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Abstract.  Conditional nonlinear optimal perturbation atmosphere model of El Ro-Southern Oscillation (ENSO),
(CNOP) is proposed to study the predictability of numeri- in an attempt to explore error growth and predictability of the
cal weather and climate prediction. A simple coupled ocean-coupled model (Xue and Cane, 1997a, b; Thompson, 1998;
atmosphere model for ENSO is adopted as an example t&amelson and Tziperman, 2001). In addition, LSVs are em-
show its applicability. In the case of climatological mean ployed in the ensemble numerical weather prediction. At
state being the basic state, it is shown that CNOP tends tthe European Center for Medium-Range Weather Forecasts
evolve into EI Nfo or La Niia event more probably than lin- (ECMWEF), LSVs are utilized to construct the initial pertur-
ear singular vector (LSV) on the condition that CNOP and bations for the ensemble forecast, in order to estimate the
LSV are of the same magnitude of norm. CNOP is also em-probability distribution of the forecast states.

ployed to study the prediction error of El i\ and La Nita The motions of the atmosphere and ocean are governed
events. Comparisons between CNOP and LSV demonstratey complicated nonlinear systems. The theory of LSV and
that CNOP is more applicable in studying the predictability LSVA is established on the basis that the evolution of the ini-
of the models governing the nonlinear motions of oceans andial perturbation can be described approximately by the lin-
atmospheres. earized version of the nonlinear model. This raises a few
guestions concerning the validity of TLM. One is how small
the initial perturbation should be to guarantee the validity of
TLM; another is how to determine the time interval during
which the TLM is valid. There has been a few papers ad-

Determination of the fastest growing initial perturbations in Aressing these concerns, but no satisfying answer has been

numerical weather and climate prediction and in the atmo-9'ven (Lacarra and Talagrand, 1988; Tanguay and Bartello,

spheric research is of central importance. The linear ap-_1995; Mu et al., 2000). Therefore, for the nonlinear systems

proach for finding the fastest growing initial perturbation is in the numerical weather and climate prediction, it is desir-

widely adopted in both the theoretical studies and the nu-2ble and often necessary to deal with the nonlinear models
themselves rather than their linear approximations. Leading

merical weather prediction. Usually, it is assumed that the
Lyapunov vector and exponent have also been used to study

initial perturbation is sufficiently small such that its evolu- : . L
tion can be governed approximately by the tangent linegPredictability problems (Lorenz, 1996). Realizing that when

model (TLM) of the nonlinear model. For a discrete TLM, the initial uncertainty is not very small, the leading Lyapunov

the forward propagator can be expressed as a matrix, anfiXPonent may not be a good measurement of the predictabil-

computing the linear fastest growing perturbation is reducedlfy' Aurell et al. (1997) ihr!trr(])dhuce(; the conclzleztt())f gm]tc? size
to calculate the linear singular vector (LSV), which corre- -YaPunov exponent, which has been applied by Bofietta et

sponds to the maximum singular value of the matrix. LSV al. (1998) to study the prediptability of the atmos.phere. Toth
and linear singular value (LSVA) were introduced into me- and Kalnay (1997) also pointed out that breeding method,

teorology by Lorenz (1965) to investigate the predictability which has b?ef‘ used to. generate ‘”““’3?' perturbations in en-
of the atmospheric motion. Buizza and Palmer (1995) uti_semble prediction, provides an extension of the concept of

lized LSVs to study the patterns of the atmospheric genera|_yapunov vector into the nonlinear field with finite amplitude

circulations. Recently, this method has been used to find Ouper.t_urbations. IOortWijln agtha:rkmeijer (11‘995) andd Bark-
the initial condition for optimal growth in a coupled ocean- meljer (1996) also realize the |m|'tat|or? of TLM and con-
sidered the nonlinear effects by an iterative procedure.

Correspondence td¥l. Mu (mumu@lasg.iap.ac.cn) A novel concept of nonlinear singular value (NSVA) and

1 Introduction
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nonlinear singular vector (NSV) has been formulated, whichthe initial perturbation (initial SST anomaly) superposed on
is a natural generalization to the classical LSVA and LSV the climatological mean state should be less than this bound.
(Mu, 2000). The approach of Oortwijn and Barkmeijer If one neglects this constraint, the local fastest growing per-
(1995) and Barkmeijer (1996) consists of modifying the lin- turbations with a large norm arising from a numerical ap-
ear approach by a numerical iterative procedure. Hence theroach could exceed this bound and become unreasonable
comparison between their results and ones obtained by NSVhitial SST anomaly.

can only be made numerically. Since the focus of this pa- Finally, when we compute the NSVs and NSVAs, the in-
per is not NSV, such comparison is left to the future. Let equality|u(T)| < c|lug|l must be satisfied, wheeg is an

U = U(x,t) be the basic state alldg = U (x, 0) its ini- arbitrary initial perturbationg(7') is its nonlinear evolution

tial state. Ifug(x) is an initial perturbation superposed on andc is a constant independent @ (Mu, 2000). However

Uo, Ug + ug will evolve intoU (x, T) + u(x, T) at timeT, it is difficult to check this requirement for complicated gov-
whereu(x, T) describes the nonlinear evolution of the initial erning equations of atmosphere and ocean.
perturbationuo(x). The initial perturbationeg is called the All these weaknesses suggest that we should investigate
fastest nonlinear growing perturbation, or the first NSV with the nonlinear optimal perturbation with constrained condi-
respect to the basic stal&x, r) in terms of the nornj - ||, if tions. This paper is devoted to address this problem.

and only if The paper is organized as follows. In Sect. 2, we present
. the concept of conditional nonlinear optimal perturbation.
[ (o) = maxi (uo), (1) In Sect. 3 we give a brief description of general-purpose
sequential quadratic programme (SQP) algorithm, which is
where used in this paper to compute CNOP. In Sect. 4, a simple
lu(T)|2 coupled ocean-atmosphere model for ENSO is adopted as an
I(uo) = ol example to investigate the applications of CNOP. The con-

clusion and discussion are presented in Sect. 5.
The square root of Eq. (1), called the first NSVA, is the
largest growth rate of perturbationz) at timeT. In addi- -~ ) ) )
tion to the first NSVA and NSV, we can also define it~ 2 Conditional nonlinear optimal perturbation
(n=1,2,---)NSVAand NSV (Mu, 2000). Durbiano (2001)
successfully computed the first six NSVs of a shallow water
model.
The two-dimensional quasi-geostrophic model has been{ %_1;) +Fw)=0, in xI[0,T]

Assume that the model governing the motions of the atmo-
sphere or ocean is as follows:

also used to study the NSVA and NSV (Mu and Wang, 2001). @)
The numerical results demonstrate that for some types of ba-
sic states, there exist such that in the phase space func- Wherew(x, /) = (wa(x, 1), wa(x, 1), ..., wy (X, 1)), F @ non-
tional I (up) attains local maximum at*, which is called linear operator, andj the initial state(x, 1) € 2 x [0, T'],
local fastest growing perturbations. But there is no such phe$2 & domain inR", andT < +00, X = (X1, X2, ..., Xn), !
nomenon in the case of LSVs and LSVAs due to the absencéhe time. To facilitate the following discussion, suppose ini-
of the nonlinearity of the corresponding TLM. The local tial value problem (2.1) is well-posed and is the propa-
fastest growing perturbations usually possess larger normgator from 0 to time7". Hence, for fixedI" > 0, the solu-
comparing to the first NSV, which corresponds to the globaltion W(x, T') = M (wo)(T) is well-defined. Letl/(x, 7) and
maximum value of functional (ug). Although the growth ~ U(X. 1) + u(x, 1) be the solutions of problem (2.1) with ini-
rates of the local fastest growing perturbations are smallefial valueUo andUo-+uo respectively, whereo is the initial
than the first NSVA, their nonlinear evolutions at the end of Perturbation. We have
t,\rllg\t;me interval are considerably greaterthan that of the flrstU(T) — M(Uo)(T), U(T)+u(T) = M(Ug+uo)(T).(3)
in terms of the chosen norm. In this case, the local

fastest growing perturbations could play a more importantSou (T) describes the evolution of the initial perturbation
role than the global fastest growing perturbation in the study For a chosen norrit - || measuringe, the perturbatiom
of the predictability. is called the conditional nonlinear optimal perturbation with

Itis clear from the results of Mu and Wang (2001) that for constraint conditioriug| < & , if and only if
predictability study, we should first find out all local fastest
growing perturbations, then investigate their effects on the
predictability. This is inconvenient in practical application.
Besides, sometimes the local fastest growing perturbatiovhere
with a Ia_rge norm could be physically unreasonable. For N- 7 (wo) = |M(Uo + uo)(T) — M(Uo)(T)]. (5)
stance, in an anomaly model of ENSO system, sea surface
temperature (SST) anomaly usually have an upper boundn the above, the constraint condition is simply expressed as
For example, over the period 1900-1999, SST anomaly avbelonging to a ball with chosen norm. Obviously, we can
eraged over Nio-3 region is always less thafi®. Hence, also investigate the situations that the perturbations belong

w|;—0 = wo,

J(ugs) = le;r;ax5 J(up), 4)

=<



M. Mu et al.: Conditional nonlinear optimal perturbation

495

to other kind of functional set. Furthermore, the constraint4 Applications of conditional nonlinear optimal pertur-

condition could be some physical laws, which the perturba-

tion should satisfy.

bations to a simple coupled ocean-atmosphere model
for ENSO

In this paper, we adopt a sequential quadratic program- _ _ _ _ _
ming (SQP) solver to compute CNOP, which is described inIn this section, the CNOP is applied to study the predictabil-

Sect. 3.

3 Description of SQP method

After discretization and proper transformation of the objec-
tive function, the nonlinearly constrained optimization prob-
lem considered in this paper can be written in the form

xrgig F(x), (6)
subject to

h(x) <0,

whereh = (h1, ha, ---, h,) " is a vector of nonlinear func-

tions. Itis assumed that at any pointhe gradien¥ F (x) of
the objective function and the Jacobiax) = SVutz-h)
of constraint function can be computed.

to solve the nonlinear minimization problems with equality

SQP is a class of optimization solvers that can be used{ d% =a1Tg + ashg + \/gTE(TE — uhg) — ZTE,

and inequality constraint condition. The SQP algorithm de-

scribed in Powell (1982) is as follows.

Step 0.Set iteration = 0, a solution guess®, a Hessian La-
grangian estimatel® = |, which is the identity matrix, and
an initial given value of Lagrange multipliex?.

Step 1.Evaluate the objective functions and their gradients.

F(x'), h(x")
VF(x'), Vh(x)

Step 2.Computed’ by the following quadratic programme
(QP) sub-problem,

n;;n([VF(xf)]Td" + %(d”Hfd"),
subject to
h(x') + [Vh(x")]"d" <0,

whered' is a direction of descent for the objective function.
Then usingd’, we determine the Lagrange multipligt+!

corresponding to the QP sub-problem (Barclay et al., 1997).

Step 3. Check convergence.  Ifc/, A'*! satisfy
VL, At < e, whereVL = VF + Vha, ande is

ity of ENSO within the framework of the simple coupled
ocean-atmosphere model of Wang et al. (1999). The ocean
component of this theoretical model is derived from the
model of Zebiak and Cane (1987). The essence of the ocean
component is the nonlinear coupling between the mixed layer
thermodynamics and the upper ocean dynamics. The wind
forcing required by ocean component is described by diag-
nostic equations based on a simplified Lindzen-Nigam model
(Lindzen and Nigam, 1987). By focusing on the equatorially
trapped east-west seesaw structure of the ENSO, this sim-
ple coupled model is formulated using Lorenz (1963) trun-
cation in terms of two first-order nonlinear ordinary differen-
tial equations. The two dimensionless equations describe,
respectively, the time evolution of the anomalous sea sur-
face temperaturdr and the anomalous thermocline depth

h g both in the equatorial eastern Pacific:

)

dhg _
dt

b(2hg — Tg) — h,

where
al = (A]_"Z —_l— AY_"X — o),
az = _MATXa

_ 20

T p(1-30?)"

The coefficients:; anday involve basic state parameters
AT, and AT,, which characterize, respectively, the mean
temperature difference between the east and west and be-
tween the surface and subsurface water. Note that, these ba-
sic state parameters vary with time, reflecting the annual cy-
cle of the basic statex, is a Newtonian cooling coefficient
for SST anomalies. The coefficientmeasures the effect of
the thermocline displacement on S&Tis the air-sea cou-
pling coefficient.p is a function of meridional length scales.
For more detailed description of the simple coupled model,
the readers are referred to Wang and Fang (1996) and Wang
et al. (1999).

The steady solution (0,0) represents the climatological
mean equilibrium state or an ENSO “transitional” state (in-
cluding annul cycle) in which both SST and the depth of ther-
mocline are normal.

a given positive number to guarantee the convergence, then The model is integrated by fourth-order Runge-Kutta

x!is the point at which the objective (x) is minimal. Oth-
erwise, letxit! = x' + ad’, « < 1, and then go to Step
4.
Step 4. Update Hessian Lagrangian. Let= xitl — x|
andy’ = VL(x™, A1) — VL(x', ). The new Hessian
LagrangianH‘*1, can be obtained by calculating
HisisiTHiT
SiTHisi

Then go to Step 2.

yi iT

yiTsi ’

Hi+1 — Hi _

scheme withdt = 0.01, which represents one day. The
Fortran code of SQP adopted is a modified version of
Powell (1982) and can be gotten from Y. Yuan (e-mail:
yyx@lsec.cc.ac.cn).

4.1 Conditional nonlinear optimal perturbation@f— the
climatological mean equilibrium state

In this paper, the normjug]l = +/Tgo?+ hEeo® is em-

ployed to measure the perturbatin(), whereTgg andhgg
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Fig. 1. (a)u%)a(T) andug)(T), the nonlinear evolutions mrga) and Fig. 2. (a) IIUE\?;(T)II and IIU(Ll(;)(T)II, the nonlinear and linear evo-

ugz in the phase space respective(ly) 9215) and9/(vl§y the position  lutions ofuga) with T = 12 months respectwelf%] (up) for(rgn-
angles ovélL) andug? as functions o8, respectively. dom initial perturbations in diskupll < 0.20, J(ugs' ) andJ (Ug, ).

represent the initial SST and thermocline depth anomaly, rell and 1V-Quadrant respectively. To further investigate the
spectively. ForT = 10, 12 months with initial time being difference between the two CNOPs, we integrate the model

January, we obtained CNOPs of basic statith constraint ~ with initial valuesug? andué? for eachs € [0.01, 0.25] and

condition fJuo|| < 4, § € [0.01, 0.25] respectively. The re-  optain their nonlinear developments()(7) and u'}(T)
sults forT = 10, 12 months are quite similar. For simplic- for 7 = 12 months. The results are plotted in Fig. 1a. It
ity, we only show that of the case df = 12 months. In s readily shown that witl$ increasing from 0.01 to 0.25,

this case, there exist two different CNORg;; and u?, u (1) () (7)) departs from the neighborhood of and

which are all on the boundary of the corresponding discthe two different CNOPs evolve into the patterns located in I-
llupll < §,8 € [0.01, 0.25]. Let 9,(\% i = 1,2, be the po- Quadrantand Ill-Quadrant in the plafig — & ¢ respectively.
sition angles of the two CNOPSs, which is the one between To compare CNOP with LSV, we further investigate the
the CNOP and the positiv€g-axis in the planely — hg nonlinear evolution and the directions of LS\Mp, =
and represents the direction of the veatflf. Then the two  (—0.0573 0.0819 is a LSV of the basic staté and located

CNOPs can be expressedu%%) =5 costY, ssing®)and  Inll-Quadrant. To facilitate the following discussion, we de-

NG NG :
uPd= (5 cost'\?, 5sin6'?)) respectively, wherd is the mag- fine two scaled LSVs,

nitude of initial perturbation. Fof = 0.20, the two CNOPs  ; [lu$y | @ lu$l
are (-0.0498, 0.1937) and (0.0295, -0.1978) and located irf'or = oL | OL oL = — oL |

uor,
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thus a
0.45 ( ) T T T
&) &) @ @ I T
lug Il = llugs | =6, [lug; Il = llugs Il = 4. 0.4 Sl
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Integrating the nonlinear model withélL) and ugzL) being

initial values, we obtain the evolutions” (T), for each
§ € [0.01, 0.25] respectively. The results are also plotted
in Fig.1a, whereA and A’ correspond to the nonlinear evo- 0.2}

0.3r

0.25

lutions ofué? and uélL) with § = 0.2, B and B’ to the ones 0.15}

of uf)? andugzL) with § = 0.2 respectively. It is easily shown oal

that for the same value @ when it is large, for example, — uf with 5=0.10

5 = 0.2, u(1) UE(1)) is quite different fromu? (T) 00/ - - uF with 8=0.15
(u?(T)). And with s increasing from 0.01 to 0.25, the dif- o/ U with 8=0.10
ferences become more and more considerable. Besigbs, -0~0J5a; Feb Mar Apr May Jun Ju Aug Sep Ot Nov Dec Jan

can also be expressed(a$osegg, ) sin@ﬁs)), where@i’g, en-
titled position angle in this paper, is the one between LSV (45 (b)
and the positivdg-axis in the pland’y — hg and represents
the direction of the stgz. The position angles of CNOP

u%) and LSVu(()lL) are shown in Fig. 1b. It is demonstrated -0.05-

that the direction of LSV does not change withbut those

of CNOPs do. This indicates that LSV represents the optimal
growing direction due to the linearity of tangent linear model -o.15¢
(Mu and Wang, 2001), but CNOP stands for initial pattern, "
whose nonlinear evolution is maximal at tirfie Figure 2a ~02r

o\ -
— u(;T) with 8=0.12
__. u®F with 3=0.15 .
OF i

us with 6=0.12

E

are the nonlinear and linear evolutionsué?. It follows that -0.25 -
there are remarkable differences between them for large per ol |
turbations. However, when the initial perturbations are suffi- ' el . emmTTTTT T

ciently small, the difference becomes trivial. Meanwhile, the -o.35} .
CNOP tends gradually to the LSV (Fig. 1b). This demon- S
strates that for large initial perturbations, the tangent linear “O%an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
model is not a good approximation to the nonlinear model. 0 o o
. 1 1 1

To verify the correctness of our optimization algorithm, Fi8- 3. u;r, (1) anduy 7, (1), the T, components otiy;(r) and
for u(%) and uf)? with § = 0.20, a large random samples of u(L’)(t),i =1, 2, respectively.
initial perturbations in the diskug|| < 0.20, are chosen to
find out the maximum value of functiondl(ug) (Fig. 2b).
It is clear from Fig. 2b that the value of(u) with other Taking the scaled LSVE&IE)lL) with § = 0.10 anduéZL) with
random perturbations in the digkio|| < 0.20 is always less s = 0.12, as initial values, integrating the nonlinear model
than J(Uga)), i = 1, 2. This verifies that the CNOPs for respectively, we obtain the evolutionsudf’ (1), of which the
8 = 0.20 are indeed the nonlinear optimal perturbations with 7, component are shown in Fig. 3 too. The results demon-
constraint conditiorjjup| < 0.20. For the other values &f strate thau® with § = 0.10 (u(z) with § = 0.12) does not
) 0.01, 0.25], the results are similar to that 6f= 0.20 L PN ' inti

€ [_~ , Y-£9], . = Y.L evolve into El Nflo (La Nifia) event. In the prediction and
For simplicity, only the case of = 0.20 is shown. These research of ENSO, it is important to find out the initial pat-
indicate that SQP algorithm adopted in this paper can solvgerns which will evolve into EI Nio or La Nfia event most
efficiently the optimization problem Eq. (4). probably (Thompson, 1998). Our results suggest that CNOP

The CNOPs of basic stat@ are the initial perturbations s more applicable than LSV for this purpose.
superposed on the climatological mean state, which represent |, the following subsections, we investigate the CNOPs of

the initial anomalies7g, i). In this model, if7z > 0.25  4p E| Nifio and a La Nia events and their applications to the

(Te = —0.25) persists for more than three months, it is re- gstimation of prediction error of EI Kib and La Niia events.
garded as an El Kb (La Niia) event. Letuﬁ\’,)a(t) be the

evolution of ugg, we plot in Fig. 3 theTy component of 4.2 Estimation of prediction errors of El fib and La Nia
it. According to this standard, fof = 12 months, when eventsU® (1) andU@ (1)

3 >0.10 ¢ = 0.12), the CNOFUE,? (ug?) of the basic state

O will evolve into El Nifio (La Niia) event (Fig. 3). Then In this subsection, the basic states?(r) and U@ (r)
what about the evolution of LSV? are the El Nilo and La Niia events, which are obtained
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Fig. 4. (a)Basic statdJ D (r). (b) Basic statd)@ (r). Fig. 5. (a) ||u§&§(T)|| and ||u(ng(T)||, the nonlinear and linear evo-
lution of CNOP ofu® (¢) for T = 10 months and € [0.01, 0.14;
(b) 91<\,1§ andegs), the position angles of LSV and CNOPGfD) as

by integrating nonlinear model with initial valueu{)? = functions ofs, respectively.

(—0.0498 0.1937 andul? = (0.0295 —0.1978 respec-

tively, which are the two CNOPs of the climatological mean

state with§ = 0.20 and7 = 12 months obtained in last to get the exact value af. But Mu et al. (2002) pointed

subsection (Fig. 4). out that if some information about the errors of the initial
Assume that the initial values of the basic staté%), and  observation is known, e.g., if we know that the observation

2 " are taken as initial observations, then the CNOPs ofeffor in terms of nornj| - || is less thars, we can estimate

Uos » - o i .
UD (1) andU@ (1) are closely related to the problem of the the prediction error by considering the following nonlinear

maximum prediction error. We will explain it in detail. Mu et ©OPtimization problem
al. (2002) classified the predictability problems in numerical
weather and climate prediction into three problems, whichEu =
are, respectively, the maximum predictable time, the maxi-
mum prediction error, and the maximum admissible errorsMu et al. (2002) proved thaE, is the upper bound of the
of the initial values and the parameters in the model. Sup-prediction error, that iSE < E,. The conditional nonlinear
pose thatV is the propagator from time 0 ©, U the initial ~ optimal perturbatiomg; obtained from the Sect. 2 satisfies
observation, the prediction error is

E = |MUo)(T) - Utl,

||23f1<)(s IMUo+ uo)(T) — M(Uo)(T).

E, =|MUo+ uos)(T) — MUo)(T)].

whereU’; is the true value of the state at tirife Since the ~ Therefore, the CNOP anfl(us) give an upper bound of the
true valueU’, can not be obtained exactly, it is impossible prediction error caused by the initial observational errors.
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4.2.1 Estimation of prediction error of an El i event
U(l)(t)

The basic stateJV(r), is an El Nfio event (Fig. 4) in
this model. ForT = 10 months, we obtain the CNOP of
U@ (r) and the corresponding nonlinear evolution, which, as

we have mentioned, gives an upper bound for the prediction2 E

error. It is found that, for constraint conditidnug| < 4,

§ € [0.01, 0.14], there exists a CNOP dd¥ (r), which is

on the boundary of disgug|| < §, § € [0.01, 0.14]. Since
U@ (0) is not the origin of the coordinate system, to define
the position angle of CNOP on the plafig — /g, we adopt

a polar coordinate system, whose polé&Jid’ (0), and polar
axis is parallel to the positiv€g-axis. Denote the position
angle of the CNOP b?l(\,lg, this CNOP can be expressed as

(¢ cos@fvlg, ) sinej(vlg), where the position angle is the one be-
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perturbation
o
w

0.2

0.1

3

0.02 0.04 0.06 0.08 0.1 0.12 0.14

tween CNOP and the polar axis. Similar to the case of basic

stateO, for the basic state) D (¢), there are also notable dif-

ferences between the nonlinear and the linear evolution of
CNOP, and between the position angles of CNOPs and those  ,

of LSVs. The details are shown in Fig. 5.

For T = 12 months, there also exists a CNOP
(¢ cos@fvlg, ) sinej(vlg). The difference between the CNOP and
the LSV are similar to the case &f = 10 months. For sim-
plicity, we do not show the results here.

4.2.2 Estimation of prediction error of a LafNi eventy®

Similar to the case of the El Ko UP(r), we compute
the CNOPs of a La Nia eventU®(r) (Fig. 4), and com-

pare them to the linear singular vectors of the correspond-

ing tangent linear model. It is found that, f& €
[0.01, 0.14] andT = 10, 12 months, there exists a CNOP
(6 cos@,(vzg , asinefvzg), respectively. Figure 6 shows the dif-

(b)

1.98

©
(=2

8 (radian)
o ’

1.86 . . . . . .
0.02 0.04 0.06 0.08 0.1 0.12 0.14

1)

ferences between the nonlinear and linear evolution, and berig. 6. (a) [lu'?} (7)]| and|[u{3 (7)), the nonlinear and linear evo-
tween the position angles of CNOPs and those of LSVs forytion of CNOP ofu(@ (¢) for 7 = 12 months and < [0.01, 0.14;

T = 12 months. It follows that there is no significant differ-
ence when the initial perturbations are sufficient small. But
with § increasing from 0.01 to 0.14, the difference becomes
more and more distinguishable. Similarly, the position an-
gles of LSV and CNOP ofJ@(r) have considerable dif-
ferences. All these suggest that in these cases the TLM i
not a good approximation to the original nonlinear model. If
TLM is used to estimate the error growth, the prediction er-
ror could be overestimated or underestimated, which yield

uncertainty in the assessment of forecast skill. The usage o

CNOP in the research of predictability is expected to provide
improved results.

5 Conclusion and discussion

In this paper, we used a simple theoretical coupled ocean

(b) 0<2) andeg), the position angles of LSV and CNOP G2 as

functlons ofs, respectively.

.termining the initial patterns that will evolve into EIl fib or

'$a Nifia events most probably. In the case of estimation of

prediction error, comparisons between CNOP and linear sin-
gular vector (LSV) suggest that CNOP be also a better tool
Pan LSV.

There is an essential difference between LSV and CNOP.
LSV represents the optimal growing direction of the initial
perturbations in the TLM, CNOP stands for a kind of initial
patterns, whose amplitude of the nonlinear evolution is max-
imal with the constraint condition at timE. Hence CNOP
does represent the effects of model’s nonlinearity. The phys-
ical explanation of CNOPs, and related observational data

atmosphere model to demonstrate the concept of conditionanalysis are the works of the scientists in the future.

nonlinear optimal perturbation (CNOP) and its application to
study predictability problems of El Rb and La Niia events.
It is shown that CNOP is more applicable than LSV in de-

Although the model (Eqg. 7) is a simple theoretical one,
the characteristic of the nonlinearity of air-sea interaction is
grasped, the nonlinear characteristic of the model is revealed
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from the aspects of the initial perturbation pattern and itsBarclay, A., Gill, P. E., and Rosen, J. B.: SQP methods and their ap-
corresponding nonlinear evolution by using the CNOP ap- plication to numerical optimal control, Numerical Analysis Re-
proach. It is reasonable to reckon that for more complicated Port 97-3, Department of Mathematics, University of California,
nonlinear models governing the motions of the atmosphere San Diego, La Jolla, CA, 1997. .
and/or oceans, the results from CNOP approach could be SigE_;ar_kmeuer, J Constructing fe_lst-growmg perturbations for the non-
nificantly different from those from LSV approach. This in- _ !Inéarregime, J. Atmos. Sci., 53, 28382851, 1996,

. .. . L Boffetta, G., Giuliani, P., Paladin, G., and Vulpiani, A.: An exten-
dicates that it is worthwhile to survey the reliability of results

. . . sion of the Lyapunov analysis for the predictability problem, J.
obtained from the linear approach. The results of this study a¢m0s. sci. 25p3409_341)é 1998 P yp

suggest that CNOP approach be one of useful tools in they;izz5, R. and Palmer, T. N.: The singular-vector structure of the

study of nonlinear motions of atmosphere and oceans. atmospheric general circulation, J. Atmos. Sci., 52, 1434—1456,
In this paper, we only calculate CNOP of two dimen- 1995,

sional ordinary differential equations. Concerning the cal-Durbiano, S.: Vecteurs caracteristiques de modeles oceaniques pour

culations of CNOP with high dimensional system, compu- la reduction d'ordre er assimilation de donnees, Ph.D. These,

tational cost is of importance. For two-dimensional quasi- Universi€ Joseph Fourier, Grenoble, 2001.

geostrophic model with freedom of 3 0ve have succeeded Lacarra,_J.F: and Talagra_nd, O.: Short-range evolution of small per-

in obtaining CNOP by SQP method. The success of gain- _turbatlon in abarat_roplc model, Tellus, 40A, 81-95, 1988.

ing CNOP numerically depends mostly on the optimization Lindzen, R. S. and Nigam, S.: On the role of sea surface tempera-

. . - - L ture gradients in forcing low-level winds and convergence in the
algorithm. If the algorithm is capable of obtaining a mini- tropics, J. Atmos. Sci., 44, 2418-2436, 1987.

mum, it is hopeful t.o geF CNOP by this algorithm. Some- Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
times, parallel algorithm is a useful tool to capture the global 130141, 1963.

minimum, considering that there exist multi-CPU comput- | orenz, E. N.: A study of the predictability of a 28-variable atmo-
ers. In operational 4-dimensional variational data assimila- spheric model, Tellus, 17, 321-333, 1965.

tion (4-D-VAR) and ensemble forecast, computational cost,Lorenz, E. N.: Predictability — A problem partly solved. Proc. semi-
particularly the computer time, is of importance. But if we  nar on predictability, Reading, United Kindom, European Center
only consider the applications of CNOP to the research of for Medium-Range Weather Forecasts, 1-18, 1996.
predictability, the computer time is the secondary consideraMu, M No_nline«_";tr singular vectors and nonlinear singular values,
tion. Science in China (D), 43, 375-385, 2000.

For more complicated models employed in the numeri-Mu’ M., Guo, H., Wang, J. =, and Li, ¥.: The impact of nonlin-
P ploy ear stability and instability on the validity of the tangent linear

cal weather and clim.at.e prediction, the involved optimizatiqn model, Adv. Atmos. Sci., 17, 375-390, 2000.
problems could be difficult. The models are often of high di- \y, . and wang, J. C.: Nonlinear fastest growing perturbation and
mensions, and the constraint conditions on physical variables the first kind of predictability, Science in China (D), 44, 1128—
or the observation errors can be complex. In some cases, 1139, 2001.
the problems are non-smooth one too. To obtain CNOP ofviu, M., Duan, W. S., and Wang, J. C.: The predictability problems
these models, we have to solve the optimization problems in numerical weather and climate prediction, Adv. Atmos. Sci.,
with complicated constraint conditions and with high dimen- 19, 191-204, 2002.
sions. To overcome these difficulties, the collaborations beOortwijn, J. and Barkmeijer, J.: Perturbations that optimally trigger
tween computational mathematicians and atmospheric and Weather regimes, J. Atmos. Sci., 52, 3932-3944, 1995.
oceanic scientists are necessary. Nevertheless these difficdTO%e!h M- J. D.: VMCWD: A FORTRAN subroutine for con-
. ; . o . strained optimization, DAMTP Report 1982/NA4, University of
ties are not the reason for stopping our investigation. Consid- .
. . . Cambridge, England, 1982.

ering that operational 4-D-VAR has bee_n successful Imple'Samelson, R. M. and Tziperman, E.: Instability of the chaotic
mental at the European Center for Medium-Range Weather gnso: the growth-phase predictability barrier, J. Atmos. Sci.,
Forecasts (ECMWF), which solve an optimization problem 53 3613-3625, 2001.
of dimension 16— 107, we are encouraged to expect that the Tanguay, M., Bartello, P., and Gauthier, P.: Four-dimensional data
rapid development of computational mathematics and com- assimilation with a wide range of scales, Tellus, 47A, 974-997,
puter will enable us to achieve our purpose step by step. 1995.
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