wave period. To obtain a solution close to the exact one, N+2

one should gradually increase the numNechoosing every ~ ®y0(0, ¥) = 2c Y 11, R(T" (0, ¥)); (32)
time a proper value oM, until overall desired precision is n=1

achieved. In a majority of calculations, it was sufficient to Un = nfn — (n — 1)Bp_1€Xp(—yo0).

use the approximatiod = 2.5N or lesser ones. . .
PP The Stokes flowk, the wave impulsd, and the wave ki-

The numerical scheme proposed operates with two paraMsetic energyExi, are as follows (see Cokelet, 1977, for ki-
etersyp and y. Decreasingyp from yg = coto yg ~ 1 netic energy):

accelerates the convergence of the fractional Fourier expan-
sion (12) for the velocity potential, lessarbeing necessary g = ng — 2ag, I = K¢, Exin = cl/2; (33)
to retain the same accuracy. Increasingrom y = 0 to
y = 1—¢, ¢ — 0 accelerates the convergence of the expanwg andng being determined from relations (14) and (Al),
sion (20) for the elevation, less&f being necessary to retain respectively.
the same accuracy. These two processes, however, should The wave potential enerdy is calculated as follows:
be carried out simultaneously. Using the fractional Fourier
expansion (12) without the transformation of the horizontal 1 2”1 1 M
. . 2 ()2 ()2
scale (19) was found to deteriorate the convergence of serie§ = — [ = n°(x) dd = =(ng”")" + Z ()= (34)
. . . ; 27 ) 2 2 —
(18) and, vice versa, using the transformation of the horizon- 0 n1=1
tal scale without the fractional Fourier expansion was found y M
to deteriorate the convergence of expansion (10), with only §<,7(<)V) ,,(17”) + Z ,7,(1?;)(,727;)_1 + ,,1(17111))
slight overall benefit having been achieved. On the contrary, ni=1
using the fractional Fourier expansion in combination with
the nonlinear transformation of the horizontal scale proved _
to be highly efficient (see Sect. 4). 4 Regular and irregular flows

: . 4.1 Stokes flows
3.4 Physical quantities

The dependence(A) of the phase speed of almost highest
Once the coefficients,, 5’ and the wave phase speedre ~ Stokes waves on their steepness calculated using fractional

found, a variety of wave characteristics can be calculatedFourier approximations is shown in Fig. 2 by the branch 1-2-

The velocity potential, stream function, and the horizontal 3-6- And the corresponding dependemcg,) of the phase
and vertical velocities of fluid particles are as follows: speed on the first harmonic of the elevation is presented in

Fig. 3 by the branch 1-2-3-4-6. The corresponding points
of extremums in phase speedthe first harmonia;;, and

N :
_ n . steepnesd are presented in Table 1.
®O. )= ZCV;O{” Im(7" . ¥)); (26) The advantage of fractional Fourier approximations over
N ordinary Fourier approximations is well seen from Table 2.
v, y) = ZCZ“” Re(T"(©, y)); (27)  There, the values of the wave phase speeshd the mean
=0 water levelng calculated using these two approaches are
Nl presented at different values of the wave steepnesgp
Dy (0, y) = 2c Z Bu Re(T"(Q’ y)); (28) to the limiting value. The deviation afp from zero pro-
n=1 vides an estimation of the precision of approximate results.
N+1 The maximal relative errorBryax Of corresponding approx-
d,(0, y)=2c Z Bu Im(T"(@, y)); (29) imate solutions are also presented for analysis. One can see
n=1 from the relative errors that the benefit from using fractional

Bn = na, — (n — Va1 €Xp(—yo). Fourier approximations with parameters chosen varies from



V. P. Lukomsky and I. S. Gandzha: Fractional Fourier approximations 605

ten decimal orders foA = 0.14 (= 99.25% of the limit- It is not clear, however, how a 12@orner at the crest of
ing steepness) to one decimal order for= 0.141064 (al- the limiting Stokes wave is continuously formed from & 90
most the limiting steepness). After taking into account that asingularity that is inherent any flow at lesser amplitude. In
run using fractional Fourier approximations with = 120, view of this, Grant (1973) suggested that a 12hgular-

M = 2.5N needs approximately.2 times lesser computer ity should be formed from several coalescing singularities.
time and approximately 10 times lesser computer memoryThe flow field shown in Fig. 4 at = 0.14103 provides an

than a run using ordinary Fourier approximations with= insight where these multiple singularities arise from. One
250, M = 4N, the advantage of fractional approximations can see that two additional symmetric’lagnation points
becomes doubtless. O, and O; exist above the wave crest at some distance from

Nevertheless, the results presented for the values of steephe vertical axis. These lateral stagnation points also exist
ness beyond the first minimum of(A = 0.14092) are still at A = 0.14092 (and apparently at any lesser steepness) but
less accurate than the ones obtained from Tanaka'’s progranaye located outside the plot region in Fig. 4. Moreover, the
which are also included into Table 2 for comparison. This points O, and O; are only the first ones in a whole set of
is also well seen from Fig. 2, where the second maximumsimilar stagnation points located almost equidistantly in hor-
of ¢ (A = 0.141056, the point 5) was obtained only using izontal coordinate and having almost the same vertical po-
Tanaka’s program. The fractional Fourier approximation atsition at fixedA. As the wave steepness is increased, the
yo = 0.9 is sufficient to obtain the second maximums:af  points O, and O; move towards the central stagnation point
(the point 4 in Fig. 3), but not sufficient to trace the second O, the distance between all the stagnation points decreas-
maximum ofc. The reason is that the valyg = 0.9 used is  ing. Note that although the flow field in the domain filled
optimal for the steepness corresponding to the first minimunby fluid and the position of the stagnation podtin Fig. 4
of ¢, yet lessenyg being necessary for greatdrto improve  are accurate enough, numerical accuracy sharply drops in the
the precision of fractional Fourier approximations. However, region, where the stagnation points and O; are located.
using the present computer realization of the method the auThe flow field in this area has not been stabilized yet with
thors failed to accomplish this task due to unsatisfactory contespect to improving accuracy. As numerical accuracy is in-
vergence of their numerical algorithm feg < 0.9. If this creased at fixed, the lateral stagnation points all move to-
problem could be resolved fractional Fourier approximationswards the vertical axis, their vertical position remaining al-
in the physical plane would have a potential to become al-most unchanged. Therefore, they may finally settle down at
most as effective as Tanaka’s method in the inverse plane. the vertical axis above the stagnation paintFurther inves-

The flow field in Stokes waves is regular, that is, fluid par- tigation is necessary to verify this assumption. Nevertheless,
ticles move slower than the wave itself all over the flow do- the existence of a set of additional stagnation points, which
main. In the Stokes corner flow only, the fluid particle at approach the central stagnation painas the steepness is in-
the wave crest moves with velocity equal to the wave phasereased, makes us expect that a°1gularity in the Stokes
speed and, therefore, is motionless with respect to the wavecorner flow is indeed formed from several (probably an infi-
Because of this such points in the flow field are called thenite number of) coalescing 9&Gingularities supporting the
stagnation points. For all the Stokes waves other than theonjecture of Grant (1973).
limiting one, a stagnation point is located outside the flow do-
main, as was at first shown by Grant (1973). The examples oft.2 Irregular flows
such regular flows mapped outside the domain filled by fluid
are presented in Fig. 4 for = 0.14092 andA = 0.14103.  Lukomsky et al. (2002b) have numerically revealed a new
The streamlines coming to/from the stagnation paéintthe  type of flows, where fluid particles move faster than the wave
separatrices) meet at right angles in accordance with the retself in the vicinity of the wave crest due to the stagnation
sults of Grant (1973) and Longuet-Higgins and Fox (1978).point located inside the flow domain. Because of this such
This is the general rule provided that the stagnation pointflows and waves were called irregular.
and the wave crest do not merge (see Appendix C for de- Irregular waves can be traced continuously from regular
tails). One can see from Fig. 4 that as the wave steepness Btokes waves in the following way. It is more natural to sug-
increased fromA = 0.14092 toA = 0.14103 the wave crest gest that the point of the maximal (limiting) steepnéssx,
becomes sharper, the stagnation painind the crest ap- where the Stokes branch breaks (the point 6 in Fig. 2), is a
proaching each other. The downward and upward horn-likeurning point of the dependencéA) rather than a breaking
separatrices incoming to and outcoming from the stagnatiorpoint as was assumed before. To proceed to a new branch
point O, respectively, become steeper and attain the vertica{which we called irregular) emanating from the poiyhax
tangent closer to the vertical axis. In the limiting case, whenone should simply use another governing parameter that does
the stagnation point and the wave crest completely mergenot have an extremum at the turning point, e.g. the first har-
these two separatrices should come together and form a vemonic n; of the wave profile (the wave speedand many
tical line, where the upward and downward streamlines coin-other parameters can be used as well). By tuning this pa-
cide. This provides a simple illustration how a vertical cut of rameter continuously starting from almost limiting Stokes
the complex plane in the Stokes corner flow shown in Fig. D1waves one automatically proceeds to the irregular branch via
(see Appendix D) is formed. the limiting point 6 as is seen from the dependengg) in
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C 4 ——— — Fourier approximations N = 120;
1 yo=1,0.9, 0.895; y=0.88+0.92

- — the method of the inverse plane
(Tanaka’s program)
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Fig. 3. The dependence of the phase speefisteep surface waves on the first harmoniof their profile.

Fig. 3 (the curve 4-6-7). As the limiting point 6 is passed in and M, although fractional approximations (Eq. 12) in com-
this way, the wave steepnedsan again be used as a govern- bination with non-linear transformation (Eq. 19) are up to
ing parameter to obtain the whole irregular branch 6-8 showrone decimal order more accurate than ordinary Fourier ap-
in Figs. 2 and 3. proximations (Eq. 10) when calculating irregular waves. The
While moving along the irregular branch away from the loop in Fig. 2 still enlarges with increasiny, the cross-
limiting point 6 the accuracy of approximate solutions at section point with the Stokes branch moving to the left. On
fixed N andM drops since the stagnation point settles downthe contrary, the irregular branch 6-7-8 in the dependence
deeper into the flow domain. Because of this the branches(n1) (see Fig. 3) approaches to the regular branch 1-2-3-4-6
corresponding to irregular flows in Figs. 2, 3 have not yet sta-as accuracy is increased. Moreover, the dependeriegs
bilized with respect to increasing the truncation numbérs andc(n1) should actually be much more complicated near
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Table 1. The points of extremums in phase speedteepnessl (¢ = w A), and the first harmonigq of the profile for Stokes waves
(N =120 M = 25N, yg=0.9, y =0.92)

point extremum A e c n1
the first max ofiyq 0.1351 0.424429 1.0909437483 0.1799822
1 the first max ot 0.13875 0.435896 1.0929513818 0.1789318
2 the first min ofyq 0.14072 0.442085 1.0923021558 0.1779969
3 the first min ofc 0.14092 0.442713 1.0922768392 0.1780099
4 the second max ofy ~ 0.141055 0.443137 ~1.092288 0.1780222
5* the second max af 0.141056  0.443141 1.0922851495

6 max ofA (the limiting value) ~ 0.141064 0.443166 ~ 1.09229 0.1780216

*Results from Tanaka’s program

Table 2. The wave speed and the mean water leve, for steep Stokes waves depending on their steepidss= 7 A)*. The maximal
relative errorsE rmax Of corresponding approximate solutions demonstrate great advantage of fractional approximations over ordinary Fourier
approximations

Ordinary Fourier approximatioﬁs Fractional Fourier approximatio?ﬂs Tanaka's program
A € c 1m0 Ermax. % c 1m0 Ermax, % c
0.14 ~ 0439823 1.0926149034 —2.8.10720 38.10710 1.092614903% -2.4.107%0 29.10720  1.0926149034

0.1406  ~ 0441708 1.0923377398 —51-10713 16.107°  1.0923377499 -11.10722 32.10°1  1.0923377499
0.14092 ~ 0442713 1.09227614 -19.10°% 29.1073  1.0922768392 -2.0.10714 21.107® 1.0922768392

0.141 ~ 0442965 1.0922815 -13-108 96-107%  1.0922809 -17-101 12.10 1.0922808596
0.14103 ~ 0443059 1.0922875 —2.8-10°8 19.102  1.0922841 —22-10°10 58.107%  1.0922836847
0.141056 =~ 0.443141 1.0922966 —6.1-108 24.102  1.0922877 —26-109 25.10%  1.0922851495
0.14106 ~ 0443153 1.0922987 —7.0-10°8 26.1072  1.0922886 —42.109 33.10°%  1.0922851047
1.092287¢ -23.10% 22.10°3
0.141064 ~ 0443166 1.0923011 —81.108 28.1072  1.0922902 -90.109 52.10°3 —*
IN =250 M =4N 2N =120 M = 25N, yo =09, y =092

'The extremums in wave speed are bold-faceiv = 120 M =2N, yg=1, y =09
by =150 M = 25N, yp=09, y =092
*The maximum steepness in Tanaka’s prograr s 0.1410635

the turning point than is obtained at present since the regulaflow domain being presented as well. The stagnation point
branch is expected to have an infinite number of extremums); (where the streamlines again meet at right angles in
in ¢ andn1 in the case of being evaluated exactly. Becauseagreement with Appendix C) is now inside the flow domain
of this it is also not clear now whether there is a bifurcation in contrast to the regular flows considered in Sect. 4.1. One
to the irregular branch from the Stokes branch. Much morecan see from Fig. 5 that this stagnation point makes stream-
accurate calculations and, therefore, further improvement ofines of the irregular flow be discontinuous near the wave
the method are necessary to clarify these points and to stabérest. Because of this the wave profijl@) (that remains to
lize the position of the irregular branch. be a continuous function everywhere) does not coincide in
Thus, our main concern is that irregular flow is an ap- the region close to the wave crest with the streamjine 0
proximate solution, whose accuracy is not sufficient enoughcorresponding to a free surface. It is clear that this turns out
to make definite conclusions even when using fractional ap{o be a numerical inaccuracy. This is due to the Fourier se-
proximations. Nevertheless, some progress was achieved. ries (Eq. 20) fom(6) being a single-valued smooth function,
Consider the example of the irregular flow calculated us-which represents an integral characteristic of the flow. On
ing fractional Fourier approximations @t = 0.14092 and the contrary, the stream functiah(9, y) represents a local
shown in Fig. 5, with the streamlines mapped outside thecharacteristic of the flow and is not obligatory a single-valued
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Table 3. The parameters of the irregular flowAt= 0.14092 for different approximations:is the wave phase speeg; is the first harmonic

of the elevationyg is the mean water level (it should be zero for exact solutioAg)ax is the maximal relative error of an approximate
solution;q (0) — c is the velocity at the crest in the wave related frame of referep@;is the height of the crest above the still water level;

ys is the vertical position of the stagnation point0) — y; is the distance of the stagnation point from the wave crest. The same parameters
of the regular flow ad = 0.14092 are also included for comparigon

approximation c n L Ermax, % q(0) —c¢ 1n(0) Vs n(0) — ys

irregular flow

N=250 M=3N1 1.092427 0178169 —17-10° 15.1001 0.0531 0595445 0.593830 0.001615
N =100 M = 1402 1.092350 0.178039 —39-10"/ 4.2.10°2 0.0470 0.595636 0.594947  0.000689
N =130 M =1802 1.092330 0.178024 —-28-10"7 31.102 0.0455 0.595652 0.595117  0.000535
N =160, M =2002 1.092318 0.178017 —2.2-10"7 24-1002 0.0448 0595661 0.595221  0.000440

regular flow

N =120 M =25N2 1.092277 0.178010 —2.0-10714 21.10® -0.0419 0.595657 0.599019 —0.003362

1 ordinary Fourier approximations
2 fractional Fourier approximationgy = 0.9, y = 0.92
* for the Stokes corner flow, ~ 1.0923,1(0) = c2/2 ~ 0.59656,y; = n(0)

dependence. Because of this the streamline 0 describes nomenon is distinctly observed and the overshoot shrinks
a free surface near the wave crest more adequately than tHeoth in vertical and horizontal scales with increasing the ac-
wave profilen(9). curacy of approximations in the same way as the overshoot of
What is the nature of this inaccuracy? It is seen fromthe irregular wave presented in Fig. 6. In the case of the limit-
Fig. 5 that the profile of the irregular flow oscillates while ap- ing Stokes wave, the overshoot is absent in the exact solution
proaching the wave crest, where a prominent peak (an ovetthat has a sharp 12@orner at the crest, that is, it shrinks
shoot) forms. This highly resembles the Gibbs phenomenorcompletely. Thus, the conclusion can be made that the over-
when (i) a discontinuous function or (ii) a continuous func- shoot in the profile of irregular waves should to all appear-
tion with discontinuous derivatives (a weak discontinuity) are ance also shrink into a single point when increasing accuracy
approximated by a truncated set of continuous functions (sedurther. What would the wave profile look like then?
e.g. Arfken and Weber, 1995). In both cases, the Gibbs phe- To answer this question let us analyse how the param-
nomenon is an excellent indicator of a singularity. Thus, ir- eters of an approximate irregular flow at fixed steepness
regular waves correspond to singular solutions of the equaA = 0.14092 depend on improving numerical accuracy us-
tions of motion. ing Table 3. The distancg(0) — y, between the wave crest
The example corresponding to the case (i) is given inand the stagnation point becomes approximately four times
Appendix E, where truncated Fourier series of a functionas small when using more accurate fractional approxima-
with infinite discontinuity are demonstrated to exhibit typical tions instead of ordinary Fourier approximations, the hori-
Gibbs oscillations and an overshoot that moves to infinity aszontal and vertical dimensions of the overshoot both becom-
accuracy is improved (see Fig. E1). In contrast to this exam4ing approximately five times as small. This correlates with
ple, however, the overshoot in the profile of irregular wavesdecreasing the maximal relative erBrmax of the solutions
has an almost fixed vertical position and shrinks both in ver-approximately by a factor of six. The particle velocity at the
tical and horizontal scales as numerical accuracy is improvegrestg (0) — c in the wave related frame of reference also de-
when proceeding from the ordinary to fractional Fourier ap-creases but less rapidly than the relative effoax of the
proximations, as one can see from Fig. 6. The same situationorresponding solutions. On the contrary, the wave height
is observed for regular Stokes waves very close to the Stokeg(0) quickly stabilizes with increasing accuracy and seems
corner flow having a sharp 12@orner at the crest (a dis- not to tend to the height of the Stokes corner flow.
continuous first derivative) that corresponds to the case (ii) Although the data presented do not give the final un-
of weak discontinuity. Such waves also exhibit Gibbs os-derstanding of irregular flows & — oo, the following
cillations when being approximated numerically, as was re-assumption seems to be quite reasonable. The overshoot
vealed by Chandler and Graham (1993) from the analysis oghrinks into a single point and the particle velocity at the
Nekrasov’s integral equation. The similar example obtainedcrestq(0) — ¢ drops to zero. The stagnation point settles
using fractional and ordinary Fourier expansions is presentedlown at the wave crest and the horn-like separatrices merge
in Fig. 7 for the Stokes wave at = 0.14106 & 99.9975%  forming a flow with a sharp corner at the crest that holds
of the limiting steepnesd ~ 0.1410635). The Gibbs phe- for any steepnesd up to the limiting value, the wave pro-
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A=0.14092 N=120 M=300 6 ¥y =09 7=0.92 can see from Fig. 5 that the particles from the near-surface
’ sy ] layer of the irregular flow are accelerated to velocities greater
than the wave phase speed when approaching the crest. As
a result, they form the upward jet emanating from the front
face of the wave. The acceleration of particles at the base of

the jet ranges from.8g até = 0.001 to & at the wave crest.
Such large accelerations of the water rising up the front of the
wave into the jet are in fact known to occur in breaking waves
(see Banner and Peregrine, 1993), where the typical maxima
in accelerations obtained from detailed unsteady numerical
computations were reported to be arourgd Bhe following
subsequent unsteady evolution of irregular flow is expected.
The particles with velocities greater than the wave speed will
all be jetted out away from the fluid and the crest will break
if their is no external influx into the flow domain from the left
downward jet. After finishing this non-stationary process the
flow will become regular and of lesser steepness. This re-
sembles the recurrence phenomenon observed by Longuet-
Higgins and Dommermuth (1997) when computing unsteady
non-linear development of the crest instabilities of almost
highest Stokes waves resulting in a smooth transition to a
periodic wave of lower amplitude. The appearance of irregu-
lar flows in their numerical scheme may be a reason for this
phenomenon.

T

—0.006 —0.004

5 Conclusions

Fractional Fourier approximations for the velocity potential
N in combination with non-linear transformation of the hori-

e T zontal scale, which concentrates a numerical emphasis on
T e e N the crest region, turned out to be much more efficient than
-0.006  —0.004  -0.002 0 0002 0004 0006 ordinary Fourier approximations when computing both steep

regular and irregular flows. Nevertheless, further improve-

Fig. 4. The regular flow in the crest region of almost highest Stokesment of the numerical algorithm is necessary to achieve the
waves at two different values of the wave steepness, in the waveaccuracy of Tanaka’s method when calculating almost lim-
related frame of reference, the streamlines mapped outside the dgting Stokes waves and to attain the final understanding of
main filled by fluid being presented as well. irregular flows. One of the possible ways is to use the fol-
lowing multi-term fractional expansion with several different
parametersy:

file coinciding with the streamlingg = O all over the free
surface. The Stokes theorem about a®1@rmer flow (see K N a®
Appendix D) is generally valid for corner flow independently R®, y; ) = Z Z (exp(— _ v
. . k=0 n=0 Yk) — exp(—y 19))

of the wave amplitude. Therefore, irregular waves to all ap-
pearance turn out to approximate a familysbiarp-crested  Although the proposed approach was formulated in the
waves with 120 corner at the crest like the limiting Stokes framework of the canonical model for infinite depth, its prac-
wave but of lesser steepness. Sharp-crested corner flows afi@al application is much broader. Gandzha et al. (2003) suc-
regular Stokes flows both tend to the Stokes corner flow a%essfu”y emp|oyed fractional approximations for Computing
the wave steepness is increased. Moreover, the addition@ravity_capi“ary waves. Whenyg is located inside the flow
stagnation point€); and O, in Fig. 5 approach to the cen- domain fractional approximations may be applied for calcu-
tral stagnation poinD1 as numerical accuracy is improved. |ating vortex structures and solitary waves. The latter possi-
Therefore, the stagnation point at the crest of sharp-crestegility was realized by Clamond (2003) using his renormal-
waves should to all appearance also be formed from severa}ed cnoidal wave approximation (the first term of the frac-
coalescing singularities similar to the limiting Stokes wave. tional Fourier approximation). He computed an algebraic

Although irregular flows with stagnation point inside the solitary wave on deep water and traced how it changes after
flow domain are only approximate numerical solutions, theytaking into account surface tension (it is not known, however,
can be used for simulating the process of wave breaking. Ontiow this algebraic solution depends on picking up higher
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Fig. 5. The profile and streamlines of the irregular flow near the wave crest, in the wave related frame of reference, the streamlines mapped
outside the domain filled by fluid being presented as well.
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Fig. 6. The behavior of the overshoot (the Gibbs phenomenon) in the profile of the irregular wave when improving numerical accuracy due
to proceeding from the ordinary to fractional Fourier approximations. The profile of the Stokes wave of the same steepness is also included
for comparison.
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Fig. 7. The Gibbs phenomenon in the approximations to the regular Stokes wave very close to the Stokes corner flow.
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terms of the fractional expansion). In the case of finite depthAppendix B The Jacoby matrix
h, the fractional Fourier expansion will be as follows:
The Jacoby matrix is composed of the coefficients at the in-

R(6. v B N al finitesimal variationssc, (Sné"), sn) (ny = 2, M), Sap,
®, y; y0) = ,;)<(6Xp(—yo) —exp(—y — h —i6))" - (n; =1, N)of t'he unknown variables in the following vari-
- o ations of equations (21) and (22):
o
(exp(— )—e;: (y+h+ ‘9))”>' S <
Yo Ly ! Dy = Z anz,znlsanl + Z anz,lnl‘snr(lli) + 2cd,éc;
ni=1 n1=0

Finally, fractional expansions may also be generalized to the v W

case of.3-D waves a_nd npn-ldeal fluid. _ 5K, = Z ()5’11’2”1505’1l + Z anl‘lnlanr(l)i);
Fractional approximations allowed us to gain more de- ni=1

tailed knowledge about the properties of irregular flows. Ir-

regular waves were proved to correspond to singular soluwhere

tions of the equations of motion. Because of this their ex- |,

n1=0

; ! : TS S & A K
istence does not contradict to the uniqueness theorem dfn,n1 = %n—ny n+ny> %, 0= % >
Garabedian (1965) since it deals with regular continuous so- N+1
. . ; 12 __ 2[(n1). 11 _ 2 t(nl) -8 o
lutions only. The profiles of exact solutions (sharp-crested®; », = <l =75 &~ = Bty n, 05
waves) corresponding to irregular waves seem to have a sharp n=1
i ; i vati 21 21 21 21 21,
120> corner at the crest (a discontinuous first derivative) o, =, + a7y, arg = oy

like the limiting Stokes wave but of lesser amplitude. Such N+1

solutions are also known to occur in the physics of shock 421 — 22 §~ g (n (11 — (1D =30y _
. n ny \ 11\l n

waves, where they are called the surfaces of weak discon-

ni=1
tinuity (see Landau and Lifshitz, 1995). Further analysis, N4l
however, should be carried out to make a final conclusion. Z (2= 8ng. mp) Buo (11 + n2) 10172 —
One of the possible ways is to investigate how an approxi- na=ny ’

mate irregular flow depends on taking into account surface

tension and to make a comparison with new limiting forms

for gravity-capillary waves recently obtained by Debianeand 22 2n1€2<t<n1) _ tn1tD =0 _
- n n

n1 t’gnlJrlx nz)e*yo —n2 t}g”l’ n2+l)€7y0)) - an, 0,

. o
Kharif (1996). n. 11
i i i N+1
To con_clude note that the formation of jets from wre_zgulz_ir 5 Z P (t(nl,nz) o nz)eiyo)
progressive waves resembles the occurence of vertical jets . n2\'n n :
np=

with sharp-pointed tips from standing gravity waves forced
beyond the maximum height, as has recently been reporte
by Longuet-Higgins (2001).

Rlote that the variatioﬁniy) should be expressed in terms of

the rest variationﬁn,(f), n = 2, M using expression (25)
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The point in the flow field, where fluid particles are mo-
tionless in the wave related frame of reference, is called the
stagnation point. For symmetric regular/irregular flows, the
stagnation point is located above/below the wave crest out-
side/inside the flow domain on the aXis= 0. Then its
gertical positiony, is determined as follows

Appendix A The relations between the Fourier coeffi-
cients in thed- and x-spaces

Taking into account nonlinear transformation (19) the coeffi-
cients in Fourier series (18) and (20) are connected as follow

1M o) To find the velocity figld})g(G, y), ®,(0, y) in the in-

= Z nangy (Jn—ny (1Y) — Jngny (n¥)), (A1) finitesimal vicinityd = 6 (9 — 0),y = y; + 5 (§ — 0)

" =1 of the stagnation point it is sufficient to linearize there the
expansions (28), (29) that represent exact velocity field at

n =1, oo; J,,(z) being the Bessel function of the firstkind. N — oo. For this, one should linearize the functions

Mn
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. . Fig. E1. The truncated Fourier series of the discontinuous function.
Then, after taking into account condition (C1), the Egs. (5)The Gibbs phenomenon.
for particle trajectories attain the following form in the vicin-
ity of the stagnation point:

zero at the free surface. In terms of the complex coordi-

[ e , neil natez = 0 + iy = rexpiy) and the complex potential
a Y a T ad; a= ZC;nﬂ”T GIT70s). w(z) = ¢ + iy, the Bernoulli equation (2) is as follows:
2
Therefore, the equations for the streamlines ére- +35. —| +2Imz=0. (D1)

Actually, this is a direct consequence of the fact that any so-
lution to the Laplace equation (1) should depend not on the The complex potential for a flow including a sharp corner
variables €, y) separately but on their combinatignt i6. with stagnation point is described by the following function:
Thus, the streamlines meet at right angleS)@dthe stag- n n . .
nation point. This fact is valid for any flow provided that the w(z) = A8 = |Al 7 exping +iga), (©2)
stagnation point and the wave crest do not merge. Otherwhere—3r/2 < ¢ < 7/2, ¢ = 7/2 being the cut of the
wise, y; = n(0); & andx are not independent variables, and complex plane. Substitution of (D2) into the Bernoulli equa-
linearization (C2) is not valid. In this case, the streamlinestion (D1) yieldsn = 3/2. Note that (D2) is only locally
turn out to meet at 120angle (see Appendix D), as was at valid being only the first term in an expansion about the cor-
first shown by Stokes (1880). ner. Further terms include the powers of irrational order as
was established by Grant (1973) and Norman (1974).

The condition thaty = 0 at the corner slopes yields (the

Appendix D The Stokes theorem corner angle is&):

Stokes rigourously showed that the only possible local crest;,in(§( o — Z) + <pA> — 0= §( o — Z) fou=m,
singularity of a steady wave is a corner of 22Blereafter we 2 2 2 2
emphasize that Stokes theorem is generally valid for a wave},in@(_a — Z) + </>A) =0= §(—a — Z) + ¢4 =0.
of any amplitude, not only for the limiting wave. 2 2 2 2

Choose the origin of the wave related frame with upward Therefore« = 7 /3, 4 = 5 /4, and the corner angle is
vertical axisy and left-to-right horizontal axi@ at the wave  12(°. The corresponding corner flow is shown in Fig. D1.
crest. Letg (9, y) be the velocity potential in the wave Thus, if the wave crest has a corner it must be of°120
related frame. Choose the stream functip®, y) to be  independently of the wave amplitude. Nevertheless, the only
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wave known to exhibit such a corner flow is the Stokes waveCokelet, E. D.: Steep gravity waves in water of arbitrary uniform
of limiting amplitude. It seems that irregular waves reveal a  depth, Philos. Trans. Roy. Soc. London, 286, 183-221, 1977.
family of similar corner flows with amplitudes less than that Debiane, M. and Kharif, C.: A new limiting form for steady pe-
of the limiting Stokes wave. The Stokes corner flow seems riodic gravity waves with surface tension on deep water, Phys.

to be formed due to merging the stagnation points of regularG Flgidhs, 8|’ 2878?__7-(782’ 199\?-P Luk D. V. Debi M
and irregular flows at limiting amplitude. andzha, 1. S., Lukomsky, V. P., Lukomsky, D. V., Debiane, M.,

and Kharif, C.: Numerical evidence for the existence of a new
type of steady gravity waves on deep water, in: Geophys. Res.
Abstracts, vol. 4, pp. A-01347, EGS 27th General Assembly,
Nice, France, 2002.
Gandzha, I. S., Lukomsky, V. P., Tsekhmister, Y. V., and Chalyi,
A. V.: Comparison of ordinary and singular Fourier approxima-
. X tions for steep gravity and gravity-capillary waves on deep water,
fx) =~ |n‘23'n§‘ (ED) in Geophys. Res. Abstracts, vol. 5, pp. A-12192, EGS-AGU-
EUG Joint Assembly, Nice, France, 2003.
with infinite discontinuity atc = 27k, k € Z. This func-  Garabedian, P. R.: Surface waves of finite depth, J. Analyse Math.,
tion constitutes a part of the kernel of Nekrasov’s integral 14, 161, 1965.
equation (see Chandler and Graham, 1993). The truncate@rant, M. A.: The singularity at the crest of a finite amplitude pro-

Appendix E The Gibbs phenomenon

Consider the following 2 -periodic function

Fourier series of the functioi(x) have the following form gressive Stokes wave, J. Fluid Mech., 59, 257-262, 1973.
(see Arfken and Weber, 1995): Hamming, R. W.: Numercal Methods, Mc Graw-Hill, New York —
San Francisco — Toronto — London, 1962.
N o1 Jillians, W. J.: The superharmonic instability of Stokes waves in
fM@) =Y Zcognx), f(x)= lm fMx). (E2) deep water, J. Fluid Mech., 204, 563579, 1989.
=1 N=o0 Landau, L. D. and Lifshitz, E. M.: Fluid Mechanics (Course of

. . . . . . Theoretical Physics, Vol. 6), Pergamon Press, New York, 1995.
In this case, the discontinuous functigx) is approximated Longuet-Higgins, M. S.: Integral properties of periodic gravity

by the continuous fungthn_gf(N)_(x). One can see from waves of finite amplitude, Proc. Roy. Soc. London, A342, 157—
Fig. E1 that instead of infinite discontinuities, the functions 174 1975,

f™(x) have rounded peaks (overshoots) with symmetric onguet-Higgins, M. S.: Bifurcation and instability in gravity
oscillatory tails that descend as the distance from the point waves, Proc. Roy. Soc. London, A403, 167-187, 1986.

of discontinuity increases. This is the well known Gibbs Longuet-Higgins, M. S.: Asymptotic forms for jets from standing
phenomenon, which always takes place when approximating waves, J. Fluid Mech., 447, 287-297, 2001.

discontinuous functions by the truncated Fourier series (seéonguet-Higgins, M. S. and Cleaver, R. P.: Crest instabilities of
Arfken and Weber, 1995). As the numbar is increased, gravity waves. Part 1. The almost highest wave, J. Fluid Mech.,
the functionsf ™) (x) approximate the functiorf (x) more 258, 115-129, 1994. . .
precisely. The peak moves upwards and the oscillatory taiIé‘onguet'H'gng’ M. S. and Dommermuth, D. G.: Crest instabili-

. . S . . ties of gravity waves. Part 3. Nonlinear development and break-
move closer to the point of discontinuity, their amplitude and ing, J. Fluid Mech., 336, 33-50, 1997.

period decreasing. Nevertheless, the height of the peak (thEonguet-Higgins, M. S. and Fox, M. J. H.: Theory of the almost
vertical distance between the point= 0 and the point, highest wave: the inner solution, J. Fluid Mech., 80, 721741,
where the oscillatory tail initiates) remains almost constant 1977.

with increasingV. Because of this the truncated Fourier se- Longuet-Higgins, M. S. and Fox, M. J. H.: Theory of the almost
ries representation remains unreliable in the vicinity of a dis- highest wave. Part 2. Matching and analytic extension, J. Fluid

continuity even for high enougN. Mech., 85, 769-786, 1978.
Longuet-Higgins, M. S. and Tanaka, M.: On the crest instabilities
of steep surface waves, J. Fluid Mech., 336, 51-68, 1997.
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