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Abstract. The instability patterns in the flow between
counter-rotating disks (radius to heigh ratioR/h from 3.8
to 20.9) are investigated experimentally by means of visu-
alization and Particle Image Velocimetry. We restrict our-
selves to the situation where the boundary layers remain sta-
ble, focusing on the shear layer instability that occurs only
in the counter-rotating regime. The associated pattern is a
combination of a circular chain of vortices, as observed by
Lopez et al. (2002) at low aspect ratio, surrounded by a set
of spiral arms, first described by Gauthier et al. (2002) in the
case of high aspect ratio. Stability curve and critical modes
are measured for the whole range of aspect ratios. From the
measurement of a local Reynolds number based on the shear
layer thickness, evidence is given that a free shear layer in-
stability, with only weak curvature effect, is responsible for
the observed patterns. Accordingly, the number of vortices is
shown to scale as the shear layer radius, which results from
the competition between the centrifugal effects of each disk.

1 Introduction

The flows between rotating disks, or von Kármán (1921)
swirling flows, occur in a variety of situations, from indus-
trial to geophysical applications. Of practical interest for lab-
oratory experiments is the case of finite disks, for which no
similarity solutions exist (Zandbergen and Dijkstra, 1987).
The stability of these flows have been addressed since a long
time, mostly in the rotor-stator configuration, i.e. between
one rotating disk and one stationary disk.

In confined geometry with rotating endwall and large ra-
dius to height ratioR/h, two classes of instabilities are ob-
served. On the one hand, instabilities occur on the inward
boundary layer over the slower rotating disk, and result in
axisymmetric propagating circles or spiral rolls. The latter
pattern received the name of positive spirals (Gauthier et al.,
2002), because they roll up to the center in the direction of
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the faster disk. These two patterns are also present in the
rotor-stator flow, where they have been widely studied both
numerically and experimentally (Schouveiler et al., 1998;
Gauthier et al., 1999; Serre et al., 2001). As shown by Gau-
thier et al. (2002), the differential rotation only weakly af-
fects the properties of these boundary layer instabilities (e.g.
it linearly shifts the instability thresholds or the onset modes).

The counter-rotating case appears to be much richer: in
addition to boundary layer instabilities, it has been recently
recognized that the counter-rotating flow at high enough ro-
tation ratio also shows free shear layer instability. In a cavity
R/h = 2, at a fixed value of the Reynolds number, Lopez et
al. (2002) first observed instability of wavenumber 4 and 5
in the counter-rotating flow, in the form of “funnel-like” vor-
tices, that they attributed to a free shear instability. For a very
different aspect ratioR/h = 20.9, Gauthier et al. (2002) re-
ported a new instability pattern of wavenumber 9 to 11, in
the form of a spiral pattern not confined to the boundary lay-
ers, but rather filling the whole gap between the disks. This
pattern received the name of negative spirals, since they roll
up to the center in the direction of the slower disk. Gauthier
et al. (2002) suggested that a free shear layer was responsible
for this instability too, raising the issue of a possible conti-
nuity with the observations of Lopez et al. (2002).

The reason for this new instability is that the topology of
the counter-rotating flow drastically changes at high enough
rotation ratio (Dijkstra and van Heijst, 1983; Lopez, 1998),
evolving towards a two-cell meridian recirculation flow with
a stagnation circle on the slower disk (see Fig. 1). The cen-
trifugal flow induced by the faster disk recirculates towards
the center of the slower disk due to the lateral end wall. This
inward recirculation flow meets the outward radial flow in-
duced by the slower disk, leading to a stagnation circle. The
inward boundary layer on the slower disk gets detached due
to this stagnation circle, leading to a free shear layer in the
bulk of the flow. This free shear layer may become unstable,
leading to an azimuthal modulation, and giving rise to the
above mentioned funnel-like vortices (Lopez et al., 2002) or
negative spirals (Gauthier et al., 2002). Although the aspect
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Fig. 1. Sketch of the flow in the meridian plane in the counter-
rotation flow at high enough rotation ratio.δt andδb refer to the
top (faster) and bottom (slower) boundary layer thicknesses. The
dashed arrow indicate the meridian recirculation flow, separated
into two cells ending on a stagnation circle atr = rst on the slower
disk. B.f. (Batchelor flow) is a quasi-solid body rotation between
the two boundary layers.

ratios of these two experiments are very different, it is very
likely that the same instability mechanism is responsible for
the two patterns.

The influence of the curvature and rotation on the stability
of free shear layers received considerable interest. In addi-
tion to the Kelvin-Helmholtz instability, also present for lin-
ear non-rotating shear layers, centrifugal effect may occur,
stabilizing or destabilizing the perturbation (Yanase et al.,
1993; Liou, 1994). The extreme case where rotation dom-
inates the dynamics (small Rossby number) is of great im-
portance in geophysical flows (the so-called barotropic in-
stability). After the pioneering experimental work of Hide
and Titman (1967), laboratory experiments aiming to model
such instability are based on the differential rotation of a disk
in a rapidly rotating tank (Niino and Misawa, 1984) or a
cylindrical split-annulus tank (Früh and Read, 1999). How-
ever, these experiments focus on weak shears compared to
the background rotation. Closer to our experiment, Rabaud
and Couder (1983) have investigated the stability of a 2-D
forced circular shear layer in a split-annulus tank, further
studied numerically by Chomaz et al. (1988) and Bergeron et
al. (2000). Although in these experiments the rotation only
weakly affects the shear layer instability, they observe circu-
lar chains of eddies as well, the number of which decreasing
with the Reynolds number. A recent review on these studies
can be found in Dolzhanskii et al. (1990).

In the present paper we report new observations of the in-
stability patterns in the counter-rotating flow for a range of
intermediate aspect ratioR/h (values between 3.8 to 20.9).
We restrict ourselves to the situation where the boundary lay-
ers remain stable: axisymmetric propagating vortices and
positive spirals are not considered here. Section 2 briefly
presents the experimental set-up and the two investigation
techniques, namely visualization and Particle Image Veloc-
ity measurements. In Sect. 3 the main characteristics of the
instability patterns, such as onset curve and critical modes,
are presented. The structure of the velocity field of the pat-
tern is presented in Sect. 4, together with an analysis of in-
stability in terms of local Reynolds number based on the free
shear layer. Some concluding remarks are finally offered in

h

R

Fig. 2. Experimental set-up. The dashed part (top disk and lateral
endwall) rotate together, while the black part (bottom disk) rotates
independently.

Sect. 5.

2 Experimental set-up

The experimental set-up, sketched in Fig. 2, consists in a ro-
tating cylinder of radiusR = 140 mm, in which a disk of
same radius located at the bottom of the cavity rotates at a
different speed. The cylinder and its upper cover (top disk)
are made of Plexiglas, to allow visualizations from above
and from the side, while the bottom disk is made of black
brass to improve visualization contrast. The thickness of the
cell h can be varied from a few mm to 5 cm, using wedges
between the upper disk and the cylinder rim. The angular
velocities of the disks can be set independently, from 0 to
10 rad.s−1, in the same direction (corotation) or in opposite
direction (counter-rotation). In this paper we are only con-
cerned with the counter-rotation case, where the faster disk
is the top one,|�t | ≥ |�b|. The working fluid is a mixture of
water and glycerol of kinematic viscosity lying in the range
1.0 × 10−6 < ν < 4.0 × 10−6 m2/s at 20oC.

The flow is characterized by three dimensionless numbers,
two Reynolds numbers based on each disk velocity and the
aspect ratio0 = R/h. Since two lengthscales,R and h,
are present in this geometry, freedom exists in the definition
of the Reynolds numbers. We choose the Reynolds numbers
based on the thickness of the cellRei = �ih

2/ν (Dijkstra
and van Heijst, 1983), wherei = t, b denotes the top and bot-
tom disks. In the case of close coaxial disks, these Reynolds
numbers allow to distinguish between separated and merged
boundary layers situations. We will also make use of alter-
nate Reynolds numbers, based on the thickness and the pe-
ripheral velocities�iR,

0Rei = �iRh/ν.

These Reynolds numbers are of interest when focusing on
the free shear layer instability of the counter-rotating flow, as
shown in Sect. 3. In the present study, the Reynolds numbers
Rei are of order 10− 1000, and the aspect ratio has been
varied between 3.8 and 20.9.



F. Moisy et al.: Instability patterns between counter-rotating disks 283

Qualitative insight of the flow structure is obtained from
visualization of the light reflected by anisotropic flakes seed-
ing the flow (Kalliroscope). In this case the flow is illumi-
nated by a concentric circular light source, and pictures are
obtained from above using a CCD camera located along the
disks axis. Although no direct information of the velocity
field can be obtained from this method, quantities such as
the wavelength or phase velocity of the structures can be ex-
tracted from the spatial variation of the reflected light (Gau-
thier et al., 1998).

More quantitative measurements have been performed us-
ing a Particle Image Velocimetry (PIV) apparatus1. Small
glass particles (11µm in diameter) seeding the flow are used
as tracer, illuminated by a double pulsed Nd:Yag laser sheet
of thickness 0.5 mm. Pictures are obtained from a double-
buffer high resolution camera (12 bits, 1024× 1280 pixels),
synchronized with the laser at a rate of 4 frame pairs per sec-
ond. Two kinds of PIV measurements can be performed. On
the one hand, the structure of the basic flow in the meridian
plane can be studied using a vertical laser sheet. On the other
hand, the bifurcated patterns can be visualized using an hori-
zontal laser sheet between the two disks and a camera above.
The time between two frames within a pair is set to 40 ms for
the horizontal fields, and has to be decreased down to 4 ms
for the meridian field, for which the azimuthal (out of plane)
velocity component is important. The velocity fields have a
resolution of 1× 1 mm for horizontal frames, and down to
0.5× 0.5 mm for vertical frames. They are averaged over 4
successive individual velocity fields (i.e. 1 s). Because of the
laser sheet thickness, reliable velocity fields cannot be ob-
tained at small disk separationh, and PIV measurements are
restricted toh > 12 mm (R/h < 11.7).

3 Stability curve and critical modes

At high enough Reynolds numbers, the counter-rotating flow
gives rise to instability patterns such as the ones shown in
Fig. 3. They consist in a circular chain of vortices surrounded
by a set of spirals. These spirals received the name ofnega-
tivespirals (Gauthier et al., 2002), because they roll up to the
center in the direction of the slower disk. Depending on the
mode and the aspect ratio, only the circular chain of eddies
or the negative spirals may be observed. Low aspect ratios
R/h and/or low modes essentially lead to eddies (Figs. 3a,
b), while higher aspect ratios and/or higher modes mostly
show negative spirals (Fig. 3d). Intermediate modes, roughly
between 4 and 7, usually shows a combination of the two as-
pects of the pattern (Figs. 3b, c). These patterns generally
rotate in the direction of the faster (top) rotating disk, with
a phase velocity of order 0.2�t – except for the largest as-
pect ratio, where slightly negative phase velocities have been
observed.

The relationship between the light intensity reflected by
the flakes and the velocity gradient tensor field of the flow

1Package “Flowmaster 3”, LaVision GmbH.

is non trivial in the general case (Savas, 1985; Gauthier et
al., 1998). Although the intensity field may represent the
depth-averaged orientation of the flakes (at least in low seed-
ing regime), screening effects from the upper regions may
considerably alter the interpretation of the observed patterns,
so that the depth of the structures can not be inferred from
the visualizations of Fig. 3. However, visualizations of the
light intensity on a meridian plane may give indication of the
axial extension of these structures in the case of large aspect
ratio. From these observations, Gauthier et al. (2002) show
that the negative spirals are not confined in a boundary layer,
but rather fill the whole gap between the two disks.

The stability curve of these patterns is shown in Fig. 4 for
different aspect ratios. These curves are obtained by slowly
increasing the bottom disk angular velocity�b at fixed value
of �t . No hysteresis is observed within our experimental
uncertainty, around 3%. When plotted as functions of the
Reynolds numbers(0Ret , 0Reb), the different curves ap-
pear to collapse into a single master curve. The fact that the
chain of vortices and negative spirals share the same onset
curve suggests that they both arise from the same instability
mechanism, although the nonlinear saturation leads to very
different morphology. We note that at high Reynolds num-
ber, the onset is well described by a single dimensionless pa-
rameter, the counter-rotation ratio

s =
Reb

Ret

' −0.135± 0.010.

However, at lower Reynolds numbers, this linear curve ap-
pears to saturate towards a finite bottom Reynolds number,

−0Reb ' 230± 20.

The collapse of the curves for different aspect ratios gives
indication for the mechanism responsible of the instability,
because the shear and the boundary layers behave differently
whenR/h is varied. At given disks velocities, increasing
the gaph decreases the shear strength but does not affect the
boundary layers thickness, which are governed by the faster
(top) disk velocity,δ ∼ (ν/�t )

1/2. If the instability would
have arise from a boundary layer, one would expect the onset
curves to collapse when plotted as functions of the Reynolds
numbers based on the radius of the cell02Rei = �iR

2/ν.
By contrast, if we now assume that the growth rate is con-
trolled by the shearγ ∼ �R/h, damped by viscous diffusion
on a timescaleτv ∼ h2/ν, this leads to the natural control
parameterγ τv = �Rh/ν = 0Re. (Takingh as the relevant
lengthscale for the shear layer thickness will be discussed
in more details in Sect. 4). So the master curve obtained in
Fig. 4 suggests that a shear layer instability is responsible for
the different patterns observed in Fig. 3.

The observed patterns arise through a supercritical Hopf
bifurcation (Gauthier et al., 2002). At fixed top Reynolds
numberRet , the growth time is shown to scale as(Reb −

Reb,c)
−1. Very close to the onsetReb,c, this growth time can

take very large values, up to 30 turnover times of the slower
disk (about 15 min).



284 F. Moisy et al.: Instability patterns between counter-rotating disks

(a) (b)

(c) (d)

Ωt

Ωb

Fig. 3. Instability patterns visualized by Kalliroscope.(a) 0 = 7.0, Ret = 282,Reb = 41.2, m = 3. (b) 0 = 7.0, Ret = 282,Reb = 47.1,
m = 4. (c) 0 = 7.0, Ret = 282,Reb = 51.8, m = 5. (d) 0 = 20.9, Ret = 46,Reb = 10.5, m = 11. Disks rotation are the same for all
pictures, and are indicated by the arrows on picture (a).
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Fig. 4. Stability curve of negative spirals for aspect ratios0 =

R/h = 6.1 (O), 7.0 (◦), 10.8 (�), 14.0 (×) and 20.9 (+). The dashed
lines show the constant counter-rotation ratios = Reb/Ret =

−0.135 and the saturation value−0Reb ' 230.

Important characteristics of this instability is the azimuthal
mode of the pattern. Slowly approaching the onset curve
from below, we observe a well defined fundamental mode
mc, which can be just viewed as the number of vortices or
spiral arms. It is worth pointing out that, although no hys-
teresis is observed for the instability threshold, noticeable

hysteresis is present for the onset mode. Going slightly above
the onset, higher order modes quickly arise, replacing or su-
perimposing to the fundamental mode.

The onset modes are summarized in Fig. 5 in the plane
(R/h, Ret ). For each value of the top Reynolds numberRet ,
the bottom Reynolds numberReb has been fixed at its tran-
sition value. In this diagram, the instability is restricted to a
triangular domain limited by two border lines, delimiting two
regions notedJBL, as “joined boundary layers”, andBLI ,
as “boundary layer instability”.

The lower border line,JBL, corresponds to the case
where the boundary layers fill the whole gap between the
disks. From the measurements of Gauthier et al. (2002) at
R/h = 20.9, both the top and bottom boundary layer thick-
nesses,δt andδb, were shown to scale asδ0 = (ν/�t )

1/2,
i.e. with the top (faster) disk. The top boundary layer
thickness is given byδt/δ0 ' 2.2, while the bottom one is
δb/δ0 ' f (r/R, Reb/Ret ), where the functionf lies be-
tween 2 and 4.5. One may then deduce a rough estimate for
the Reynolds number where boundary layer merging occurs
(δt + δb = h) for all r,

Ret = �th
2/ν ' (2 + 2.2)2

' 18.

The upper border line,BLI , corresponds to the destabi-
lization of the inward boundary layer on the slower rotating
disk. Since such boundary layer instability is controlled by
a local Reynolds number based on the radiusRer = �r2/ν,
an approximate condition for stability is thatRer < Rec for
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Fig. 5. Regime diagram of the onset modes, as functions of the as-
pect ratioR/h and the Reynolds number of the (top) faster rotating
disk Ret . Modes betweenm = 2 and 11 are observed. The upper
horizontal arrow indicates the range of aspect ratio spanned in the
present experiment. The dashed lines delimit the “Joined boundary
layers” domain (JBL, Ret < 18) and the “Boundary layer instabil-
ity” domain (BLI , Ret > 31× 103 0−2).

all r < R, leading to a border line�tR
2/ν = Rec, or equiv-

alentlyRet = �th
2/ν = Rec/02. This is indeed the case,

and we determine experimentallyRec ' 31 × 103. Note
that although measurements of the critical mode were some-
times possible slightly beyond this upper limit, we choose
to restrict to the situation where the boundary layers remain
stable.

We note that the two constrainsJBL andBLI suggest
that the counter-rotating instability should not be observed
for aspect ratiosR/h > 40, where the two border lines in-
tersect. However, the present experiment being limited to
0 = 20.9, this upper bound has not been tested experimen-
tally.

For low aspect ratio,R/h < 10, the critical modem is
found to be fully controlled by the top Reynolds numberRet .
It decreases as the Reynolds number is increased, from 8
down to 2 (see Fig. 6 forR/h = 5.15). This behavior is
surprisingly similar to the decrease found in the experiments
cited in the Introduction; in particular, it compares well with
the power lawm ∼ Re−3/4 proposed by Dolzhanskii et al.
(1990) (see also van de Konijnenberget al., 1999) from scal-
ing argument. However, in our experiment, this decrease is
believed to originate from another mechanism, namely the
decrease of the radius of the shear layer annulus for increas-
ing Reynolds numbers, as described in Sect. 4.

For higher aspect ratiosR/h > 10, this behavior does not
hold any more and becomes much more complex. Regions

1
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m
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t

Fig. 6. Number of vortices as a function of0Ret for R/h = 5.15.

The line shows a power lawm ∼ 0Re
−3/4
t .

of higher order modes appear, as tentatively drawn in Fig. 5
in the form of interpenetrating tongues. This phenomenon
leads, for high enough aspect ratio, to a situation where the
critical mode increases for increasing Reynolds numbers, in
contrast with the low aspect ratio case. This latter behavior
is in agreement with the results of Gauthier et al. (2002) at
R/h = 20.9, where modes 9, 10 and 11 were reported for
increasing Reynolds numbers.

4 Velocity measurements and onset of instability

Further insight into the instability mechanism can be
achieved from the velocity fields of the basic flow and the
instability patterns in the close vicinity of the onset curve.
Due to the experimental limitations detailed in Sect. 2, ve-
locity measurements have only been performed at low aspect
ratio, R/h < 10. The measurements shown here have been
obtained in the particular caseR/h = 7.

Three velocity fields and the corresponding vorticityz-
componentωz = ∂u/∂y − ∂v/∂x are shown in Fig. 7. Only
1/4th of the velocity vectors are shown for clarity, but the
vorticity field is computed from the whole measured veloc-
ity field (here 80× 64 vectors). Note that the central part
of the fields (in a centered circle of radius' 3 vectors) is
not resolved, due to optical defects in the center of the upper
disk.

Below the instability threshold, the velocity field is ax-
isymmetric, as shown in Fig. 7a. Its most striking feature
is the important concentration of vorticity separating an in-
ner and outer parts in quasi-solid body rotation. Velocity
fields measured at differentz aroundh/2 shows little vari-
ation of the radius of this shear layer, which can thus be seen
as merely vertical.

Increasing the Reynolds number slightly above the thresh-
old results in an azimuthal modulation of this annular shear
layer (Fig. 7b), leading to a sharp-cornered pattern. Slightly
further above, this modulation gets more pronounced, as
shown in Fig. 7c, eventually reaching an higher order mode
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Fig. 7. Velocity field (arrows) and vorticityωz (color) at mid-height
z = h/2 for 0 = 7, 0Ret = 251. (a) 0Reb ' 36. (b) 0Reb = 38
(just at the onset),(c) 0Reb = 42. Velocity, vorticity and length
scales are shown in the figure.

(here a transitionm = 4 → 5 is observed). A chain of co-
rotating vortices, with vorticity opposite to that of the shear
layer, appears in the corners of the polygon.

Radius and thickness of the annular shear layer have been
measured just before transition for different Reynolds num-
bers. The radiusR0 is defined as the location of maximum
vorticity ωz, while the thicknessδ is estimated from distance
between the surrounding velocity extrema. Only the horizon-
tal projection of the thickness can be measured. However,
since the shear layer was shown to be almost vertical, the
apparent thickness gives a reasonable estimate of the actual
one. This thickness is of order of the gap between the disks,
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Fig. 8. Radius of the annular shear layer at onset, measured at mid-
height, as a function of0Ret (0 = 7).

δ ' (0.6 ± 0.1)h, and shows no significative variation with
the Reynolds number.

Measurements of the shear layer radiusR0, normalized by
the disk radiusR, are shown in Fig. 8 forR/h = 7 as a
function of Ret just below the onset of the instability. For
increasing Reynolds numbers,R0/R decreases from 0.5 to
0.2, indicating that the faster rotating disk develops a much
stronger recirculation cell than does the slower rotating disk.
As a result, the stagnation circle, responsible for the inward
boundary layer detachment, gets confined to smaller radii
(Gauthier et al., 2002), and the same goes for the shear layer
radiusR0.

For increasing Reynolds number, along the stability curve,
the angular velocity difference1� across the shear layer
increases, while its radiusR0 decreases. One may wonder
whether the associated velocity difference∼ R01� takes a
constant value at the onset. In order to check this point, one
may determine a local Reynolds number based on the shear
layer,

Reδ =
1U δ

ν
,

where1U is the velocity difference across the shear layer.
Fig. 9a shows measurements ofReδ for 0 = R/h = 7 as a
function of0Ret just below the stability curve. Although the
Reynolds number of the faster rotating disk0Ret has been
varied from 980 to 2610, the critical local Reynolds number
Reδ,c remains roughly constant, giving evidence thatReδ is
the relevant local control parameter for this instability. Al-
though the scatter is important, mainly due to the precision
in the measurement ofδ, the critical local Reynolds number
is essentially constant,

Reδ,c ' 110± 20.

We note that this value is in qualitative agreement with the
thresholdRe ' 85 ± 10 measured by Rabaud and Couder
(1983) in the circular shear layer experiment. Our slightly
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Fig. 9. (a)Critical local Reynolds numberReδ,c based on the shear layer thickness as a function of0Ret for 0 = 7. (b) Corresponding
normalized wavenumbermδ/R0.

higher value may be due to the overestimation of the apparent
shear layer thickness, or to some stabilizing effect due to the
non purely vertical shape of the circular shear layer.

This constant value ofReδ at onset supports the mecha-
nism of a shear layer instability. As a result, the size of vor-
tices is expected to scale as the thicknessδ. This is indeed the
case, as shown in Fig. 9b where the normalized wavenumber
mδ/R0 is plotted as a function of0Ret . The observed con-
stant value,

mδ

R0
' 1.10± 0.15,

confirms this scenario, leading to a wavelengthλ =

2πR0/m ' (5.7 ± 0.8)δ. One may conclude that, for low
aspect ratio, the decrease of the mode for increasingRet ,
shown in Fig. 5, can be explained from the decrease ofR0,
resulting from the centrifugal competition of the basic flow.

5 Conclusion

In this paper we have reported new observations of instability
patterns between counter-rotating disks, spanning a range of
aspect ratio0 = R/h between 3.8 and 20.9. We restricted
ourselves to the situation where the boundary layers remain
stable, focusing on the shear layer instability that occurs only
in the counter-rotating regime. The associated pattern is a
combination of a circular chain of vortices surrounded by a
set of spirals (called negative spirals, because they roll up to
the center in the direction of the slower disk). At small aspect
ratio R/h and/or large velocity, only the chain of vortices is
observed, while at higherR/h and/or smaller velocity only
the negative spirals remain.

Onset curves in the parameter plane(0Ret , 0Reb) have
been measured for different aspect ratio. Their collapse into
a single master curve provides good indication that these
two patterns originate from the same instability mechanism,
namely a free shear layer instability. The shear layer orig-
inates from the detachment of the inward boundary layer

on the slower rotating disk, due to the meridian recircula-
tion cells at high enough counter-rotation ratio (Lopez et al.,
2002). In this scenario, the presence of a stagnation circle
on the slower rotating disk, where ends the separation sur-
face between the two recirculation cells, appears as a neces-
sary condition for instability. Constrains on the thickness and
the stability of the boundary layers predicts an upper bound
for this shear layer instability in terms of the aspect ratio,
R/h < 40.

Onset modes have been measured for the different aspect
ratio as a function of the Reynolds number of the faster rotat-
ing disk,Ret . Surprisingly, while0Ret = Rh�t/ν appears
to be the control parameter for the instability, the onset mode
is controlled byRet = h2�t/ν, at least at small aspect ratio
(R/h < 10). In this regime, the pattern essentially appears as
a circular chain of corotating vortices, the number of which
decreasing as the Reynolds number is increased. This trend
can be understood from the variation of the annular shear
layer radius, as measured from Particle Image Velocimetry.
On the other hand, at higher aspect ratio (R/h > 10), the
pattern turns to a set of negative spirals, the number of which
now increasing as the Reynolds number is increased. We
have no explanation for this trend for the moment.

Focusing on the low aspect ratio case (R/h < 10), where
PIV measurements are possible, we further characterized the
instability in terms of local Reynolds numberReδ based
on the free shear layer thicknessδ. The constant value of
this Reynolds number at the onset of instability,Reδ,c '

110± 20, gives evidence that the transition originates from
a shear layer instability, where curvature has only weak ef-
fect. Furthermore, the critical modem was shown to scale as
R0/δ, whereR0 is the radius of the annular shear layer. Thus
the pattern can simply be seen as a set of vortices of size
∼ δ regularly filling the circumference 2πR0 of the shear
layer. In this case, the observed patterns are well described
in terms of a 2-D circular shear layer instability. They com-
pare well with more classical experiments of forced circular
shear layer (e.g. Rabaud and Couder, 1983), where the radius
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of the shear layer is fixed by the geometry of the apparatus.
In our experiment, this radiusR0 is not fixed, but results from
the competition of the centrifugal effects on each disk.

At higher aspect ratioR/h > 10, the 3D flow is more
complex and the associated spiral pattern is not fully under-
stood for the moment. The only hint comes from the con-
tinuity of the stability curves for the whole range of aspect
ratio, indicating that the basic instability should be the same
for both low and high aspect ratio, although the associated
patterns strongly differ.
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