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Abstract. The goal of this study is to compare the perfor-
mances of the ensemble Kalman filter and a reduced-rank
extended Kalman filter when applied to different dynamic
regimes. Data assimilation experiments are performed us-
ing an eddy-resolving quasi-geostrophic model of the wind-
driven ocean circulation. By changing eddy viscosity, this
model exhibits two qualitatively distinct behaviors: strongly
chaotic for the low viscosity case and quasi-periodic for the
high viscosity case.

In the reduced-rank extended Kalman filter algorithm, the
model is linearized with respect to the time-mean from a long
model run without assimilation, a reduced state space is ob-
tained from a small number (100 for the low viscosity case
and 20 for the high viscosity case) of leading empirical or-
thogonal functions (EOFs) derived from the long model run
without assimilation. Corrections to the forecasts are only
made in the reduced state space at the analysis time, and it is
assumed that a steady state filter exists so that a faster filter
algorithm is obtained. The ensemble Kalman filter is based
on estimating the state-dependent forecast error statistics us-
ing Monte Carlo methods. The ensemble Kalman filter is
computationally more expensive than the reduced-rank ex-
tended Kalman filter.

The results show that for strongly nonlinear case, chaotic
regime, about 32 ensemble members are sufficient to ac-
curately describe the non-stationary, inhomogeneous, and
anisotropic structure of the forecast error covariance and the
performance of the reduced-rank extended Kalman filter is
very similar to simple optimal interpolation and the ensemble
Kalman filter greatly outperforms the reduced-rank extended
Kalman filter. For the high viscosity case, both the reduced-
rank extended Kalman filter and the ensemble Kalman filter
are able to significantly reduce the analysis error and their
performances are similar. For the high viscosity case, the
model has three preferred regimes, each with distinct energy
levels. Therefore, the probability density of the system has a
multi-modal distribution and the error of the ensemble mean
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for the ensemble Kalman filter using larger ensembles can be
larger than with smaller ensembles.

1 Introduction

The dynamics governing oceanic processes vary strongly
with location. In regions close to the mid-latitude western
boundary jets, the ocean circulation is dominated by highly
nonlinear, energetic mesoscale eddies, and the covariance
model is inhomogeneous and anisotropic. By the expres-
sion of “inhomogeneous”, we mean that variances of the
ocean circulation depend on location and by the expression
of “anisotropic”, we mean that global correlation fields with
respect to one point depend not only on the separation dis-
tance but also on the direction relative to that point. The vari-
ability of the ocean circulation makes it non-stationary. As
an example, in a simple reduced gravity quasi-geostrophic
model of the double-gyre circulation, McCalpin and Haid-
govel (1996) noted three preferred regimes, each with dis-
tinct total energy levels, including a high energy state with a
jet penetrating deeply into the basin, a low energy state with
a short meandering jet, and an intermediate energy state with
intermediate jet penetration. Analogous behaviors of the sin-
gle and double-gyre wind-driven circulation were found by
Meacham (2000) and Primeau (2002).

Estimation of the present state of the ocean and forecast-
ing its future evolution have become increasingly important
because the ocean plays a crucial role in climate change. Nu-
merous approaches have been proposed for the state estima-
tion and prediction problems. This study is aimed at assess-
ing and comparing two sophisticated filtering techniques: the
ensemble Kalman filter and a reduced-rank extended Kalman
filter, each applied to two different flow regimes. Evensen
(1994) pointed out that the results from ensemble Kalman
filter was better than the full extended Kalman filter when
applied to a nonlinear quasi-geostrophic ocean circulation
model. In contrast to the model used by Evensen (1994), it
is computationally infeasible to apply the full Kalman filter
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to the model we used. Therefore, a reduced-rank approach
must be used for our study. Another important difference
is that in our study the ensemble size is far less than the
model size, while in the study by Evensen (1994), the en-
semble size is comparable to the model size. Furthermore,
we will compare the performances of ensemble Kalman filter
and reduced-rank steady-state Kalman filter under different
flow regimes, from quasi-linear to fully chaotic and nobody
has previously investigated the issue of filter performances
under different dynamical flow regimes.

The paper is organized as follows. Section 2 provides
background information on the ocean model used, the data
assimilation algorithms and how to generate proper ensemble
initial conditions. By the expression of “ proper”, we mean
that the sample covariance of ensemble initial conditions is
consistent with the error covariance in the initial condition.
In Sect. 3, the fully nonlinear filter, the ensemble Kalman
filter, the reduced-rank extended Kalman filter and optimal
interpolation algorithms are discussed. The assimilation re-
sults are given in Sect. 4. Section 5 presents the conclusions
and discussions.

2 Experiment environment

2.1 Ocean model

The model used in this study is a reduced gravity, eddy-
resolving, wind-driven, quasi-geostrophic ocean model,
which can be written as

∂q

∂t
+ J (ψ, q)+ βψx = ν∇4ψ +

fWE

H
, (1)

wheref andβ are the planetary vorticity and its gradient,ν is
a uniform eddy viscosity,WE is the Ekman suction velocity,
H is the upper layer depth,ψ is the stream function andq is
the potential vorticity given by

q = ∇
2ψ −

1

R2
d

ψ. (2)

HereRd is the Rossby radius of deformation.
The model uses an idealized rectangular ocean basin that

is 2048 km in the zonal direction and 4096 km in the merid-
ional direction with a horizontal resolution of 16 km. A no-
slip lateral boundary condition is used on the sides of the
basin. The potential vorticity equation is discretized in space
with a second-order finite difference scheme and advanced in
time with a second-order Runge-Kutta scheme and the time
step is 0.089 day. This same model was used by Mahade-
van et al. (2001) to study the predictability of large-scale
wind-driven ocean flows and by Buehner and Malanotte-
Rizzoli (2003) to evaluate the performance of a reduced-rank
Kalman filter.

The degree of nonlinearity of the model increases as the
eddy viscosity decreases and the model exhibits qualitatively
distinct circulation pattern with different eddy viscosity co-
efficients. As shown in Fig. 1, the model is quasi-linear and

exhibits a quasi-periodic behavior with a period of approxi-
mately 9 years for the high viscosity case (ν = 500). The
circulation is characterized by an oscillation between states
of high and low energy, and the circulation pattern is simple
and well-organized. As the eddy viscosity is reduced to 100,
the quasi-periodic behavior disappears; the flow pattern be-
comes fully chaotic; and the circulation is characterized by
strong meanders and energetic mesoscale eddies. Figure 2
shows that for the low viscosity case, the covariance model
of the ocean circulation is anisotropic and inhomogeneous:
the correlation length scale varies strongly with location and
direction. The variability in the quiescent eastern basin is
dominated by large-scale Rossby waves with very large cor-
relation length scales. The variations near the western bound-
ary, however, have very small correlation length scales. The
radiation pattern shown in Fig. 2d implies that the western
boundary current is the energy source of mesoscale eddies
radiating away from the jet.

2.2 Assimilation scheme

In this study, the “identical twin” approach (assimilation per-
formed using “a perfect model”) is used to compare the per-
formances of the ensemble Kalman filter and a reduced-rank
extended Kalman filter. A schematic diagram of assimila-
tion experiments is shown in Fig. 3. The model is first spun
up from rest using a steady meridionally antisymmetric wind
forcing with an addition of small random perturbations to
break the meridional symmetry of the flow. After spin-up,
a steady meridionally antisymmetric wind forcing is used.
Starting from a fully spun-up state att1, a long integration of
the model is produced: about 37 years for the low viscosity
case and 146 years for the high viscosity case. The state is
sampled every 44 days for the low viscosity case and every
88 days for the high viscosity case. This sampling frequency
is high enough to capture the dominant natural variability of
the model. EOFs are calculated from the output of these un-
constrained model runs. For the low viscosity case, the first
100 leading EOFs explain 94.8% of the variability of the un-
constrained model run. For the high viscosity, the first 20
leading EOFs account for 96.8% of the total variability.

As shown in Fig. 3, a “false” ocean and a “true” ocean
are defined to be the simulation between timet1 and t2 and
betweent3 and t4, respectively. In this study, the model is
perfect: the model used for the assimilation run is identical
to the model used to generate the “true” ocean. The “false”
ocean differs from the “true” ocean only in the initial condi-
tion. The states at timet3 andt1 of the same model run are
chosen to be the initial conditions for the “true” ocean and
our best guess of the initial condition for the assimilation ex-
periment, respectively.

The observation network utilized for this study is shown in
Fig. 4. A set of measurements of potential vorticity are made
at 30 model grid-points. Most of them are distributed near
the western boundary where mesoscale variability is highest.
The observations are generated from the true state using

y(t) = Hxt (t)+ ε. (3)
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Fig. 1. Evolution of kinetic energy in a long model run without assimilation for(a) high and(b) low viscosity cases. Snapshots of the
potential vorticity field in the long model run without assimilation for(c) high and(d) low viscosity cases.

HereH is the measurement matrix which interpolates the true
state pointsxt to the observation pointsy andH is assumed to
be linear in this study;ε is the measurement error. DefineNs
andNo to be the number of state variables and observations,
thenH is anNo×Ns matrix andε is anNo-dimensional vec-
tor. In this study, the measurement errors are assumed to be
stationary and uncorrelated with each other. The magnitude
of the measurement error at each location is 10% of the natu-
ral variability of the model. For the data assimilation experi-
ment, the observations are available every 9 days for the low

viscosity case and every 44 days for the high viscosity case.
The higher sampling frequency for the low viscosity case is
necessary because of the shorter correlation time scale.

2.3 Generation of ensemble initial conditions

As described in Sect. 2.2, the best guess and true initial con-
ditions are chosen to be the model states at two different
times from an unconstrained long model run. Therefore, the
uncertainty of the best guess initial condition is represented
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Fig. 2. Global correlation fields for the low viscosity case with respect to a point(a) in the quiescent eastern basin,(b) close to the western
boundary,(c) at the western boundary, and(d) in the north-western part of the basin. The position of the point is denoted by a plus. This
figure is generated from the time series data of a long model run without data assimilation.

spin up

t1 t2 t3 4t

Time
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Fig. 3. Schematic diagram of the assimilation experiments. The
model is spun-up from rest att0 and a fully spun-up state is obtained
at t1 which is then used as initial condition to produce a long model
run. The states between betweent3 and t4 are defined to be “true
ocean” and the state att1 is treated as the best guess of the initial
condition for the assimilation.

by the variability of the unconstrained model run. As shown
in Fig. 2, the sample covariance of the unconstrained model
run is very complicated: the decorrelation length scale varies
strongly with location and the correlation field is anisotropic.
It is very difficult to directly generate an ensemble of initial
states with such a complicated covariance structure for a high
dimensional system. In this study, we generate the proper en-
semble initial condition indirectly. It is assumeda priori that
the stochastic dynamic process is covariance-ergodic so that
the sample covariance calculated from a long model run con-
verges to the covariance estimated from an ensemble fore-
cast. We first generate an ensemble of small perturbations
in potential vorticity with zero mean and a simple isotropic
covariance given by

cov(r1, r2) = e(r1)e(r2)exp

(
−

|r1 − r2|
2

r2
d

)
, (4)

where the horizontal decorrelation length isrd = 80 km, the
magnitude of the error ise(r) = 7 s−1 (10% of the globally
averaged standard deviation of the natural variability) in the
middle of the basin decreasing to zero when approaching the
boundary for the low viscosity case. For the high viscosity
case, the decorrelation length is the same but the error magni-
tude ise(r) = 3.8 s−1. Note that although the variance varies
from location to location, the covariance function is assumed
to have a universal decorrelation length scale. As in Evensen
(1994), the fast Fourier transform (FFT) approach is used to
create the random fields with the covariance structure given
by Eq. (4).

The ensemble of small perturbations is added to the best
guess of the initial condition to produce an ensemble of initial
states which is called ensemble A. The variability of the un-
constrained model run is much higher than the spread among
the ensemble states of A. Ensemble A is integrated using the
model to produce ensemble forecasts for about 9.7 years for
the low viscosity case and 73 years for the high viscosity
case. Figure 5 shows the evolution of the rms spread of the
ensemble forecast which is given by√√√√ 1

Ns(Ne − 1)

Ne∑
j=1

|xfj − xf |
2

wherexf is the mean of the ensemble forecast andNe is
the ensemble size. For the low viscosity case, the spread
increases slowly in the first 8 months, it then increases expo-
nentially until a statistically steady state is reached at the end
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Fig. 4. The 30 locations where measurements of potential vorticity
are made.

of third year. For the high viscosity case, it takes about 25
years to reach a statistically steady state. The error-doubling
time of the model can be approximately inferred from the rms
spread-doubling in the ensemble forecast shown in Fig. 5. As
expected, Fig. 5 shows that the error-doubling time for the
low viscosity case is shorter than that for the high viscosity
case because the low viscosity case is highly chaotic.

2.4 Fully nonlinear filter

The discussion in this section is primarily drawn from the
excellent book on stochastic processes and filtering theory
by Jazwinski (1970). The general approach of filtering and
prediction is probabilistic or Bayesian which does not require
the model to be linear or the stochastic processes involved
to be Gaussian. Dynamical systems such as motions of the
atmosphere or ocean can be modeled by Markov processes:

dx = F(x, t)dt + G(x, t)dβ(t), (5)

wherex is anNs-dimensional state vector of the dynamical
system at timet ; F is theNs-dimensional vector for comput-
ing the state vector at timet from knowledge of its value at
time t − 1 and externally imposed forces;G is anNs × Nb
matrix which represents the relationship between theNb-
dimensional Brownian motions and theNs-dimensional state
vector; andβ(t) is anNb-dimensional Brownian motions
with the covariance matrix of< dβ(t)dβ(t)T >= Q(t)dt .
Here the angle bracket denotes the expected value.

The time evolution of the probability density of the state
vector x is described by the Komogorov’s forward equa-
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Fig. 5. The evolution of the rms spread of the ensemble forecast
with 64 ensemble members for(a) low and(b) high viscosity cases.

tion or the Fokker-Planck equation (Jazwinski, 1970; Gar-
diner, 2002)

∂p(x, t)
∂t

= −

Ns∑
i=1

∂ [p(x, t)Fi ]
∂xi

+
1

2

Ns∑
i=1

Ns∑
j=1

∂2
[
p(x, t)(GQG)ij

]
∂xi∂xj

.(6)

As shown in Figs. 6 and 7, the variance and correla-
tion structure of the final states of the ensemble forecast are
very similar to those calculated from the unconstrained long
model run. This confirms our covariance-ergodic assump-
tion. The mean of the final states of the ensemble forecast
is replaced with the best guess initial condition and the re-
sulting ensemble state is called ensemble B. Note that the
sample covariance of ensemble B is consistent with the error
covariance in the initial condition.

3 Assimilation algorithms

Although this study is primarily concerned with the ensem-
ble Kalman filter and a reduced-rank extended Kalman filter,
we give a short review of fully nonlinear filter, because the
Kalman filter, the extended Kalman filter and the ensemble
Kalman filter are all special forms of the fully nonlinear filter.

Given the initial condition of the probability of the state
vector, Eq. (6) can be used to forecast the probability of the
state vector at any timet , which is usually referred to as thea
priori density p(x). At the time when observations are avail-
able, a conditional densityp(y|x) can be inferred from the
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Fig. 6. Same as Fig. 2 except that the correlations are calculated from the final states of the ensemble forecast rather than from the uncon-
strained long model run.

measurement model. This condition density fully character-
izes the relationship between the state vector and the obser-
vations. Applying Bayes’s rule yields theposterior density

p(x|y) =
p(x)p(y|x)
p(y)

. (7)

The denominator in Eq. (7) is an normalization factor given
by

p(y) =

∫
+∞

−∞

p(x)p(y|x)dx. (8)

Theposterior densityp(x|y) is the filtering solution which
is used as initial conditions for the Fokker-Planck equation
to produce the forecast of the probability density of the state
vector for the next assimilation cycle. So far, all studies on
Fokker-Planck equation are limited to very low-dimensional
systems (with dimension less than 4), because it is compu-
tationally infeasible to directly integrate the Fokker-Planck
equation for high-dimensional system. An alternative to pre-
dict the evolution of probability density is to use Monte Carlo
method to solve the stochastic partial differential Eq. (5).
With large enough ensemble size, the solution from Monte
Carlo method is a good approximation for the solution to the
Fokker-Planck equation.

3.1 Ensemble Kalman Filter

The ensemble Kalman filter is introduced by Evensen (1994)
as an approximation to nonlinear filtering. In this approach,
the nonlinear dynamical model is used directly to produce the
forecast of the probability density evolution through Monte

Carlo method. It is then assumed that both the forecast errors
and measurement noises are normally distributed. Under this
assumption, the first two moments – mean and covariance –
fully characterize the probability density; the maximum like-
lihood (Bayesian) estimate is the same as the minimum vari-
ance estimate; and the general filtering Eq. (7) becomes the
analysis equation in the Kalman filter:

xa(t) = xf (t)+ K(t)
[
y(t)− H(t)xf (t)

]
, (9)

wherexf (t) andxa(t) are the forecast and analysis vector,
respectively; andK(t) is the Kalman gain matrix.

In the ensemble Kalman filter algorithm, an ensemble of
perturbed observations instead of a single unperturbed obser-
vation are used to update the ensemble forecasts. Otherwise,
it will result in an updated ensemble with a variance that is
too low (Burgers et al., 1998). The analysis equation of the
ensemble Kalman filter is

xaj (t) = xfj (t)+ K(t)
[
yj (t)− H(t)xfj (t)

]
, (10)

wherej counts from 1 toNe; xfj (t) andxaj (t) are the fore-
cast and analysis vector of ensemble memberj ; K(t) is the
Kalman gain matrix; andyj (t) is a set of perturbed observa-
tions given by

yj (t) = y(t)+ νj , (11)

whereνj is drawn from a multivariate normal distribution
with zero mean and covariance equal to the error covariance
of the measurements,Rm. The statistical error of the Monte
Carlo method converge very slowly with the ensemble size:
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Fig. 7. Standard deviations of potential vorticity for the low viscos-
ity case from(a) the unconstrained long model run and(b) the final
state of the ensemble forecast.

the convergence rate is proportional to 1/
√
Ne. The conver-

gence rate is also affected by many other factors such as the
model, observation errors, system noise, ensemble charac-
teristics like localization factors, etc. In the case of high-
dimensional state space, the ensemble size is limited by the
capability of the computer. Therefore, the sample mean and
covariance from random drawing could be far from the de-
sired mean and covariance. In this study, the observation
perturbationsνj are constructed in such a way that its en-
semble mean is zero exactly. This eliminates the statistical
error in the ensemble mean and the filter is found to perform
better under this condition. The ensemble members could
also be constructed in such a way that both the sample mean
and covariance matrix match exactly the desired ones (e.g.
Pham, 2001). Whitaker and Hamill (2002) proposed another
ensemble filter algorithm that eliminates the use of perturbed
observations and they claimed that this new algorithm was
likely to further increase the ensemble accuracy by 20–30%.

The Kalman gain matrix is given by

K(t) = Pf (t)HT (t)
[
H(t)Pf (t)HT (t)+ R(t)

]−1
. (12)

In the ensemble Kalman filter, the forecast error covari-
ance matrix,Pf (t), is assumed to be identical to the sam-
ple covariance from the ensemble forecast. Houtekamer and
Mitchell (1998, 2001) noted that when a limited size of en-
semble were used to estimate the forecast error covariance,
spuriously large correlation between greatly separated grid
points was produced. They proposed to perform an element-
wise multiplication of the sample covariance of the ensemble
forecast with a correlation with a local support to remove the
influence of those observations far away from the grid point
being analyzed and they found that the analysis were sub-
stantially improved under this condition. In this study, we
adopt their approach.

Let ρ denote a correlation function with local support and
ρ ◦ Pf (t) denote the Schur (element-wise) product of this
correlation function and the sample covariance,Pf (t), cal-
culated from the ensemble forecast. When the correlation
function with local support is incorporated, the Kalman gain
can be written as (Houtekamer and Mitchell, 2001)

K(t) =

[
ρ ◦

(
Pf (t)HT (t)

)] [
ρ ◦

(
H(t)Pf (t)HT (t)

)
+ R(t)

]−1
. (13)

In this study, a simple correlation function with local sup-
port is used

ρ(r) =

1.0 −
r2

r2
0

if r ≤ r0

0 if r > r0,

(14)

wherer is the distance between the analyzed grid point and
the observation location andr0 is the “influence” radius be-
yond which the observations will not be used. This function
is isotropic and decreases monotonically with distance with
a rate that depends on onlyr0. Note thatρ = 0 when the
separation distance exceeds the “influence” radiusr0. The
performance of the filter depends on the choice ofr0. If r0
is too small, the observations will not be fully utilized. On
the hand hand, ifr0 is too large, the problem associated with
“remote” observations will arise. In this study, a sensitivity
study is performed to evaluate how the performance of the
ensemble Kalman filter depends on the “influence” radiusr0.

The ensemble forecast covariance matrixPf (t) has such
a large dimension that it cannot be handled directly. Fortu-
nately, the number of observations and the number of ensem-
ble members are usually much smaller than the number of
state variables. In this case, one does not need to compute or
store the full forecast covariance matrixPf (t) as suggested
by Evensen and van Leeuwen (1996). Suppose the ensemble
of ocean states is stored in anNs × Ne matrix C. First, the
ensemble mean of the ocean states is calculated and removed
from C. The resulting ensemble of the ocean state deviations
is stored in theNs × Ne matrix D. Second, we calculate the
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No × Ne matrix S = HD. Third, theNs × No matrix PfHT

is calculated using

PfHT
=

1

Ne − 1
DST , (15)

and theNo ×No matrixHPfHT is calculated using

HPfHT
=

1

Ne − 1
SST . (16)

Then, we calculateρ ◦
(
PfHT

)
andρ ◦

(
HPfHT

)
. Finally,

the Kalman gain matrix is calculated using Eq. (13).

3.2 Reduced-rank extended Kalman Filter

The Kalman filter is a linear filter and it can be extended to
the nonlinear model through a linearization procedure. The
resulting filter is referred to as the extended Kalman filter
(Miller et al., 1994; Ghil, 1997). The model used in this study
consists of about 3.3×104 prognostic variables. It is compu-
tationally infeasible to store and propagate the full error co-
variance matrix of the model. A number of techniques have
been proposed to reduce the computational burden associated
with the model state error covariance matrix (e.g. Fukumori
and Malanotte-Rizzoli, 1995; Cane et al., 1996; Farrell and
Ioannou, 2002). In this study, we adopt the approach used
by Buehner and Malanotte-Rizzoli (2003): the empirical or-
thogonal functions (EOFs) calculated from a long model in-
tegration without assimilation are used as basis functions to
reduce the dimension of the model state.

In the case where the system and measurement dynamics
are linear, the state transition matrix, the spatial distribution
of the observations, and the error statistics of the model and
observations are stationary, the filtering process will reach a
unique steady state: the forecast error statistics and Kalman
gain matrix are constant if the system is both observable and
controllable (Gelb, 1974). In this study, it is assumed that a
steady-state filter exists so that a faster assimilation algorithm
is obtained. The procedure of implementing the steady-state
reduced-rank extended Kalman filter algorithm is summa-
rized as follows.

First, we calculate the EOFs from the output of a model
run without assimilation. The first few dominant EOFs,
which are used as basis functions to reduce the model state,
are stored in anNs ×Nr matrix Er , whereNr is the number
of retained EOFs. In this study, the first 100 leading EOFs
are retained for the low viscosity case and the first 20 lead-
ing EOFs are kept for the high viscosity case. The subspace
spanned by these retained EOFs is referred to as resolved
subspace and its complement is called unresolved subspace.

Second, the linearized model dynamics in the resolved
subspace,M r , which is anNr ×Nr matrix, is obtained. The
model is linearized with respect to the time-mean state from
the model run without assimilation and the model is per-
turbed in the direction of each retained EOF. Theith column
of M r is given by

1

α
ETr [F(x + αei)− F(x)] , (17)

whereF is the nonlinear ocean model, theNs-dimensional
vectorx is the time-mean of a long model run without assim-
ilation, theNs-dimensional vectorei is theith retained EOF,
andα is the size of the perturbation. In this study, the value
of α is 10−3. In Eq. (17), the model is integrated forward
over a period equal to the time between analysis.

The Kalman filter equations in the resolved subspace are
given by (Buehner and Malanotte-Rizzoli, 2003)

K r(t) = Pfr (t)HT
r (t)

[
Hr(t)P

f
r (t)HT

r (t)+ R(t)
]−1

, (18)

Par (t) = [I − K r(t)Hr ] Pfr , (19)

Pfr (t + 1) = M r(t)Par (t)M
T
r (t)+ Qr(t), (20)

wherePfr , Par , andHr are the forecast error covariance ma-
trix, the analysis error covariance matrix, and the measure-
ment model in the resolved subspace, respectively.Qr is the
“pseudo-model error” covariance in the resolved subspace.
There is dynamic coupling between the resolved and unre-
solved subspace, the errors in the unresolved subspace can
affect the errors in the resolved subspace. The errors due
to the use of a reduced space in the analysis are treated as
model errors though the model is perfect. We call these er-
rors “pseudo-model errors”.

Third, observation error covariance and model error co-
variance are specified. Observation error is stationary in
this study and consists of two components: the actual mea-
surement error and representativeness error (Buehner and
Malanotte-Rizzoli, 2003), that is,

R = Rm + HuP
f
uHu. (21)

whereHu andPfu are the measurement model and forecast
error covariance matrix in the unresolved space, respectively.
The characteristic of the actual measurement error is de-
scribed in Sect. 2. Representativeness error accounts for the
difference between the resolved subspace and the full space.
As in Buehner and Malanotte-Rizzoli (2003), we assume that
the resolved and unresolved subspace are dynamically un-
coupled and the second term in Eq. (21) is calculated from
the long model run without assimilation by assuming the
forecast error in the unresolved subspace is equal to the vari-
ability in the long model run projected into the unresolved
subspace.

The “pseudo-model errors” related to the use of a reduced
space are very difficult to explicitly calculate. As in Buehner
and Malanotte-Rizzoli (2003), these “pseudo-model errors”
are estimated through parameterization. It is assumed that
the “pseudo-model error” covariance is proportional to the
sample covariance in the resolved subspace computed from
the unconstrained long model run:

Qr = γ2, (22)

where2 is the sample covariance in the resolved subspace.
The proportionality constant,γ , is chosen in such a way that
the filter performance (in terms of minimizing the analysis
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error) is best. The exact value ofγ used in each experiment is
described in Sect. 4. Alternatively, this parameter can be esti-
mated adaptively through the method of covariance matching
(Maybeck, 1982): givenγ , the theoretical forecast error co-
variance can be estimated through Eqs. (18) to (20) and the
sample covariance of the forecast error in the resolved sub-
space can be calculated using the results from data assimila-
tion:

� =
1

Nt

Nt∑
i=1

didTi , (23)

wheredi is the forecast error vector in the resolved subspace
at time stepi andNt is the total number of time steps for the
data assimilation experiment. The parameter value ofγ is
chosen so that the theoretical forecast error covarianceQr is
close to its sample value�.

Finally, given the model dynamics, the measurement
model, the model and observation error covariances in the
resolved subspace, the steady solutions to Eqs. (18) to (20)
can be obtained efficiently using the doubling algorithm (An-
derson and Moore, 1979). Multiplication of the stationary
Kalman gain matrix with the innovation vector produces the
corrections in the resolved subspace, which are mapped into
the full model space before being added to the forecast to
produce the analysis. The full nonlinear model is used to
produce the forecast.

In this study, the basis functions used to reduce the model
state are fixed in time. The SEEK filter introduced by Pham
et al. (1998) uses dynamically evolving basis functions. Ver-
ron et al. (1999) applied the SEEK filter to the tropical Pa-
cific and found no significant improvement, as compared to
fixed basis functions. Ballabrea-Poy et al. (2001) applied the
SEEK filter to study mid-latitude mesoscale eddies and found
that using the dynamically evolving basis functions improved
the long-term filter performance only when the basis func-
tions were correctly initialized.

3.3 Optimal interpolation

Optimal interpolation, the traditional approach of data as-
similation, is used as a benchmark to evaluate the perfor-
mance of the ensemble Kalman filter and reduced-rank ex-
tended Kalman filter. Optimal interpolation is a simple form
of the Kalman filter. In this algorithm, it is assumed that
the forecast error covariance is temporally stationary, has a
spatially uniform variance and a spatially uniform isotropic
Gaussian correlation function with a decorrelation length ap-
proximately equal to the decorrelation length in the region of
strong variability near the western boundary, which is 48 km
for the low viscosity case and 80 km for the high viscosity
case. The observation errors are assumed to be temporally
stationary, uncorrelated and have a spatially uniform vari-
ance. It is found that if the forecast error covariance matrix is
tuned so that its variance is 1/5 of the observation error vari-
ance, the filter performance is optimal in terms of minimum
analysis error.

3.4 Expectations of assimilation results

In terms of accuracy, the ensemble Kalman filter is expected
to outperform both the reduced-rank extended Kalman filter
and optimal interpolation, because the fully nonlinear model
is used directly in the ensemble Kalman filter to estimate
the probability density evolution of the forecast error. In the
reduced-rank extended Kalman filter, the nonlinear model is
linearized first, the error covariance is propagated using the
linearized model and all higher-order statistical moments are
neglected. The reduced-rank stationary Kalman filter is very
similar to the optimal interpolation: both of them are station-
ary. The major difference between them is how the forecast
error covariance is obtained. In the optimal interpolation, the
forecast error is assumed to have a spatially uniform covari-
ance structure and the decorrelation length is specified em-
pirically according to the statistics of an unconstrained long
model run. In the reduced-rank extended Kalman filter, the
approach used to determine the forecast error covariance is
complex and has a rigorous theoretical justification. How-
ever, the “pseudo-model errors” in the reduced-rank station-
ary Kalman filter due to the dynamic coupling between the
resolved and unresolved subspace are hard to explicitly cal-
culate and they are estimated through parameterization.

In terms of computational cost, the optimal interpolation
and the reduced-rank stationary Kalman filter are signifi-
cantly less expensive than the ensemble Kalman filter. For
the reduced-rank stationary Kalman filter, we have to make
as many nonlinear forecasts as the number of retained EOFs
using Eq. (17) to obtain the linearized model dynamics in
the resolved subspace. However, these forecasts are made
only for 9 days for the low viscosity case, which is equal
to the sampling period of the observations or the period of
one assimilation cycle. For the ensemble Kalman filter, the
nonlinear forecasts are made over the entire assimilation pe-
riod which is about 5 years for the low viscosity case. In
addition, the Kalman gain needs to be recalculated at each
analysis step in the ensemble Kalman filter. For the reduced-
rank stationary Kalman filter, the Kalman gain only needs
to be calculated once. Therefore, the ensemble Kalman fil-
ter is computationally more expensive than the reduced-rank
stationary Kalman filter. The stationary filter requires only
a slightly greater computational effort than a simple model
integration without assimilation. For the ensemble Kalman
filter with an ensemble size ofNe, the computational effort
is at leastNe times as big as the effort required for a sim-
ple model integration without assimilation. Compared to the
ensemble Kalman filter, the reduced-rank extended Kalman
filter is more sophisticated and more difficult to implement.
The reduced-rank Kalman filter and the ensemble Kalman
filter can be combined to reduce the statistical errors of the
Monte Carlo approach (Heemink et al., 2001).



486 X. Zang and P. Malanotte-Rizzoli: A comparison of assimilation results

0 1 2 3 4 5
0

100

200

300

400

rm
s 

er
ro

r

(a) 16 members

0 1 2 3 4 5
0

100

200

300

400
(b) 32 members

0 1 2 3 4 5
0

100

200

300

400

time (years)

rm
s 

er
ro

r

(c) 64 members

0 1 2 3 4 5
0

100

200

300

400

time (years)

(d) 128 members

Fig. 8. Analysis error every 9 days during 5-year assimilation cycle for the low viscosity case under different ensemble sizes:(a) 16 members,
(b) 32 members,(c) 64 members, and(d) 128 members. The black line is the rms error of the ensemble mean and the red line is the rms
spread in the ensemble. In all cases the “influence” radiusr0 = 128 km.

4 Results

Figure 8 shows how the performance of the ensemble
Kalman filter depends on the ensemble size for the low vis-
cosity case. As discussed in Sect. 3.2, the performance of
the ensemble Kalman filter depends on the choice of the “in-
fluence” radiusr0. In this study, the value ofr0 is chosen to
be 128 km for both low viscosity and high viscosity cases and
the filter performance is nearly optimal (in terms of minimum
analysis error). The choice ofr0 is not unique: it varies with
location and ensemble size. The filter performance probably
can be further improved through using smaller value ofr0 in
the western part of the basin compared with the eastern part
and using larger value ofr0 with more ensemble members. In
Fig. 8, the red line is the rms spread in the ensemble, which
is given by√√√√ 1

Ns(Ne − 1)

Ne∑
j=1

|xaj − xa|2

wherexa is the mean of the ensemble analysis. The black line
in Fig. 8 is the rms difference between the ensemble mean
and the true state, which is given by√

1

Ns
|xa − xt |2

and it is called error in the ensemble mean. As seen in Fig. 8,
the ensemble spread is less sensitive to the ensemble size
than the error in the ensemble mean. With the ensemble size
of 16, both the ensemble spread and the error in the ensem-
ble mean decrease slowly during the first year. The ensemble
spread remains nearly constant after the first year. The er-
ror in the ensemble mean, however, increases dramatically
at the 18th month and remains at a higher level than the en-
semble spread afterwards. Upon doubling the ensemble size,
a substantial decrease of the error in the ensemble mean is
observed and the ensemble spread is very close to the error
in the ensemble mean from the beginning to the end. When
the ensemble size is further quadrupled to 128, the changes
in both the ensemble spread and the error in the ensemble
mean are negligible. Figure 8 shows that 32 ensemble mem-
bers are sufficient to accurately describe the forecast error
statistics for the low viscosity case.

Figure 9 shows the results of the ensemble Kalman filter
under two different sets of ensemble initial conditions: one
corresponds to the ensemble A as described in Sect. 2.3 and
the other corresponds to the ensemble B. Ensemble B has
a proper covariance structure, while ensemble A has an in-
correct covariance structure: its ensemble spread is too low.
As seen in Fig. 9, with proper ensemble initial condition, the
error in the ensemble mean decreases very quickly during
the first 6 months and remains at an nearly constant level af-
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Fig. 9. Analysis error every 9 days during 5-year assimilation cycle
for the low viscosity case under different ensemble initial condi-
tions. The ensemble mean of the initial conditions for panel(a) and
panel(b) is identical. The ensemble initial condition for panel (b)
has correct covariance structure. The ensemble initial condition for
panel (a), however, has a spread that is too low. The black line is the
rms error of the ensemble mean and the red line is the rms spread
in the ensemble. For both cases, the ensemble size is 64 and the
“influence” radiusr0 = 128 km.

terwards. The ensemble spread is always indistinguishable
from the error in the ensemble mean for the case with proper
ensemble initial conditions. For the case in which the spread
of the ensemble initial condition is too low, the error in the
ensemble mean is much greater than the ensemble spread at
the beginning. The ensemble spread increases and the error
in the ensemble mean decreases rapidly during the first 18
months. After that, both the ensemble spread and the error in
the ensemble mean change slowly with time. They intersect
at the 30th month and remain nearly constant later.

As described in Sect. 3.3, the performance of the reduced-
rank extended Kalman filter depends on the value of the tun-
ing parameterγ which is the scaling factor applied to the
covariance from the unconstrained model run to obtain the
“pseudo-model error” covariance. It is found empirically that
when the value ofγ is chosen to be 0.0025 for the low vis-
cosity case and 0.04 for the high viscosity case, the filter per-
formance is best. The performance of the reduced-rank ex-
tended Kalman filter also depends on the number of retained
EOFs,Nr . Buehner and Malanotte-Rizzoli (2003) found that
the filter performance was nearly optimal whenNr = 100
for the low viscosity case andNr = 20 for the high viscosity
case and using more EOFs had very little effect on the filter
performance.
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(b) reduced−rank asymptotic Kalman filter with 100 EOFs 
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Fig. 10. Unconstrained model forecast error (red line) and analysis
error (black line) every 9 days during 5-year assimilation cycle for
the low viscosity case from the assimilation experiment of(a) op-
timal interpolation,(b) reduced-rank asymptotic Kalman filter with
100 EOFs and the tuning parameterγ = 0.0025, and(c) ensemble
Kalman filter with 64 ensemble members and the “influence” radius
r0 = 128 km.

Figure 10 shows the rms error of the analysis from the op-
timal interpolation, the reduced-rank extended Kalman filter
and the ensemble Kalman filter for the low viscosity case.
The performance of each assimilation technique is evaluated
by comparing the rms error from the assimilation experiment
with the forecast error from the run without data assimila-
tion. As seen there, every assimilation technique is able to
reduce the analysis error to a certain level and the ensemble
Kalman filter outperforms both the optimal interpolation and
the reduced-rank extended Kalman filter. The reason why the
ensemble Kalman filter is better than reduced-rank extended
Kalman filter for the low viscosity case is that the system is
strongly nonlinear over the time between assimilations.

The most striking feature in Fig. 10 is that the performance
of the sophisticated reduced-rank extended Kalman filter is
very similar to the simple optimal interpolation. The reason
why the extended steady-state Kalman filter is no better than
the statistical interpolation for the case in which the system
is strongly nonlinear can be rationalized as follows. For both
the extended steady-state Kalman filter and statistical inter-
polation, the Kalman gain is flow independent. The only dif-
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Fig. 11. Analysis error every 45 days during 25-year assimilation cycle for the high viscosity case under different ensemble sizes:(a) 8
members,(b) 16 members,(c) 32 members, and(d) 64 members. The black line is the rms error of the ensemble mean and the red line is the
rms spread in the ensemble. In all cases the “influence” radiusr0 = 128 km.

ference between these two approaches is how the background
error covariance is derived. In the statistical interpolation,
the background error covariance is derived in an ad hoc way:
it is assumed to be spatially homogeneous, the correlation
length and variance level are tuned such that the assimila-
tion performance is optimal in terms of minimum analysis
error. In the extended steady-state Kalman filter, the model
is linearized first to get the linear state transition operator
and the background error covariance is derived for a lim-
ited subspace. Many assumptions are made in deriving the
background error covariance for the reduced-rank extended
steady-state Kalman filter and these assumptions are very
hard to meet for highly nonlinear system. Therefore, it is
of no surprise to see that the reduced-rank extended steady-
state Kalman filter is no better than statistical interpolation
for the strongly nonlinear system.

As shown in Fig. 10, the analysis errors of the optimal in-
terpolation and the reduced-ranked Kalman filter are on av-
erage 70% of the errors when no data are assimilated. The
ensemble Kalman filter is able to reduce the analysis errors
to about 30% of the errors in the run with no assimilation
after 18 months.

Figure 11 shows how the performance of the ensemble
Kalman filter depends on the ensemble size for the high vis-
cosity case. The error in the ensemble mean and the en-
semble spread decrease sharply for the first two years for all
cases. With 8 ensemble members, the error in the ensem-
ble mean is very similar to the ensemble spread during the

first 15 years and they diverge at the 15th year: the error in
the ensemble mean suddenly increases, the ensemble spread,
however, remains unchanged. With 16 ensemble members,
the error in the ensemble mean and the ensemble spread also
diverge at the 15th year. However, the difference between
them is much smaller than that with 8 ensemble members.
For the case with 32 ensemble members, the error in the en-
semble mean and the ensemble spread remain always close
to each other. Both of them undergo two slight increases in
error: one at year 8 and the other at year 17. This is asso-
ciated with the quasi-periodic behavior of the high viscosity
case as the model shifts to a different climatology (higher or
lower energy) at those times. The result from the ensemble
Kalman filter with 64 ensemble members is very similar to
that with 32 ensemble members. Figure 11 shows that with
enough ensemble members (ensemble size≥ 32), the rms
spread in the ensemble is indistinguishable from the rms er-
ror of the ensemble mean. This implies that the covariances
are not underestimated without covariance inflation. Covari-
ance inflation was tried but did not reduce the error (figure
not shown).

In Fig. 11, there is a spike in the error of the ensemble
mean around year 6.6 and it seems odd that the spike is more
pronounced with large ensemble members. As described
in the introduction, for the high viscosity case, the model
has three preferred regimes, each with distinct energy levels.
Therefore, the probability density of the system will have a
multi-modal distribution. Figure 12 shows the histogram of
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Fig. 12.The histogram of the kinetic energy of the ensemble analy-
sis at year 6.6 with ensemble size of(a) 16 and(b) 64. The red line
is the true state.

the kinetic energy of the ensemble analysis at year 6.6. As
seen there, for the case with 16 ensemble members, the true
state lies very close to the mean of the ensemble analysis.
For the case with 64 ensemble members, the true state lies
at the right end of the ensemble analysis. That’s the reason
why the error of the ensemble mean for the ensemble Kalman
filter using larger ensembles can be larger than with smaller
ensembles.

The rms errors of the analysis from the optimal interpo-
lation, the reduced-rank extended Kalman filter and the en-
semble Kalman filter for the high viscosity case are shown
in Fig. 13. All filtering techniques are able to significantly
reduce the analysis error relative to the run without data as-
similation. The forecast error from the unconstrained model
run exhibits a striking quasi-periodic behavior with a period
of approximately 9 years. The analysis error from the opti-
mal interpolation exhibits similar behavior but with a smaller
amplitude. The quasi-periodic behavior severely diminishes
after the reduced-rank extended Kalman filtering is applied
and it is nearly invisible in the rms errors of the analysis from
the ensemble Kalman filter. The errors of the analysis from
the optimal interpolation, the reduced-rank extended Kalman
filter and the ensemble Kalman filter decrease dramatically
during the first two years. After two years, the analysis error
of the optimal interpolation is on average 30% of the fore-
cast error when no data are assimilated; the analysis error of
the reduced-rank extended Kalman filter is on average 10%
of the forecast error without data assimilation; and the anal-
ysis error of the ensemble Kalman filter is on average 6% of
the forecast error without data assimilation. For the high vis-
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(b) reduced−rank asymptotic Kalman filter with 20 EOFs 
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Fig. 13. Unconstrained model forecast error (red line) and analy-
sis error (black line) every 45 days during 25-year assimilation cy-
cle for the high viscosity case from the assimilation experiment of
(a)optimal interpolation,(b) reduced-rank asymptotic Kalman filter
with 20 EOFs and the tuning parameterγ = 0.04, and(c) ensemble
Kalman filter with 32 ensemble members and the “influence” radius
r0 = 128 km.

cosity case, the reduced-rank extended Kalman filter greatly
outperforms the optimal interpolation and is nearly as good
as the ensemble Kalman filter.

5 Conclusions and discussions

The performances of the ensemble Kalman filter and the
reduced-rank extended Kalman filter are compared using a
quasigeostrophic, eddy-resolving model of the wind-driven
ocean circulation. By changing the eddy viscosity, two qual-
itatively distinct types of behavior are obtained: chaotic state
for the low viscosity case and quasi-periodic state for the
high viscosity case.

For the low viscosity case in which the circulation is
strongly chaotic and abounds with energetic mesoscale ed-
dies, it is found that as expected, the error in the en-
semble mean decreases as the ensemble size increases and
32 ensemble members are sufficient to accurately describe
the temporally non-stationary, spatially inhomogeneous, and
anisotropic structure of the forecast errors. In this case, the
performance of the highly sophisticated stationary reduced-
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rank extended Kalman filter is very similar to the simple op-
timal interpolation which is based on ad hoc assumptions
about the forecast error covariance. The ensemble Kalman
filter greatly outperforms the reduced-rank extended Kalman
filter.

For the high viscosity case in which the circulation is
quasi-periodic, simple, and well organized, all three assimi-
lation techniques are able to significantly reduce the analysis
error and the reduced-rank extended Kalman filter is nearly
as good as the ensemble Kalman filter. For the high viscos-
ity case, the model has three preferred regimes, each with
distinct energy levels. Therefore, the probability density of
the system has a multi-modal distribution and the error of the
ensemble mean for the ensemble Kalman filter using larger
ensembles can be larger than with smaller ensembles. The
Bayesian approach as described in Sect. 3.1 should be used
to obtain an optimal state estimate for this case. Attempts
have been made to apply the Bayesian approach to very low
dimensional nonlinear dynamic systems (Miller et al., 1999;
Anderson and Anderson, 1999).

Verlaan and Heemink (2001) proposed a new method to
quantify the nonlinearity of data assimilation problems and
found that the nonlinearity depended not only the numerical
model used, but also on the accuracy of the measurements,
the sampling frequency, and the variance of the system noise.
They used the well-known Lorenz model to compare the per-
formance of several Kalman filter algorithms and found that
different Kalman filter algorithms showed almost the same
performance for weakly nonlinear problems. For strongly
nonlinear problems, the more advanced methods were more
accurate. Their results are consistent with ours. However,
the nonlinearity in our data assimilation experiments depends
only on the model used.

The steady-state reduced-rank extended Kalman filter has
three major drawbacks. First, the extended Kalman filter has
a closure problem: higher-order statistical moments are ne-
glected in the error covariance evolution equation. In the en-
semble Kalman filter, higher-order moments are retained in
the forecast step. However, only the first two moments are
used in the analysis step. Second, those approaches involv-
ing reduced-rank representation of the error covariance face
the problem that there is dynamic coupling between the er-
rors in the resolved and unresolved subspaces and it results
in a “pseudo-model error” which is very hard to explicitly
calculate. Third, the forecast error covariance and Kalman
gain of the steady-state reduced-rank extended Kalman filter
are time-independent.
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