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Abstract. It is well known that additional low-frequency
waves arise when a second ion population is added to a
plasma normally consisting of protons and electrons. Here,
we investigate stationary structures streaming with a sub-fast
speed in such a bi-ion plasma. It is shown that in addition to
the usual “solitons”, which have already been described for a
single-ion plasma, a new type of stationary structure occurs
due to the second ion population. This structure is associ-
ated with complex solutions of the linear dispersion relation
in certain regions of the wave number-obliquity space. This
implies that the corresponding soliton structure exhibits an
oscillating spatial structure superposed on the usual spatial
growth or decay. The full-blown solution of the nonlinear
equations confirms that this is indeed the case. The related
structure is called an “oscilliton”. Examples of both types of
stationary nonlinear waves (solitons and oscillitons), which
may exist in a bi-ion plasma are given.

1 Introduction

In many space plasma phenomena heavy ions are present in
abundance which is not negligible relative to the protons.
The solar wind containsα-particles and other minor heavy
ions. Near nonmagnetized planets, such as Venus or Mars,
where the solar wind interacts directly with planetary iono-
spheres (exospheres), the incoming solar wind plasma is also
“contaminated” by heavy ions of planetary origin. Comets
provide another clear example where the solar wind is mass-
loaded by cometary ions originating from the neutral gas en-
velope around the comet. The traditional view that magneto-
spheric plasmas consist mainly of plasma of solar wind ori-
gin is now challenged (see e.g. Chappel et al., 1987). The
ionospheres and plasmaspheres of magnetized planets also
provide a very effective source for magnetospheric plasmas.
Planetary moons, such as Io or Titan, supply the planetary
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magnetospheres with neutral gas which is ionized and con-
tributes significantly to the plasma content.

Space observations near celestial bodies with a multi-ion
plasma environment provide many examples of large-ampli-
tude coherent low-frequency waves. However, their gener-
ation mechanism is still unclear. In most cases, the waves
were attributed to beam-like instabilities excited by picked-
up secondary ions, although the question of why the ob-
served waves are so coherent remains open. In this paper,
we investigate stationary nonlinear structures in a homoge-
neous, equilibrium plasma containing two ion populations
using multi-fluid equations. The concept of a multi-fluid de-
scription is very useful and has been applied to solar wind
mass loading at unmagnetized planets and comets (see e.g.
Sauer et al., 1994, 1996, 1997; Dubinin and Sauer, 1999).
Stationary waves in a bi-ion plasma, propagating transverse
to the magnetic field, were discussed recently by Sauer et al.
(2000), McKenzie et al. (2001), Dubinin et al. (2002). The
study is based on structure equations of the system that are
derived from the equations of motion and Maxwell equa-
tions. They describe the electromagnetic coupling between
the two ion fluids and the electrons through the Lorentz
forces and the charge neutrality constraint. Soliton solutions
have been found for a specific range of flow velocities. The
structure of compressive solitons depends upon the initial
Mach number, the abundance ratio of the heavy ions and the
mass ratio.

In this paper, we analyse obliquely propagating station-
ary waves in bi-ion plasmas. Certain types of solitons in bi-
ion plasma have also been studied by Verheest (1990) and
Hackenberg et al. (1998). Verheest (1990) found soliton so-
lutions for Alfvén waves propagating parallel to the magnetic
field when the ion species stream differentially. The structure
equation in this case can be reduced to the deriative nonlin-
ear Schrodinger type. Hackenberg et al. (1998) considered
oblique solitons in a multi-fluid approach, but was restricted
to very particular cases which give rise to the usual solitons.

The layout of the paper is as follows. Hall MHD solitons
in a single-ion plasma are presented in Sect. 2. These solu-
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tions are modified by the addition of a second ion population
which leads to the appearance of solitons with an oscillat-
ing substructure, called “oscillitons” (s.a. Sauer et al., 2001).
In Sect. 3, the properties of “oscillitons” in a bi-ion plasma
propagating obliquely to the magnetic field are considered.
Applications to space observations are discussed.

2 Hall-MHD solitons in a single-ion plasma

In this section, we discuss briefly the structure of one-dimen-
sional solitons propagating in a single-ion plasma obliquely
to the magnetic field. Hall MHD equations are used,
which adequately describe the plasma behaviour in the low-
frequency range. Subsequently, the same method is applied
to plasmas consisting of two-ion populations.

The standard multi-fluid equations for protons (p) and
electrons (e) are

∂ni

∂t
+ ∇nivi = 0, (1)

mini

Divi

Dt
+ ∇pi = eniqi(E + vi×B) (2)

wheremi is the mass,qi the ion charge,ni the density,vi the
velocity of each species (i = p, e), E andB are the electric
and magnetic fields, respectively. The convective derivative
is

Di

Dt
=

∂

∂t
+ vi · ∇. (3)

The electric and magnetic field, respectively, follows from
Faraday’s law

∂B
∂t

+ ∇ × E = 0 (4)

and Ampere’s law (neglecting the displacement current)

∇ × B = µ0j , (5)

where the currentj is given by

j = e(npvp − neve). (6)

Using the approximation of massless electrons,me → 0, the
electric field can be eliminated from Eq. (2) as

E = −ve×B −
1

ne

∇pe. (7)

Thus, the equation of motion for the protons becomes

∂

∂t
npvp+∇·npvpvp+

1

mp

∇(pp+pe) =
e

mp

(vp−ve)×B,(8)

where the quasi-neutrality conditionnp = ne has been used.
For the one-dimensional case in which all parameters de-

pend only on thex-coordinate and the undistubed magnetic
field lies in thex−z plane, the corresponding set of equations

describing nonlinear stationary structures can be written as
follows, continuity equation:

d

dx
(nivix) = 0, (i = p, e) (9)

equations of motion:

mpvpx

dvpx

dx
= e(vpy − vey)Bz

−e(vpz − vez)By −
1

np

dpe

dx
(10-a)

mpvpx

dvpy

dx
= e[−(vpx − vex)Bz + (vpz − vez)Bx] (10-b)

mpvpx

dvpz

dx
= e[(vpx − vex)By − (vpy − vey)Bx] (10-c)

Faraday’s law:

d

dx
(vexBy) − Bx

d

dx
vey = 0 (11-a)

d

dx
(vexBz) − Bx

d

dx
vez = 0 (11-b)

Ampere’s law:

dBy

dx
= −µ0enp(vez − vpz) (12-a)

dBz

dx
= +µ0enp(vey − vpy) (12-b)

In a frame moving with a speedU one can search for sta-
tionary structures by puttingvpx → vpx − U . Then, with
the boundary conditionsnp = npo, vpx = 0, the continuity
equation for the protons becomes

np(U − vpx) = npoU, (13)

wherenpo is the equilibrium density.
From Faraday’s law (11), one can express they andz com-

ponents of the electron velocity as

vey = −
Unpo

np

By

Bx

(14-a)

vez = −
U

Bx

(
npo

np

Bz − Bzo), (14-b)

where

vex = vpx = U(1 −
npo

np

) (14-c)

is used which follows from the conditionjx = e(npvpx −

nevex) = 0 andnp = ne. Combining the proton momentum
Eqs. (10) and Ampere’s law (12), one obtains the following
expressions for the proton velocities

vpx =
1

2npompU

[
B2

− B2
0

µ0
+ 2(pe − peo)

]
(15-a)
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vpy = −
BxBy

µ0mpnpoU
(15-b)

vpz = −
Bx(Bz − Bzo)

µ0mpnpoU
, (15-c)

whereB2
= B2

x + B2
y , B2

z andB2
0 = B2

xo + B2
zo, Bx = Bxo.

Assuming isothermal electrons (γe = 1), pe =

peonp/npo, the proton velocityvex is according to Eq. (15a),
determined by a quadratic equation.

For practical purposes, dimensionless quantities are in-
troduced by normalizing the velocities to the proton Alfvén
speedVAp = B0/(µ0npomp)1/2 and the magnetic field to the
undisturbed valueB0. The ordinary differential equations for
the wave magnetic field can be written as

dBy

dx
=

1

(U − vpx)Bx[
(U2

− B2
xo)(Bz − Bzo) − UvpxBz

]
, (16-a)

dBz

dx
=

By

(U − vpx)Bx

[
U2

− B2
xo − Uvpx

]
, (16-b)

wherevpx follows from the quadratic Eq. (15a)

v2
px − Pvpx + Q = 0 (17-a)

with

P =

[
U2

− βe +
1

2
(B2

− 1)

]
/U, (17-b)

Q =
1

2
(B2

− 1), (17-c)

and

βe =
peo

B2
0/2µ0

. (17-d)

The spatial coordinatex is normalized with respect to the
proton inertial lengthL = VAp/�p = c/ωp (ωp : proton
plasma frequency). The other (normalized) velocity compo-
nents are given by

vpy = −
BxBz

U
(18-a)

vpz = −
Bx

U
(Bz − Bzo). (18-b)

The coupled, nonlinear differential Eq. (16) for the mag-
netic field, together with Eq. (17) forvpx , determine the
spatial structure of stationary waves in a single-ion plasma.
Their linearization in the neighbourhood of the initial state
yields stationary waves which may be either of the evanes-
cent or sinusoidal type.

The right panels in Fig. 1 show the real and imaginary
parts ofk as a function of the (soliton) velocityU for θ = 80◦

andβe = 3. For a single-ion plasma with finite electron tem-
perature, there are generally two gaps in whichk2 < 0, in-
dicating evanescent solutions. Here, only the gap between

Fig. 1. (left) Dispersion curves of low-frequency waves in a single-
ion plasma (Hall-MHD approach) forθ = 80◦, βe = 3. The fre-
quency is normalized to the proton gyrofrequency. (right) Disper-
sion of stationary wavesk = k(U), where the soliton velocityU
is normalized to the Alfv́en speed.L is the proton inertial length,
L = VAp/�p. Evanescent solutions exist in the gap between the
slow (s) and intermediate mode(i).

the slow (s) and intermediate (i) nearU ∼ 0.15 is shown.
There is also a gap between the fast (f) and intermediate
mode where soliton-like solutions can exist. The dispersion
curves for propagating waves shown in the left panel of Fig. 1
are readily found by using the tranformationU → ω/k.

Figure 2 shows two examples of compression and rarefac-
tion solitons (so-called “dark” and “bright” solitons) propa-
gating with small velocities at large angles to the magnetic
field.

Baumg̈artel et al. (1997) and Baumgärtel (1999) have con-
sidered compression solitons in more detail and applied these
solutions to magnetic holes often observed in space plasmas
(Winterhalter et al., 1994). McKenzie and Doyle (2001a,b)
have carried out an exact analysis of oblique solitons in both
cold and hot magnetized plasmas and described their proper-
ties.

3 Bi-ion solitons and oscillitons

In this section, we focus on new features which appear when
a second ion population is added to the main plasma. In
many space plasmas, heavy ions are present in abundance
which is not negligible relative to the protons. The solar
wind plasma is composed of protons and alpha particles.
Cometary plasmas are generally a mixture of the solar wind
that is dominated by protons and cometary matter which be-
comes ionized by photoionization and charge-exchange pro-
cesses. Multi-ion plasmas also exist near nonmagnetized
planets where the solar wind has direct access to ionospheric
and atmospheric planetary shells.

We consider a plasma with two ion species and treat pro-
tons and heavy ions as separate cold (Tp = Th = 0) flu-
ids. The abundance and mass ratio areα = nho/npo and
µ = mh/mp, respectively. The derivation of the coupled set
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of ordinary differential equations describing stationary waves
is similar to that for single-ion plasmas given in the previous
section.

First, the momentum equation for the protons is consid-
ered. In normalized units the equations for thex andy ve-
locity components can be written as

(vpx − U)
dvpy

dx
=

qp

µp

[
Ey + vpzBx − vpxBz

]
(19-a)

(vpx − U)
dvpz

dx
=

qp

µp

[
Ez − vpyBx + vpxBz

]
. (19-b)

(In the following, normalized quantities are used through-
out.)

With the relations for the electric field

Ey = −UBzo, (20-a)

Ez = 0, (20-b)

and the continuity equation, one finds

dvpy

dx
= −

qp

µp

[Bz +
npvpzBx

U
− npBzo] (21-a)

dvpz

dx
= +

qp

µp

[By +
npvpyBx

U
]. (21-b)

Here,qp = 1 andµp = 1. Similar equations hold for the
heavy ions by replacingp with h to give

dvhy

dx
= −

qh

µh

[Bz +
nhvhzBx

U
− nhBzo] (22-a)

dvhz

dx
= +

qh

µh

[By +
nhvhyBx

U
], µh = µ =

mh

mp

. (22-b)

Two of the differential equations above can be replaced by
algebraic relations using the overall momentum conservation
of a bi-ion plasma in they andz directions, which yields the
expressions

vpy = −αµvhy −
BxBy

U
(23-a)

vpz = −αµvhz −
Bx(Bz − Bzo)

U
. (23-b)

Ampere’s law becomes

dBy

dx
= +(−nevez + npvpz + nhvhz), (24-a)

dBz

dx
= −(−nevey + npvpy + nhvhy), (24-b)

where the electron velocities can be written as

vey = −U
(1 + α)

ne

By

Bx

(25-a)

vez = −
U

Bx

[
(1 + α)

ne

Bz − Bzo

]
. (25-b)

Here, the heavy ions are assumed to be single-ionized species
(qp = qh = 1).

The remaining quantities to be determined are the number
densities of protons and heavy ions,np andnh, or the re-
lated velocitiesvpx andvhx . The corresponding equations of
motion are

(vpx − U)
dvpx

dx
=

qp

µp

[
Ex + vpyBz − vpzBy

]
(26-a)

(vhx − U)
dvpx

dx
=

qh

µh

[
Ex + vhyBz − vhzBy

]
, (26-b)

where

Ex = −(veyBz − vezBy) − 0.5
βe

ne

dne

dx
(27-a)

and

(vpx − U)np = −U, (27-b)

(vhx − U)nh = −αU, (27-c)

ne = np + nh. (27-d)

Then, the coupled equations for the densities can be writ-
ten as

App

dnp

dx
+ Aph

dnh

dx
= Wpx, (28-a)

Ahp

dnp

dx
+ Ahh

dnh

dx
= Whx, (28-b)

where

App = 1 − ApAe (29-a)

Aph = −ApAe (29-b)

Ahp = −AhAe (29-c)

Ahh = 1 − AhAe (29-d)

and

Ap = −
n3

p

U2
, (30-a)

Ah = −
n3

h

U2αµ
, (30-b)

Ae = −
1

2

βe

ne

, (30-c)

Wpx = Ap[(vpy − vey)Bz − (vpz − vez)By] (31-a)

Whx = Ah[(vhy − vey)Bz − (vhz − vez)By]. (31-b)

It is clear that the coupling between the proton and heavy
ion fluids is caused by differential streaming between both
ion species, which generates force terms proportional to
(ve − vi) × B, (i = p, h).
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Fig. 2. Structure of “bright”(a) and “dark” (b) Hall-MHD solitons in a proton-electron plasma propagating atθ = 80◦ relative to the
magnetic field withU = 0.16 (the velocity is normalized to the Alfvén speed;βe = 3).

The system of coupled, nonlinear differential Eqs. (21),
(24), (28) forvpy , vpz, By , Bz, np, nh, along with the alge-
braic relations (23), (25), (27) for the remaining quantities
vhy , vhz, vey , vez, vpx ,vhx determine the spatial structure of
stationary nonlinear waves in a bi-ion plasma. Linearization
of these equations in the neighbourhoud of the initial state
solutions yields of the evanescent type, exp(κx), in certain
parameter regimes. Before discussing the properties of these
stationary solutions, it is useful to consider the behaviour of
the propagating bi-ion plasma modes, which is well known
from the literature (see e.g. Smith and Bryce, 1964). The
addition of a secondary ion population to a hydrogen mag-
netoplasma generates additional “heavy-ion modes”, which
also modify the main Hall-MHD modes (e.g. Krauss-Varban
et al., 1994; Vocks et al., 1999) through mode splitting ef-
fects. In our fluid approach, the dispersion curves of these
waves may be obtained from the linearized stationary equa-

tions by using the transformationU →
ω

k
.

Figure 3 shows the diagnostic diagram for low-frequency
waves propagating at an angle ofθ = 30◦ in a cold (βe = 0)
and warm (βe = 1) single-ion and bi-ion plasma (α =

nho/npo = 0.2, µ = mh/mp = 10). In the latter case,
a new “heavy-ion mode” appears with a cut off frequency
above which the waves propagate with the fast mode speed.

Consequently, new “gaps” in the
ω

k
− k diagram appear in

which evanescent waves may exist. The circle in the bottom
panel of Fig. 3 marks an interesting feature, namely a throat

in the gap between the two wave modes. This has interesting
consequences for stationary waves, which we discuss subse-
quently.

Before analysing these new features we first consider how
the properties of single-ion solitons, described in the previ-
ous section, are modified by the admixture of a second ion
population. Figure 4 shows the dispersion relation of station-
ary waves,k = k(U), in a bi-ion plasma (µ = 4) for different
abundance ratiosα = nho/npo. For very low densities of the
heavy ions, evanescent waves (Im(k) > 0) are expected (not
too different from the situation in a single-ion plasma) in the
gap between the slow and intermediate modes atU ∼ 0.13.
It is worth noting that the real part corresponding to this root
is zero. (The curve withRe(k) 6= 0 atU ∼ 0.13 belongs to
“heavy ion mode”.) With increasing heavy-ion density, the
spatial growth rateIm(k) decreases, and the gap of permit-
ted soliton velocitiesU narrows with the implication that the
amplitude of the soliton decreases.

Figure 5a shows the structure of a “dark” soliton propagat-
ing obliquely to the magnetic field (θ = 80◦). The dropout
of the magnetic field value in the “magnetic hole” is smaller
than in the single-ion case. Another interesting feature is the
appearance of small wave oscillations superimposed on the
soliton structure. Figure 5b shows these periodical waves
in more detail. They haveRe(k) ∼ 2 and belong to the
“heavy ion mode” (withIm(k) = 0, see Fig. 4. Moreover,
Fig. 4 displays a new feature, which is specifically unique to
the bi-ion plasma. An additional region of spatially grow-
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Fig. 3. Dispersion of LF electromagnetic waves in a cold plasma
of protons and electrons (top), in a proton-electron plasma with
cold protons and warm (βe = 1) electrons (middle), and in a bi-
ion plasma with an admixture of heavy ions (α = 0.2, µ = 10)
(bottom). Addition of heavy ion population modifies the charac-
teristics of plasma waves by producing a cutoff frequency and the
appearance of a new mode. The circle shows a throat in the gap
where evanescent waves may exist.R, L, f, i, s andhi mark the
right-hand polarized, the left-hand polarized, the fast, the interme-
diate, the slow and the heavy-ion modes, respectively.

ing solutions appears atU ∼ 0.23, in a gap between the
intermediate and heavy ion mode which has its cutoff fre-
quency at (k → 0 atω∗

= (np�h + nh�p)/ne). The growth
rate Im(k) increases with the addition of heavy ions, and
the range of soliton speedsU becomes broader. The charac-
teristic new feature of this root is the appearance of a finite
value ofRe(k), together withIm(k) 6= 0. That is to say, the
roots of the dispersion relationD(kU, k = 0) are complex,
which has its manifestation in the “link” between the curves
describing different wave modes in theRe(k) − U diagram.
Within this region withRe(k) 6= 0, Im(k) 6= 0, stationary
structures comprise a “normal soliton” modulated by spatial
oscillations. These structures have been termed “oscillitons”
(Sauer et al., 2001). More details of the dispersion character-
istics of stationary waves in a cold bi-ion plasma are given in

Fig. 4. Roots of the dispersion relation for stationary waves in a
bi-ion plasma,k = k(U) for different abundance of heavy ions
α = 10−5, 10−2, 10−1 and 0.2 (θ = 80◦, βe = 3, µ = 4). The
thick solid lines mark the “oscilliton solution”.

Appendix 1.
An example of an “oscilliton” obtained by solving numeri-

cally the governing system of equations for stationary waves
in a bi-ion plasma is shown in Fig. 6a. Several successive
structures with an oscillating pattern superimposed on a sech-
type soliton appeared. Figure 6b shows the fine structure of
the solution. An interesting feature is displayed in the plots
of the proton velocity (vpx) and the densitynp in the centre
of the structure. In the frame moving with the soliton speed
(U ), this feature is revealed as a “break” in the growing and
oscillating behaviour ofvpx . In the laboratory frame, the
heavy ions are decelerated (U − vhx), as one would expect
for a compressive solution. The protons, at first, are also de-
celerated ((U − vpx). However, near the centre they begin
to be accelerated. This effect is intensified as the heavy-ion
mass increases. A similar behaviour of both ion fluids, but
without oscillations, is also observed in compressive solitons
propagating perpendicular to the magnetic field (Sauer et al.,
2000; McKenzie et al., 2001; Dubinin et al., 2002) and is
caused by the momentum exchange between the protons, the
heavy ions and the magnetic field.
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Fig. 5. Structure of a “dark” soliton propagating obliquely to the
magnetic field (θ = 80◦) in a bi-ion plasma (U = 0.13, βe =

3, α = 0.1, µ = 4). In comparison to the corresponding single-
ion soliton (see Fig. 2b) it has weaker magnetic field depression
and exhibits small-scale oscillations as manifestation of the heavy-
ion mode which is present in addition to the soliton solution (see
Fig. 4).

4 Discussion

The addition of a second ion population leads to significant
modifications in the structure of stationary waves. So-called
“bright” and “dark” solitons in a single-ion plasma (see e.g.
Baumg̈artel et al., 1997) can exist only in a narrow range of
the soliton speeds. This range and the soliton amplitude de-
crease with increasing abundance of the second ion popula-
tion. However, an interesting new feature appears in a bi-ion
soliton structure which now contains embedded small-wave
oscillations. Moreover, a new type of stationary solution ex-
ist, which we have called an “oscilliton”, to indicate that it
has oscillating as well as classical soliton properties. These
oscillitons are characterized by a “normal” soliton structure
modulated by oscillations. Such strong nonlinear structures
arise because of very specific dispersion characteristics. The
inclusion of a second ion population results in a splitting of
“intersecting” wave modes with the appearance of a gap in
the(ω/k−k) phase space. In “normal” gaps withRe(k) = 0,
evanescent stationary waves (which describe the initial evo-

Fig. 6. (a) Example of bi-ion oscillitons propagating atθ =

30◦, (U = 0.87, βe = 0.5), (b) Fine structure of the oscilliton.

lution of a soliton structure) exist. The roots of the disper-
sion equationD(ω = kU, k) = 0, which belong to these
solutions, are purely imaginary (k2 < 0). For stationary
waves propagating obliquely to the magnetic field in a bi-
ion plasma, however, the gap has a throat which modifies
the soliton structure in an essential way such that the equa-
tion D(kU, k) = 0 for stationary waves now yields complex
rootsk = kr + iki . In this case, the initial evolution of a
soliton contains an oscillating part superimposed on the ex-
ponentially growing or decaying structure.

These oscillitons (Sauer et al., 2001) look like wave pack-
ets with a small-scale length determined bykr=Re(k). The
amplitude and width of the oscilliton depend on the interplay
between dispersion and nonlinearity, as in the usual solitons.
Generally, we may postulate that any plasma system with
throat-like dispersion features will possess nonlinear station-
ary solutions with “oscilliton” structure. For example, it is
interesting to note that for a nongyrotropic distribution of the
heavy ion population, typical for small comets, the splitting
between the fast (R) and intermediate (L) modes gives rise to
a throat-shaped gap in theω/k − k space, even for the case
of parallel wave propagation. In a plasma with a gyrotropic
heavy-ion distribution, this splitting disappears atθ = 0. In
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Fig. 7. Dispersion of parallel propagating LF waves in an
anisotropic bi-ion plasma. (left) The distribution of the heavy ions
(alpha particles withα = 0.05) is gyrotropic withV⊥/VA = 1.
(right) The distribution of alpha-particles is a non-gyrotropic ring
(Motschmann et al., 1997).

Fig. 7, the dispersion of low-frequency waves propagating
parallel to the magnetic field for these two cases is displayed.
The second population consists of alpha particles,α = 0.05,
with thermal anisotropy (T⊥ � T‖) of the minor ion compo-
nent. The wave modes of the gyrotropic plasma are shown
in the left panels. These represent the right-hand polarized
mode (dashed lines), which remains without modification by
the second ion population, and the left-hand polarized modes
(Lp, Lh) with signatures, indicating the coupling between
protons and heavy ions. The right panels of Fig. 7 show the
dispersion curves for the case that the heavy ions have a non-
gyrotropic ring distribution (Motschmann et al., 1997). In
both cases, the existing temperature anisotropy drives theLh

mode to be unstable. It is remarkable that the non-gyrotropy
splits the upper branches of theR andL modes. Thus, a gap
appears in theω/k − k space which may lead to oscillitons.
Similar dispersion features are also expected in a (single-ion)
plasma consisting of two proton populations with different
temperatures (Sauer et al., 2001).

A gap in the phase spaceω/k − k with a characteris-
tic throat feature selects a frame of reference in which both
the phase and group velocities become zero. In this ref-
erence frame, which is easily transformed to an observer
reference frame by selecting an angle of wave propagation
(ω = kUcosφ), a stationary pattern of standing waves may
arise. In a recent paper by Sauer et al. (2002b) the ex-
istence of phase- and group-standing whistler waves was
demonstrated and may be related to whistler oscillitons giv-
ing rise to coherent wave packets (“lion raors”) observed in
the Earth’s magnetosheath (Baumjohann et al., 1999).

Satellite measurements provide us with many examples in
which nonlinear coherent structures with oscillating wave-
forms are observed. We suggest that such structures may be
oscillitons, as seen by an observer at rest, as temporal wave
packets with superimposed oscillations. The frequency of the

Fig. 8. Parameter space (θ,Mp) where oscilliton-type solutions ex-
ist (dotted area). Top:α = 0.1, µ = 16; bottom: the same heavy-
ion densityα, but massive ion approximation,µ → ∞. Mp is the
Mach number based on the proton Alfvén speed.

observed waves is determined roughly by their wave num-
ber and the flow velocity,ω

′

= kUcosφ. The wave num-
ber of stationary waves is∼ ω∗/VA, whereω∗ is the cut-
off frequency, which coincides approximately with the gy-
rofrequency of the heavy ions, if they constitute a minor ion
population (nh � np). We then haveω

′

≈
V cosφ

VA
�h. For

stationary waves in the laboratory frameV cosφ ∼ VA, the
observed frequency occurs close to the gyrofrequency of the
heavy ionsω

′

∼ �h.

We list briefly several examples of observations of co-
herent wave packets with characteristics similar to oscilli-
tons. During the Galileo flyby near Io, the magnetometer
recorded bursts of highly-monochromatic waves near the gy-
rofrequency ofSO+

2 ions (Kivelson et al., 1996). Io is im-
mersed in a plasma flow which is supplied by neutral gases
that are lost from Io, and ionized. The dominant ions,O+,
S++, S+, which are long-lived species, are lost by outward
radial transport on a time scale of∼ 20 − 100 days. On
the other hand,SO+

2 ions, which are a minor ion component
(∼ 5%), quickly dissociate. Therefore, as suggested by Hud-
dleston et al. (1997), the emissions at approximately�SO+

2
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are not strongly suppressed by the background plasma.
The plasma environment near Mars contains ionized hy-

drogen atoms originating from the extended hydrogen exo-
sphere. These ions are picked up by the solar wind and form
a second proton population. Secondary protons can be ex-
plicitly included in the Hall-MHD equations with different
temperature and density from the main proton population.
The dispersion pattern of such a bi-proton plasma also con-
tains a throat feature in theω/k − k phase space, which may
explain the occurrence of pronounced coherent wave packets
in the upstream region of Mars (Mazelle, 2000). In recent
papers by Sauer et al. (2001, 2002a) it has been shown that
the observed emission at the proton cyclotron frequency may
be explained through the formation of oscillitons in a plasma
with two proton populations with a relative drift.

Foreshocks near planetary bowshocks provides another
possible region where oscilliton structures can be generated
by the presence of a second proton population formed by up-
stream moving solar wind protons reflected at bowshocks.

Appendix A Stationary waves in bi-ion plasma

In general the dispersion equation for a plasma may be de-
noted as

D(ω, k) = 0 (A1)

for plane wave disturbances varying as expi(ωt − kr ).
Puttingω = kU in a frame moving with speedU and solving
Eq. (22) fork as a function ofU with the angleθ betweenk
and the magnetic fieldB, yields

k = kj (U, θ), (A2)

wherej denotes the roots ofD(Uk, k) = 0. Soliton-like so-
lutions of the full nonlinear equations, in general, require that
in the initial state the stationary waves be of the evanscent
type (k2

j < 0). Here we show that in bi-ion plasma consisting
of protons and heavy ions, there exist regimes in the “Mach
number –θ ” space in whichk2

j < 0 and also regimes where

k2
j is complex. This latter case is interesting because it im-

plies that the corresponding soliton structure should exhibit
an oscillating spatial structure arising from theRe(kj ) super-
imposed on the “normal” spatial structure associated with an
Im(kj ).

To illustrate this point, consider a cold bi-ion plasma for
which the dispersion relation is (see e.g. Stix, 1994).

k2
⊥

=
(k2

‖
− L)(k2

‖
− R)

(S − k2
‖
)

(A3a)

R, L =

∑
i

ω2/V 2
Ai

(1 ± ω/�i)
(A3b)

S =

∑
i

ω2/V 2
Ai

(1 − ω/�i)
=

L + R

2
, (A3c)

whereV 2
Ai = B2/µomini, �i = eqiBo/mi . Electron inertia

has been neglected, which is permissible for wave frequen-
cies less than the lower hybrid frequency. Inserting the sta-
tionary wave conditionω = Uk into Eq. (A3a) and writing

(k⊥, k‖) = k(sinθ, cosθ) (A4)

we obtain after re-arrangement

(1 − r)(1 − l) = sin2 θ(1 − s), (A5a)

where

r, l =

∑
i

M2
i (1 ± k/κi), (A5b)

s =

∑
i

M2
i (1 − k2/κ2

i ), (A5c)

where

M2
i = U2/V 2

Ai, κi = �i/U, M2
=

∑
i

M2
i . (A5d)

For a bi-ion plasma (i = p, h) Eq. (A5a) becomes

(1 − M2
+

k2

κpκh

)2
− bk2

=

(1 − M2
+

k4

κ2
pκ2

h

− bek
2) sin2 θ , (A6a)

in which

b = (
1 − M2

h

κp

+
1 − M2

p

κh

)2
−

2(1 − M2)

κpκh

, (A6b)

be =
1 − M2

h

κ2
p

+
1 − M2

p

κ2
h

(A6c)

Equation (A6a) is bi-quadratic ink2, i.e.

Ak4
− Bk2

+ C = 0 (A7a)

in which

A = a cos2 θ, a = 1/(κ2
pκ2

h), (A7b)

B = b −
2(1 − M2)

κpκh

− be sin2 θ, (A7c)

C = (1 − M2)(cos2 θ − M2). (A7d)

Thus, the solutions of Eq. (A7a) may be written as

k2
=

B ±
√

B2 − 4AC

2A
. (A8)

Hence, if cosθ < M (implying C < 0), k2
− < 0,

yielding evanescent stationary waves which describe the ini-
tial evolution of a “normal” soliton. On the other hand, if
B2 < 4AC, Eq. (A8) yields complexk = kr ± iki . In this
case, the initial evolution of a soliton contains an oscillating
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part superimposed on the exponentially growing or decay-
ing structure. The region of parameter space in which this
occurs is given by the separation curveB2

= 4AC. The
parameter space (θ, Mp) where oscilliton-type solutions ex-
ist (marked by the dotted area) is depicted in Fig. 8 for two
cases:α = 0.1, µ = 16 andα = 0.1, µ → ∞ (massive ion
approximation). It is interesting to note that for Mach num-
bers slightly below 1, oscillitons may exist for nearly parallel
and transverse propagation.
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