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Abstract. Over the last two decades, concepts of scale in-
variance have come to the fore in both modeling and data
analysis in hydrological precipitation research. With the ad-
vent of the use of the multiplicative random cascade model,
these concepts have become increasingly more important.
However, unifying this statistical view of the phenomenon
with the physics of rainfall has proven to be a rather non-
trivial task. In this paper, we present a simple model, de-
veloped entirely from qualitative physical arguments, with-
out invoking any statistical assumptions, to represent trop-
ical atmospheric convection over the ocean. The model is
analyzed numerically. It shows that the data from the model
rainfall look very spiky, as if generated from a random field
model. They look qualitatively similar to real rainfall data
sets from Global Atmospheric Research Program (GARP)
Atlantic Tropical Experiment (GATE).

A critical point is found in a model parameter correspond-
ing to the Convective Inhibition (CIN), at which rainfall
changes abruptly from non-zero to a uniform zero value over
the entire domain. Near the critical value of this parame-
ter, the model rainfall field exhibits multifractal scaling de-
termined from a fractional wetted area analysis and a mo-
ment scaling analysis. It therefore must exhibit long-range
spatial correlations at this point, a situation qualitatively sim-
ilar to that shown by multiplicative random cascade models
and GATE rainfall data sets analyzed previously (Over and
Gupta, 1994; Over, 1995). However, the scaling exponents
associated with the model data are different from those es-
timated with real data. This comparison identifies a new
theoretical framework for testing diverse physical hypothe-
ses governing rainfall based in empirically observed scaling
statistics.

1 Introduction

Over the last two decades, a large body of research has fo-
cused on developing statistical rainfall models that are scale
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dependent (e.g. Waymire et al., 1984; Eagleson and Qin-
liang, 1985; Gupta and Waymire, 1987; Kavvas et al., 1987;
Phelan and Goodall, 1990; Cox and Isham, 1988), and scale
invariant (e.g. Lovejoy, 1981, 1982; Lovejoy and Schertzer,
1990; Gupta and Waymire, 1990; Over and Gupta, 1994; Per-
ica and Foufoula-Georgiou, 1996; Foufoula-Georgiou, 1998;
Jotithyangkoon et al., 2000); and on determining the extent
to which they exhibit certain features of data. However,
stochastic models models have faced the difficult problem
of determining a relationship between model parameters and
the underlying physical processes governing rainfall. There-
fore, it is impossible to know how physical parmeters af-
fect a given statistical measure, and how changes in physi-
cal processes affect these statistics. Since scaling statistics
tend to represent extreme rainfall variability, it is important
from a hydrological perspective to have a physical under-
standing of the statistical nature of rainfall, and a theoretical
basis for understanding why rainfall patterns occur the way
they do. However, little progress has been made to explic-
itly link observed scaling statistics in space-time rainfall with
physical processes governing rainfall. A great need to make
progress on this fundamental problem has existed for a long
time (Gupta and Waymire, 1993). In this paper, we develop a
phenomenological, dynamical model of tropical oceanic con-
vective rainfall, without any statistical assumptions, in order
to investigate how empirically observed statistical scaling in
oceanic rainfall is linked to the underlying dynamics.

The stochastic theory of point random fields was first
applied to modeling space-time rainfall by LeCam (1961).
This line of research was developed substantially through the
1980 s and 1990 s by others (e.g. Waymire et al., 1984; Ea-
gleson and Qinliang, 1985; Gupta and Waymire, 1987; Kav-
vas et al., 1987; Phelan and Goodall, 1990; Cox and Isham,
1988). It was successful in representing certain features of
rainfall statistics based in its geometrical structures, such as
clustering in space and time. Some of these models also
showed that the Taylor hypothesis of fluid turbulence in the
correlation structure holds for a limited time, as observed by
Zawadzki (1973). However, in these point process models, a
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parameter was required for representing the geometry at ev-
ery scale considered. These parameters were also difficult to
estimate from data.

In parallel to the above studies, a number of scale-
independent model studies were conducted in an attempt
to reproduce the observed scaling statistics of rainfall
(e.g. Lovejoy, 1981, 1982; Lovejoy and Schertzer, 1990;
Gupta and Waymire, 1990; Over and Gupta, 1994; Per-
ica and Foufoula-Georgiou, 1996; Foufoula-Georgiou, 1998;
Jotithyangkoon et al., 2000). These ‘scaling models’, in con-
trast to the scale-dependent models, generally required only a
few parameters to relate the statistics of rainfall fields among
different scales. This situation allowed scaling models such
as random cascades to be more parsimonious than point ran-
dom field models. However, applications of spatial random
cascade theory to real data have required two sets of gener-
alizations, both of which greatly complicate the underlying
mathematical structures. The first is the extension of cas-
cade models from only space to space-time rainfall (Over
and Gupta, 1996; Marsan. et al., 1996). This generalization
requires cascade generators to be time evolving, which is dif-
ficult because it is unclear how to infer the time evolution of
cascade generators from data. The second generalization has
required scale-based modification of cascade generators. For
example, Menabde et al. (1997) introduced a parameter to
gradually smooth generators while going down the scales, a
generalization that came about due to difficulties with spec-
tral predictions by independent and identically distributed
(i.i.d.) cascade generators. Likewise, Jotithyangkoon et al.
(2000) found that cascade generators changed with spatial
scale in a space-time stochastic model of land-based rain-
fall. Moreover, they treated spatial rainfall variability inde-
pendently of its temporal variability.

Stochastic rainfall research has centered upon statistical
variability in rainfall intensity in the two-dimensional hor-
izontal plane parallel to Earth’s surface. The vertical di-
mension, where most of the physics of rainfall generally
takes place, has not been included in these models. By
contrast, the meteorological literature contains many models
of rainfall based in physical processes including convection
(e.g. Arakawa and Schubert, 1974; Emanuel, 1991; Arakawa
and Cheng, 1993; Betts and Miller, 1993; Raymond and
Emanuel, 1993). This literature has focused on incorporating
microphysics and motions in the vertical dimension. The de-
velopment of much of this research has occurred primarily to
reconcile the small-scale processes associated with convec-
tion to the typical grid scales of the order of 10− 100 km in
side length in numerical weather and climate models. Thus,
meteorological research has been directed towards develop-
ing parameterizations to upscale convective effects, rather
than towards investigating variability directly, though some
efforts have been made recently to downscale rainfall to sub-
grid scales in dynamical weather forecast models (for an
overview, see Foufoula-Georgiou, 1998).

There have been only a few attempts to model rainfall
scaling statistics from a physical perspective. For exam-
ple, Nagel and Raschke (1992), concerned with modeling the

fractal properties of cloud cover, developed a simple perco-
lation model. With it they were able to predict the perimeter-
area exponent measured for clouds by Lovejoy (1982), as
well as the Korcak parameter measured by Lawford (1996).
Pelletier (1997) adapted the Khardar-Parisi-Zhang (KPZ)
model of depositional growth to model cloud shapes, and
found good agreement with both the size-area distribution
exponent and the area-perimeter exponent. Recently, Peters
et al. (2002a) and Peters and Christensen (2002b) have pos-
tulated that the scale-invariance observed in rainfall is anal-
ogous to that found in a variety of nonequilibrium processes
in nature, such as Earthquakes and avalanches. However,
only Peters et al. (2002a) and Peters and Christensen (2002b)
have managed to establish a direct link between statistics and
physical processes, since the other studies were not directly
developed from the physics specific to rainfall.

To address this long-standing open problem, we construct
a simple physical model of tropical convective rainfall over
the ocean. Our primary objective is to understand how scal-
ing statistics arise under simple but non-trivial parameteri-
zations of convective dynamics. As a first step towards this
goal, we construct a model independent of statistical assump-
tions and based qualitatively on the physics of convective
rainfall. Our idealized model couples the horizontal with the
vertical through a parameterization of the primary physical
process that sustains triggered convection over the tropical
oceans, but does not model the mechanisms by which tropi-
cal convection is first initiated, e.g. differential surface heat-
ing. In this connection, we specify a localized field of storm
outflow from a prior rainfall event as initial condition. Thus,
our model has been developed specifically to investigate the
physical origins of empirically observed scaling statistics in
precipitation fields associated with sustained tropical oceanic
convection (Over and Gupta, 1994, 1996; Pavlopoulos and
Gupta, 2003).

Numerical space-time solutions of our phenomenological,
dynamical model look like sample paths from a random field,
despite the model’s lack of built-in statistical assumptions.
Therefore, we analyze the model output using spatial mo-
ment and fractional wetted area (FWA) analyses, treating the
output as though it were stochastic. Scaling features under
these analyses were observed by Gupta and Waymire (1993)
and Over and Gupta (1994)in the Global Atmospheric Re-
search Program (GARP) Atlantic Tropical Experiment rain-
fall data sets (GATE; Hudlow and Patterson, 1979). Our
model can be formally, but not physically, compared to other
models that have been investigated in statistical mechanics
and nonlinear chaotic dynamical systems, where the chaotic
nature of dynamical output is analysed using stochastic meth-
ods; see Beck and Schlogl (1993) for an excellent introduc-
tory reference on this topic.

Through these analyses, we find that a dynamical param-
eter equal to the velocity scale represented by the convec-
tive inhibition (CIN) behaves like a critical parameter. This
means that just below the critical value of the parameter, the
rainfall changes abruptly from non-zero to zero over the en-
tire domain. Near the critical value, the model rainfall field
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exhibits multifractal scaling and represents long-range spa-
tial correlations, but far from it, model statistics do not show
scaling over the entire domain. This feature is similar to
that found in nonlinear dynamical and statistical-mechanical
systems exhibiting second-order phase transitions (Beck and
Schlogl, 1993, ch. 21). Turcotte and Rundle (2002) give
other examples of critical phenomena that have been investi-
gated in physical, biological, and social sciences.

A very important implication of this link between scaling
statistics and rainfall physics lies in the concept that statis-
tical parameters can be predicted by a dynamical model and
compared to empirical values obtained from rainfall data. We
illustrate this key idea by comparing two sets of empirical
parameters that were computed by Over and Gupta (1994)
in GATE rainfall data sets using FWA analysis, and tested
against a random cascade model. This comparison identi-
fies a new theoretical framework for testing diverse physical
hypotheses and assumptions governing rainfall based in em-
pirically observed scaling statistics.

In Sect. 2, we review some literature on scaling as it is
related to the FWA and moment analysis in convective rain-
fall. In Sect. 3, we present details of our physical model.
In Sect. 4, we describe and present results of our statisti-
cal scaling analysis from model-generated rainfall fields and
compare them to empirical parameters for GATE rainfall data
sets. In Sect. 5 we summarize our main findings and discuss
some next steps in this exciting new direction for rainfall re-
search.

2 Moment scaling and the Fractional Wetted Area
(FWA) analyses

The literature contains numerous examples of scaling anal-
yses associated with the space-time statistics of rainfall. In
particular, some of these papers have focused on the analy-
sis of oceanic rainfall through the well-known GATE (Over
and Gupta, 1994) and the Tropical Ocean Global Atmosphere
Coupled Ocean Atmosphere Response Experiment (TOGA-
COARE, Webster and Lukas, 1992) data sets (Pavlopoulos
and Gupta, 2003). These analyses have shown that mea-
surements of statistical variability at different spatial scales
can be understood in terms of concepts that arise in analyz-
ing multifractal random fields (see e.g. Holly and Waymire,
1992; Gupta and Waymire, 1993). Scaling analyses, in con-
junction with random field models like the random cascades,
have allowed researchers to characterize empirical statistical
scaling features of space-time oceanic rainfall over the trop-
ics. For instance, results from the well-known moment anal-
yses of multifractal rainfall fields, of which the FWA analysis
is a special case, have been combined with analytical work
on cascade models to determine several persistent statisti-
cal scaling features of space-time rainfall (D. Schertzer and
Lovejoy, 1987; Gupta and Waymire, 1993; Menabde et al.,
1997).

We will briefly introduce some definitions and concepts
from the spatial moment analysis of multifractal random

fields that have been used by Gupta and Waymire (1993) and
Over and Gupta (1994) to analyze GATE rainfall, and for
testing a random cascade model on this data set. We will use
these concepts in Sect. 4 to analyze our model output. The
moment analysis is performed on a radar or a model scan by
determining the rain intensities at a variety of pixel scales
1n, which in turn are obtained by a “coarse graining” or a
“spatial averaging” procedure over the grid. These analyses
have been strongly influenced by the desire to empirically
test and interpret theoretical results that were developed in
the mathematical theory of random cascades (see, e.g. Holly
and Waymire, 1992). Although the reader is not required
to be familiar with the theory of random cascades to under-
stand the analyses in this paper, we will mention a few im-
portant concepts from random cascades to make our defini-
tions and presentation understandable. For this purpose, we
will closely follow the definitions and notations used by Over
and Gupta (1994).

We define first the spatial moment at scale1n (Over and
Gupta, 1994, Eq. (3.6))

Mn(q) ≡

∑
i

Rq(1i
n) n = 1, 2, 3, ... , (1)

in whichR(1i
n) is the value of the rain field in thei-th pixel

at scale1i
n. Note that the sum is not divided by the total

number of pixels, and the units ofR(1i
n) are volume/time,

rather than length/time. These two features are introduced
to match scaling of spatial moments with theoretical results
from random cascades as explained below. To understand
this connection, two concepts are needed. First is the branch-
ing numberb, which determines the number of pixels into
which a cascade generator disaggregates mass from one scale
to the next scale. The second is a random generatorW that
is used to redistribute mass across successive scales in con-
structing a random cascade, though the specific form ofW

is not important for our purposes. The side length of1i
n at

level n represents the spatial scaleLn. If we fix b = 4, and
d = 2 as the spatial dimension, a dimensionless scale param-
eter can be defined byλn ≡

Ln

L0
= b−n/d n = 1, 2, ..., in

whichL0 is the length of the entire domain.
A fundamental mathematical quantity in the random cas-

cade theory is the so-called Mandelbrot-Kahane-Peyriere
(MKP) function, used to compute various quantities of theo-
retical significance (Holly and Waymire, 1992). It is defined
by

χb(q) = logb E
[
W q

]
− (q − 1). (2)

The scaling exponents for the scaling of spatial moments in
Eq. (1) are defined as

τ(q) ≡ lim
λn→0

logMn(q)

− logλn

, (3)

representing the slope of a line on a log-log plot of moment
versus scale for eachq. The theoretical significance of mo-
ments as defined in Eq. (1) comes from the fact that the scal-
ing function can be equated with the MKP function as (Over
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and Gupta, 1994, Thm 3.1)

τ(q) = d · χb(q) (4)

This equation shows that the MKP function can be directly
estimated from data. For more information on the uses of the
MKP function, see Holly and Waymire (1992).

A key feature of random cascades is that they have long-
range spatial correlations. This means that the correlation
length scale is infinite; see Over (1995) for a careful deriva-
tion of this result. What this means is that the existence of
scaling relations in the spatial moments of a random field,
as depicted by Eq. (2), may be taken as evidence of infinite
correlation length scale. This important issue has been dis-
cussed in much greater detail by Gupta and Waymire (1993)
and Over and Gupta (1994), and applied to the analysis of
GATE rainfall using individual scans and in testing a random
cascade model. We will use the moment scaling analysis of
our dynamical model data in Sect. 4 to the infer presence or
absence of an infinite correlation length scale in our model
dynamics.

The FWA is defined in terms of the zeroth momentMn(0)

by

f (λn) = b−nMn(0) , (5)

in which the total number of pixels is given bybn. As shown
in Over and Gupta (1994, Eq. (3.15)),f (λn) shows log-log
linear behaviour with respect to spatial scalesλn with a slope
s that is related toτ (0) by −s + 2 = τ(0); again, for details,
see Over and Gupta (1994, Eqs. (3.14) and (3.16)).

For an important class of cascade model, the ‘beta’ cas-
cade, Gupta and Waymire (1993) showed that it was possible
to compute moments analytically in terms of the model pa-
rameterp, the probability that the beta-cascade generatorW

takes value 0. For spatial momentsMn(q) of arbitrary order
q, Over and Gupta used this result to show analytically that
τ(q) was linear inq for a beta cascade. Sinceτ(q) was ap-
proximately linear for GATE phase I data, though nonlinear
and convex for GATE phase II, they argued that a beta cas-
cade was an appropriate model to represent spatial variabil-
ity of both zero and non-zero rainfall in GATE phase I data.
They suggested introducing scale-dependent generators for
potentially addressing the deviations from linearity observed
in GATE phase II data.

Over and Gupta also inferred the existence of a further
scaling relationship between the FWA exponents and the
mean rainfallR̄ from the GATE data,

(
R̄

Rmax
)k = (1 −

p

.75
) (6)

in which

p = 1 − 2−s .

Determination of the exponentk and the interceptRmax,
therefore, is the ultimate goal of the FWA analysis, assum-
ing (6) holds. Over and Gupta (1994) compared results of a

FWA analysis of a beta cascade to that computed for the trop-
ical oceanic rainfall data taken in GATE phase I and GATE
phase II; and to extratropical land-based rainfall data taken
over Elbow, Saskatchewan. They used an appropriate value
of p corresponding toτ(0) in all three cases. In each they
found excellent qualitative agreement, and reasonable quan-
titative agreement since the exponentk and logarithmic inter-
ceptRmax were close in value to each other for the two ocean
data sets. This very powerful result has since been suggested
for use in the disaggregation of General Circulation Model
rainfall data by Jotithyangkoon et al. (2000), who also ob-
served it in data taken over land.

We will conduct these moment and FWA scaling analy-
ses in Sect. 4 on output from our dynamical model to test
how well they compare to empirically estimated values. A
deviation between these two provides a rigorous theoretical
framework to test various physical assumptions that are used
in our model. This is one of the key new ideas in rainfall
research that is introduced and illustrated in this paper.

3 Model description

The phenomenological, dynamical model we develop in-
cludes 2 horizontal dimensions and is deterministic. The
phenomenology we use operates through triggering from a
gust front produced by outflow from local convective rain-
fall. It is thought to be a principle mechanism behind
sustained convection in thunderstorms over land (Emanuel,
1994, pp. 231–235). Naturally, this mechanism is also very
important over the tropical oceans (Mapes, 2000). The down-
draft is colder than its surroundings, and is also denser than
the warm ambient air, since an ideal gas at a fixed pressureP

has densityρ ∝ 1/T . Both cold and warm air masses exist in
a state of conditional stability in the region below the Level
of Free Convection (LFC), which is the height at which the
moist air becomes positively buoyant.

The outflow, or cold pool, provides trigger conditions for
packets of incident warm, moist air to rise above the LFC,
and thus, to reach the Level of Neutral Buoyancy (LNB), the
height at which the moist air is at dynamical equilibrium with
its surroundings. In order to reach the LNB, a packet of air
must first be pushed above the LFC (Fig. 1). The amount of
energy required for a such a successful trigger is commonly
known as the Convective Inhibition (CIN; Mapes, 2000).
The amount of potential energy stored in the packet for its
ascent is known as the Convective Available Potential En-
ergy (CAPE), and is approximately equal to the kinetic en-
ergy of a packet once it reaches the LFC; similarly, the po-
tential energy for a downdraft is known as downdraft CAPE,
or dCAPE.

As our intention here is primarily to understand how the
scaling statistics in convective rainfall arises from dynam-
ical arguments, and since our model represents a first step
towards this goal, we are interested in the minimal model
produced from physical arguments that will exhibit such be-
haviour. In this connection, we have made several significant
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Fig. 1. Schematic of phenomenology used in the model. Warm,
moist incident wind strikes the much denser cold, dry pool, and
is either triggered above the LFC or not, depending upon the lo-
cal gradient of the cold pool. Steep gradients present a barrier for
the incident wind to puncture, and low gradients allow the incident
wind to pass by without gaining upward lift. Downdrafts from the
air which is convected replenish the cold pool.

simplifications to the physical models generally used to rep-
resent the above physical processes. The first simplification
involves the parameterization of the vertical dimension by a
timescale, which represents the amount of time required for
a packet of air to rise, condense and fall out. The second is
the absence of microphysics in our model. The third sim-
plification is the replacement of the commonly-used, nonlin-
ear, two-fluid density current model of surface outflow with
a linear diffusion. Details of these simplifications are given
below.

We specify a constant velocityU for the horizontal move-
ment of warm air parallel to the surface. As already men-
tioned, the LNB is specified by a timescale scheme, such that
when clouds have developed past a certain threshold they rain
out, replenishing the cold pool groundward with more cold
air from the outflow. The LFC is considered implicitly, and
both the CIN and CAPE are represented phenomenologically
as parameter values. dCAPE is a function of the output (rain)
field. Justification for a constant CAPE across the domain
can be found in Arakawa and Cheng (1993). The model re-
quires as initial condition the existence of a randomized cold
pool over the lattice.

The model follows the movement of air masses, consider-
ing rainfall to be a passive tracer for reasons of simplicity.
The mass of warm air at the surface is not conserved, but
rather is treated as a source for the cold pool through the
rainfall field. However, the mass of air in cold pools is con-
served, with a rainfall source and a sink due to heating. In the
meteorological literature, the movement of cold pools is typ-
ically represented by a nonlinear fluid model of density cur-
rents (Xu et al., 1996; Xue et al., 1997; Emanuel, 1994). This
model depicts a fluid mass moving coherently as a spreading

packet along the surface, generally with a preferred direction
and a velocityv due to surface winds, and a nonlinear front
at the leading edge. This model is somewhat complex for our
purposes at this stage of development, however, requiring the
conservation of mass for both fluids, as well as introducing
additional complexity through nonlinearity. Since a diffusion
with advection captures the qualitative behaviour of this field
in a more linear fashion, we choose to update a depth of cold
air h = h(x, t) by

h(x, t + δt) = h(x, t) + δt [a∇̃
2
h(x, t) − v · ∇̃h(x, t)] (7)

with a the diffusion constant andv the velocity of cold pool

propagation. Herẽ∂t , ∇̃
2

and∇̃ denote discretized versions
of their respective operators. In addition, we account for
heating of the pool by reducing the depth at each timestep
by introducing a simple uniform factor(1 − F) such that

h(x, t + δt) = h(x, t) × (1 − F), (8)

in which F < 1 represents the extent of solar heating at the
surface. The simplicity of the diffusion model assumption
comes at the expense of an altered behaviour at the leading
edge of the cold pool and the forced independence of phys-
ical parameters that would normally be functionally depen-
dent. We will address this issue in our conclusion.

For ascent of incident moist air, we consider a coupling

va = U · ∇h (9)

between the incident windU and the gradient of the cold
pool,∇h. va can be expressed as

va = U |∇h| cos(θh) (10)

whereθh = θ(∇h) is defined as the angle betweenU and
∇h andU = |U | is a numerical constant representing the
strength of the incident warm wind. We can expressθh in
terms of∇h if we define a unit vector̂x in the direction of
U . Then

x̂ · ∇h = dh/dx = tanθh, (11)

and cosθh = [1 + (∇h)2
]
−1/2. Hence,

va = U |∇h| cos(θh) = U |∇h|[1 + (∇h)2
]
−1/2

= U [1 + (∇h)−2
]
−1/2, (12)

which is monotonic and increasing in∇h.
Low values of the dimensionless quantityva/U suggest

the incident wind is nearly tangent to the gradient, in which
case there will be little upward component to motion. For
convection, therefore,va should be above some threshold
valueb1. b1 has units of velocity and is clearly a function
of the CIN, since CIN is a measure of the energy required for
a parcel to be triggered. High values ofva/U , on the other
hand, imply thatθh is large. An angle that is too great will al-
low the wind to penetrate the cold pool rather than ascend, so
that for ascentva should also be below some threshold value
b2. b2 is a function of the density difference between the cold
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pool and the incident wind, since high densities differences
will prevent penetration of the cold pool.b2 is required to be
non-zero for the phenomenology of the model to make sense.

Thus, in our deterministic model, we use the Heaviside
function 2(·) to update cloudinessC(x, t), defined here as
the quantity of moist air aloft, by

C(x, t + δt) = C(x, t) + δt c2(κ), (13)

wherec is a constant value for packets convected and

κ(x, t) = (U · ∇̃h − b1)(b2 − U · ∇̃h) (14)

is the phenomenological triggering energy.
Specifying downdrafts from convected clouds requires the

construction of a criterion for fallout. The simplest method
would be to introduce a constant time scaleτ , after which
convected water vapor would return to Earth. However,
cloudy regions of higher mass should rain more quickly than
those of lower mass. We can therefore spread the timescale
locally by introducing a mean time of ascent and fallout,

t̄ =
1

N(x, t)

∑
i=1,N(x,t)

wi ti2(κ(ti)) . (15)

in which ti = ti(x) is the time associated with a convection
eventi, i.e. i such thatθ(κ(ti)) = 1. N(x) is the number
of such events since the initial development of convection
at x. wi are weights we take to be 1 for simplicity, though
we note here that it is possible to represent more complex
microphysics with different weights. Now, ift − τ > t̄ , we
take rainfall to be

R(x, t) = rC(x, t) , (16)

in whichr is a constant fraction of cloud that falls as rain; we
further update cloudiness by

C(x, t + δt) = C(x, t) − δt R(x, t) ; (17)

and we add to the cold pool the cold air from above,

h(x, t + δt) = h(x, t) + R(x, t) . (18)

The full model equations can now be written

∂̃th = a∇̃
2
h − v · ∇̃h − Fh + R

∂̃tC = c2(κ) − R

κ = (U · ∇̃h − b1)(b2 − U · ∇̃h)

R = rC2(t − τ − t̄ )

t̄ =
1

N(x, t)

∑
i=1,N(x,t)

wi ti2(κ(ti)). (19)

The model is initialized with a randomly generated cold pool
in the center of the model grid, and all other fields are ini-
tialized uniformly to 0. The computational dynamics are ex-
tremely simple, evolving with a first-order forward scheme.
The boundary conditions are taken to be periodic for simplic-
ity.

3.1 Model parameters

All of the parameters used in this model can be interpreted
physically. As noted above, the replacement of the density
current dynamics with a linear diffusion has simplified the
dynamical behaviour of the model at the expense of decou-
pling parameters that would otherwise have been function-
ally related. For instance, in a density current model the local
difference in velocity between the movement of the cold pool
and the incident wind|U − v| is proportional to the square
root of the depth of the cold poolh, and the density differ-
ence between the air masses (Emanuel, 1994, p. 231). If we
had used a density current model, therefore, these quantities
would have been represented by spatially dependent fields
rather than parameters.

Parameters used in the model includeb1, which as dis-
cussed above must be proportional to

√
CIN ; andb2, which

represents a penetration speed for the cold pool, another
function of the density difference between the incident wind
and the outflow. The incident velocity,U , provides a mea-
sure of the component of the incident wind along the gradi-
ent of the cold pool,va = U · ∇h, and from this we can
determine the constant of proportionality betweenCIN and
1
2b2

1. Since, from Eq. (10),va = U |∇h| cos(θh), and since
|∇h| = tan(θh) from Eq. (11), we can writeva = U sin(θh).
This represents the vertical component of the deflected wind,
or the velocity of the updraft deflected from the cold pool.b1
therefore represents an escape velocity for this updraft, and
thus,CIN =

1
2b2

1.
The parameterc is the quantity, measured in meters, of

warm moist air convected during a convection event. Since
such an event lasts for a timestep, we can determine the ve-
locity of updrafted air,c/dt , and therefore specify the CAPE
via

CAPE =
1

2
(c/dt)2. (20)

Similarly, the parameterr, representing an inverse time scale
for rain fallout, can be related to the dCAPE with

dCAPE(x) =
1

2
(rC(x)/dt)2. (21)

The fact that CAPE is a model parameter and dCAPE is
a field is an artifact of the model. This situation could be
changed by makingc a function of position. Justification for
a constant CAPE across the region can be found in the deriva-
tion of the Arakawa-Schubert parameterization (Arakawa
and Cheng, 1993; Emanuel, 1994). The parameterF is a
heating frequency, and is the inverse of the timescale for
heating of the cold pool.τ is simply a timescale for turnover
of convective storms in the tropics.a, the diffusion constant,
was set somewhat arbitrarily for stability in the model. Val-
ues of all parameters used are listed in Table 1.

4 Analysis

Although our model itself is a space-time deterministic
model, the output appears to be stochastic in nature and may
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Table 1. Parameter values used

Parameter interpretation value

dt timestep 6 s
dx spatial res. 200 m
vx x comp. cold pool vel. 10 m/s
vy y comp. cold pool vel. 10 m/s
a diffusion constant 400 m2/s
Ux x comp. incident wind vel. 10 m/s
Uy y comp. incident wind vel. 10 m/s
b2 penetration vel. 5 m/s
τ vertical time scale for convection 30 min
c velocity scale for convection 84 m/s→ CAPE=50 J
r frequency scale for rainout 1 h−1

F frequency scale for heating 2 h−2

Fig. 2. Sample of model output with b1 = 2.50m/s, far from critical. For clarity we reproduce here a

subset of the domain, since at this parameter value rain covered a large portion of the lattice.
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Fig. 2. Sample of model output with
b1 = 2.50 m/s, far from critical. For
clarity we reproduce here a subset of the
domain, since at this parameter value
rain covered a large portion of the lat-
tice.

well be chaotic. Figure 2 shows output from the model for
the parameterb1 = 2.5 m/s. It looks qualitatively quite sim-
ilar to the real data shown in Fig. 3 in that both the data sets
exhibit a wide range of variability in rainfall intensity. A
fairly minor difference between output forb1 = 2.5 m/s and
real data is a slightly enhanced tendency for the model out-
put to organize into bands. This tendency increases asb1 ap-
proaches 3.42, which is the critical value ofb1 as discussed
below. Just below this critical value, the rainfall occurs only
in one narrow, time-dependent band that stretches completely
across the lattice and wraps around due to lattice periodicity
(Fig. 4). Output is still highly variable at criticality, but is not
geometrically similar in any qualitative way to real tropical
oceanic rainfall, since it all occurs in this band.

Naturally, a quantitative assessment of model output is

necessary. The variability inherent in our model has led us
to view the output from this model as a random field by con-
structing a distribution from the deterministic data. This is a
well-known approach in the field of nonlinear dynamics (Ta-
bor, 1989; Beck and Schlogl, 1993). It has been applied in a
great number of cases ranging from extremely simple models
such as the tent map to models capable of reasonable com-
parison to real data (Birnir et al., 2001). In this approach, it
is common to vary a single parameter in the model to esti-
mate the effect of that parameter on statistical output. In this
paper, that parameter will beb1 =

√
2 CIN .

We analyze the data generated by our dynamical model for
the power law multiscaling found in the GATE data set under
the FWA analysis, as well as the higher-order spatial moment
scaling analysis presented by Gupta and Waymire (1993) and
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Fig. 3. Sample of data from TOGA-COARE reprinted from PG02.

Fig. 4. Sample of model output with b1 = 3.41m/s, near critical.
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Fig. 3. Sample of data from TOGA-
COARE reprinted from PG02.

Fig. 3. Sample of data from TOGA-COARE reprinted from PG02.

Fig. 4. Sample of model output with b1 = 3.41m/s, near critical.
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Fig. 4. Sample of model output with
b1 = 3.41 m/s, near critical.

Over and Gupta (1994), and reviewed in Sect. 2. For this
analysis, we compare model results to those obtained from
data in the original paper. Over and Gupta (1994) used GATE
data on a square lattice 100 sites per side at 4 km resolution.
We take our data on a 600-site grid at 0.2 km resolution, so
that our grid is roughly a quarter the size of the domain ana-

lyzed by Over and Gupta (1994). Factors of 600 correspond-
ing to observed spatial scales are contained in the set`600 =

{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75,
100, 120, 150, 200, 300, 600}, giving us 24 potential scales
to analyze over more than 2.5 orders of magnitude. Our anal-
ysis does not involve dimensional quantities, so it is not nec-
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Fig. 5. Scaling of moments for the 1000th recorded scan with b1 = 2.5 m/s, far from critical. Moments

are plotted in half-order increments; the smallest moment plotted corresponds to q = 0.5 and the largest to

q = 3.0. These moments clearly scale over only a very limited range of spatial scales.
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Fig. 5. Scaling of moments for the 1000th recorded scan with
b1 = 2.5 m/s, far from critical. Moments are plotted in half-order
increments; the smallest moment plotted corresponds toq = 0.5
and the largest toq = 3.0. These moments clearly scale over only
a very limited range of spatial scales.

Fig. 6. Scaling of moments for the 1000th recorded scan with b1 = 3.41 m/s, near critical. Moments are

plotted in half-order increments; the smallest moment lpotted corresponds to q = 0.5 and the largest to

q = 3.0. These moments, from the model at close to critical, exhibit scaling over more than two orders of

magnitude.
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Fig. 6. Scaling of moments for the 1000th recorded scan with
b1 = 3.41 m/s, near critical. Moments are plotted in half-order
increments; the smallest moment plotted corresponds toq = 0.5
and the largest toq = 3.0. These moments, from the model at close
to critical, exhibit scaling over more than two orders of magnitude.

essary to transform our model output from units of downdraft
intensity to units of mass.

We ran our model for values ofb1 in the set
{2.0, 2.5, 3.0, 3.41}. There appears to be a critical value
b∗

1 ≈ 3.42 of the parameterb1 above which rainfall is only
a transient phenomenon . For the full details of this analysis,
refer to Nordstrom (2002). Here we will provide one exam-
ple significantly below the critical point (b1 = 2.5 m/s) and
one example just below it (b1 = 3.41 m/s). From the form of
Eq. (14), two important dimensionless quantitiesb′

= b1/b2

Fig. 7. Exponent τ(q) for moment scaling plotted as a function of q for the 3000th recorded scan with

b1 = 3.41 m/s, near critical.
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Fig. 7. Exponentτ(q) for moment scaling plotted as a function of
q for the 3000th recorded scan withb1 = 3.41 m/s, near critical.

Fig. 8. Time series of slopes for FWA plots for the case b1 = 3.41 m/s, near critical.
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Fig. 8. Time series of slopes for FWA plots for the caseb1 =

3.41 m/s, near critical.

and U ′
= U/b2 can be constructed. Asb′ approaches 1,

the range of gradients∇h that may be selected byU ′ nar-
rows, until at some critical valueb′ ∗ < 1, determined byU ′,
that range becomes negligible. Therefore, the critical value
b∗

1 = b∗

1(b2, U). While it is clearly the ratiob′ that is im-
portant to the model rather than the actual physical quantity
b1 =

√
2 CIN , in subsequent discussion we will take it to

be implicit that we are changing the ratiob′ but retain our
dimensional parameter notation.

Results of regressing spatial momentsMλ(q) againstλ for
scans ofb1 = 2.5 m/s andb1 = 3.41 m/s are presented in
Figs. 5 and 6. Theτ(q) function for these moments corre-
sponding tob1 = 3.41 m/s is plotted in Fig. 7. As discussed
in Sect. 2,τ(q) is the principal statistic used to relate cas-
cade models to real data. It is nonlinear and convex for our
model output and compares well to those published in Over
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Fig. 9. Sample scaling plot for b1 = 2.50 m/s, far from critical. Scaling occurs only in a transient fashion

over scales.
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Fig. 9. Sample scaling plot forb1 = 2.50 m/s, far from critical.
Scaling occurs only in a transient fashion over scales.

and Gupta (1994) Fig. 8 for GATE phase II, which was found
by Over and Gupta (1994) to match a lower cascade param-
eterp. Ourτ(q), with an average slope of−1.12, also com-
pares quantitavely better to GATE phase II (average slope for
q ∈ [0, 4] was−1.23) than to GATE phase I (slope−1.52),
which was linear.

For the FWA analysis defined by Eq. (5), we compute a
time series of slopes for plots of log2 f (λn) vs. log2 λn.
Since in each case we run the model for 30 000 timesteps
(50 h), and we record every 10th scan, we have 3000 scans to
consider, all of which integrate to a stationary state. In order
to be assured of a quasi-stationary state, we begin our analy-
sis towards the end of the integration at the 2000th recorded
scan. Time series plots of these slopes are included in Fig. 8,
from which it is clear that the slope of the curves is almost
constant and therefore quasi-stationarity is maintained.

Sample scaling plots at the 3000th recorded scan for both
values ofb1 are included in Figs. 9 and 10. It is customary
to require 2 or more orders of magnitude of varying spatial
scales for analysis in order to confirm scaling. Scaling is
to be expected if the system really is at critical, since in such
cases the correlation length generally diverges. A long corre-
lation length demonstrates a long-range coherent behaviour
and therefore large clusters (Fig. 4) . Since a clustered field
shows less change under aggregation transformations than an
uncorrelated one does, we expect to see power law behaviour
under such a transformation. Forb1 = 2.5 m/s, the scaling
occurs over a very limited range of scales, but close to the
critical point with b1 = 3.41 m/s, it occurs for more than
two orders of magnitude. These features are similar to those
found in nonlinear dynamical and statistical-mechanical sys-
tems exhibiting second-order phase transitions (Beck and
Schlogl, 1993, ch. 21).

To compare to Over and Gupta, we plot lnR̄ vs ln(1−(1−

−2−s)/.75) to fit the function (6). The linear fit in this case is
very highly significant, and the slope of the line is≈ 0.078.

Fig. 10. Sample scaling plot for b1 = 3.41 m/s, near critical. Scaling is persistent over a large range of

scales, spanning more than two orders of magnitude.
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Fig. 10. Sample scaling plot forb1 = 3.41 m/s, near critical. Scal-
ing is persistent over a large range of scales, spanning more than
two orders of magnitude.

The slopes calculated by Over and Gupta werek = .242,
andk = .252 for GATE phase I data and phase II data, re-
spectively. Therefore, the slope determined from our model
with this parameter set is thus, about1

3 the empirical value.
The intercept of the line determines the value ofRmax, ef-
fectively the valueR̄ takes when the slopes → ∞, which
in this case wasRmax = 716.082. By contrast, the values
foundRmax in the GATE data set were 7.52 and 7.06. These
values are quantitatively very different from the values calcu-
lated for our model, which produced a maximum rain value
two orders of magnitude too large.Rmax is very sensitive to
changes in the slopek, however, and if we perform the same
calculation using the intercept calculated from model output
with a hypothetical slope ofk = 0.25 (to match that found
in the GATE data), we find anRmax ≈ 7.78, which is in
extremely good agreement with the values found in GATE.
This indicates that our model run with this set of parameters
produces a reasonably good estimate of the intercept, but not
for the slope. These results are summarized in Table 2.

A clear discrepancy between the model prediction of the
slopek and the empirically observed value shows that cer-
tain aspects of our model requires modification, a situation
less than surprising given its simplicity. However, the exis-
tence of realistic looking output (Fig. 2) and the evidence of
nontrivial scaling suggests a new theoretical framework for
testing different physical assumptions and hypotheses under-
lying rainfall generation.

5 Conclusion

We have presented a simple mathematical model of oceanic
convective rainfall that was developed entirely from qualita-
tive physical arguments, without invoking any statistical as-
sumptions. In this model, we have made simplifying assump-
tions in qualitatively incorporating various physical mecha-
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Fig. 11. Plot of R̄ vs. 1− (1−2−s)/.75 for b1 = 3.41 m/s, near critical. The slope of the line was ≈ 0.078,

about 1/3 that calculated for data GATE phases I and II. The intercept of this line, however, is very close to

that found by Over and Gupta (1994) for GATE data.
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Fig. 11. Plot of R̄ vs. 1− (1 − −2−s)/.75 forb1 = 3.41 m/s, near
critical. The slope of the line was≈ 0.078, about 1/3 that calculated
for data GATE phases I and II. The intercept of this line, however, is
very close to that found by Over and Gupta (1994) for GATE data.

nisms that are known to produce sustained convection over
tropical oceans. Yet, despite these simplifications and despite
a lack of statistical assumptions, it has produced multifractal
output qualitatively similar to that found in real rainfall data.

We have found a critical value of a dynamical parameter
b1 such that just below this value the model exhibits scaling
statistics. Such statistics have been observed in many studies
of convective oceanic rainfall, as well as modelled previously
by random cascade models. For values ofb1 away from the
critical point, the model does not exhibit scaling over the en-
tire domain. The scaling statistics for our model output have
been found in this paper using a scaling analysis of spatial
moments with slopes given by a functionτ(q). This func-
tion plays a basic role in describing both random and non-
random multifractal mass distributions. We have observed
that our model produces a slightly convexτ(q) that com-
pares better with that published for GATE phase II rainfall
data set than for GATE phase I rainfall, which was found to
be linear. We have scaled the FWAs for various plots in our
data at the critical point, and then scaled the slopes against
the mean rainR̄, as in Over and Gupta (1994). As shown in
Table 2, and discussed in Sect. 4, our estimates for the ex-
ponentk are off by a factor of 3 and our estimates ofRmax
are off by two orders of magnitude. However, the intercepts
for these plots are in very good agreement with data. From
the estimate of probable error in Table 2, it is quite clear that
our model predicts an equation like Eq. (6), which has also
shown promise of playing an important role in the analysis
of land-based rainfall (Jotithyangkoon et al., 2000).

The parameter choices forb1 at which model output looks
similar to real data does not yield scaling statistics, which
have been observed in many studies of convective rainfall.
Conversely, the parameter choice for which the model output
looks least like real rainfall yields scaling statistics quite sim-

Table 2. Rmax andk for plots of ln(R) vs 1− (1 − 2−n/2)/.75

Rmax k σk

b1 = 3.41 314 : 716.082 0.078 0.00 291
GATE phase I: 7.52 0.242 N/A
GATE phase II: 7.06 0.252 N/A

ilar to those found in real data. This unrealistic geometrical
behaviour at criticality is due to the establishment of a fixed
value for the “parameters”b1 andb2 across an entire lattice,
a situation related to our use of a highly idealized model for
the outflow field. In reality, and in density current models,
b1 andb2 (and other parameters) would be represented by
interdependent fields. In our model, they are fixed such that
asb1 approachesb2, there is an increasingly narrower range
of cold-pool gradients that are selected. Such a narrow gra-
dient range is in turn restricted by the diffusion process to a
narrow contiguous area aligned on an equi-gradient surface
around the cold pool. This is clear from Fig. 4. The band
of rainfall traces the outline of a wide oval shape across the
domain, exactly the two-dimensional projection expected for
the non-zero values of a directed diffusion process such as
that which we have used to represent the cold-pool dynam-
ics. In light of this finding, we conjecture that the processes
we have used in the model contain the minimum set of rele-
vant physics necessary to produce scaling statistics in tropi-
cal oceanic convective rainfall. However, the dynamical rep-
resentation needs modifications in order to capture the geom-
etry of observed rainfall. Therefore, we must relax some of
the physical assumptions made here. A key example of such
an assumption is the use of a diffusion model to represent the
cold pool, which should be replaced with the more appropri-
ate but more complex density current model as discussed in
Sect. 3. With more physically correct cold-pool dynamics,
it seems likely that suitable values of our physically-based
model parameters other thanb1 could be found to bring our
results into quantitative agreement with data.

A discrepancy between our physical model-derived and
empirically observed statistical parameters provides a new
theoretical framework for testing diverse physical hypothe-
ses and assumptions governing rainfall. This is a founda-
tional issue in future research that deserves a brief discus-
sion here. It has been conventional to validate physical mod-
els by looking at individual realizations of the model out-
put and comparing them against data. However, this kind of
sample path approach is more sensitive to errors in forcing
and parameterization than a statistical-mechanical approach
like that used here. This latter approach is used widely to
study other nonlinear chaotic dynamical systems (Beck and
Schlogl, 1993). In addition, since our model output exhibits
statistical variability, it must be analysed using appropriate
statistical methods as a way to test different physical hy-
potheses. This variability, or ‘spikiness’ in our model output
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can also be contrasted with state-of-the-art atmospheric mod-
els. Any tendency for spikiness in such models is typically
smoothed away in order to prevent infinite energies from oc-
curring due to frequency aliasing and the turbulent cascade.
In our model, the extreme variability is a stable feature, and is
a direct consequence of the promotion of moderate gradients
in our uplift parameterization (14). Therefore, this model, or
another another model like it, is ideally suited to the study of
empirically observed statistical variability in rainfall fields.
Such an approach has recently been made in the study of
floods. Gupta (2003) has explained how scaling statistics in
floods can be used to test different physical hypotheses cov-
ering complex runoff dynamics on channel networks.

Due to the existence of scaling behaviour in our model
at criticality, we conjecture that convective rainfall over the
tropical ocean is produced by a self-tuning system running
near a critical point. This is consistent with the claims of
self-organized criticality made for rainfall and other non-
equlibrium systems by Peters et al. (2002a); Peters and Chris-
tensen (2002b); Nagel and Raschke (1992) and others. Our
model itself is not self-organized critical, but must be brought
to a critical regime by fixing the value of an external param-
eter,b1. This is presumably due to the neglect of some feed-
back mechanism between our CIN parameterb1 and the out-
put of the model. Such a feedback is surely plausible, as
suggested by the coupling of parameters in the density cur-
rent model discussed in Sect. 3. This possibility remains to
be investigated in future work.

Additionally, there are several other statistical analy-
ses to be performed, including the Zawadzki test of the
Taylor hypothesis (Zawadzki, 1973) and the Pavlopoulos
and Gupta duration multiscaling analysis (Pavlopoulos and
Gupta, 2003). Some of this work was carried out by Nord-
strom (2002). However, additional work is required on these
analyses, and it is to be published later. As far as we know,
this is the first model of tropical oceanic rainfall, developed
directly from the physical processes governing convection,
which shows significant multifractal statistical scaling as ob-
served empirically. The eventual goal of this modeling effort
is to produce scaling statistics directly linked to the more
complex physical processes occurring over land. Such a
model will be of great practical value in predicting hydro-
logical response in ungauged basins to convective storms.
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