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Abstract. We present a numerical study of the genera-
tion and evolution of a mixed layer in a stably stratified
layer of Boussinesq fluid. We use an external forcing in
the equation of motion to model the experimental sit-
uation where the mechanical energy input is due to an
oscillating grid.

The results of 2D and 3D numerical sitnulations indi-
cate that the basic mechanism for the entrainment is the
advection of the temperature field. This advection tends
to produce horizontally thin regions of small tempera-
ture vertical gradients (jets) where the hydrodynamics
forces are nearly zero. At the bottom of these structures,
the buoyancy brakes the vertical motions. The jets are
also characterized by the presence of very short horizon-
tal scales where the thermal diffusion time turns out to
be comparable with the dynamics time. As a result, the
temperature field is well mixed in a few dynamics times.
This process stops when the mechanical energy injected
becomes comparable with the energy dissipated by vis-
cosity.

1 Introduction

It is often observed, both in laboratory and geophysi-
cal experiments {see for example Turner 1986, Fernando
1991), that when a stably stratified fluid is submitted to
some mechanical foreing at the top or bottom boundary,
a mixed layer develops in the vicinity of the boundary
across which mechanical energy is injected into the fluid.
In this layer, the initial stratification of temperature,
- density, etc., 1s strongly modified.

It 1s also observed that the mixed layer is separated
from the quiescent region by a thin interface charac-
terized by strong gradients of temperature, density and
velocity. Due to the process of entrainment, the inter-
face propagates with a velocity u, whose ratio to the
local ”turbulent” velocity u is approximately a constant

U= —
which depends on some basic parameters of the system,
the Richardson number, Prandtl number, etc (Turner
1973, Thompson & Turner 1975, Linden 1975, Hopfinger
& Toly 1975, Fernando & Long 1985).

In order to study this process, the typical laboratory
experiment is that of a vertically oscillating horizontal
grid inside a tank of stratified fluid (Turner 1968). The
vertical penetration of the motions generated by the grid
is controlled by a non classical diffusive process (Thomp-
son & Turner 1975), and basically there is a conver-
sion of mechanical energy inio potential energy (Linden
1975). The experiments also show that, in the absence
of mean velocity shear, the energy converted into poten-
tial energy is proportional to the kinetic energy which
is available near the interface, and not to that which
is injected by the external forcing. This suggests that
to deseribe correctly the deepening process, one cannot
avold to study in some detail the transfer of mechanical
energy froin the input region to the vicinity of the inter-
face. This was done in a semi empirical way by Linden
(Linden 1975) to reconcile Niiler’s classical model (Ni-
iler 1975) with the experimental results. Furthermore,
the internal waves generated at the interfacial layer and
radiated into the gquiescent fluid, may influence the pen-
etration of the mixed layer, as these waves remove free
energy which cannot anymore be converted into poten-
tial energy.

In order to understand this non-classical diffusive pro-
cess, a number of models have been proposed, which can
be roughly summarized as follows.

In the first type of models, it is assumed that the
mixing of the fluid is produced by the recoil of quies-
cent fluid into the mixed region, recoil produced by the
collision of a vertically propagating eddy against the in-
terface (Linden 1973). Then, the balance between the
available kinetic energy at the interface and the rate of
increase of potential energy, allows to obtain the power
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law dependence on the Richardson number R; of the
entrainment velocity, as

U~ Rj-sj:z’

which is observed in the majority of the laboratory ex-
perimetts.

This ”splashing” mechanism has been observed ex-
perimentally (Dahm & al. 1989) in the case of small
Richardson numbers; at large R; the eddies tend to flat-
ten near the interface, as if they were colliding with a
rigid surface; in this case, it has been recently suggested
(Fernando & Long 1985a) that the physical mechanism
which produce the mixing of the fluid is interfacial wave
breaking.

A second type of models which has been proposed
to explain the non-diffusive mixing of stratified fluid, is
that of Kelvin-Helmholtz instabilities on small (turbu-
lent) eddies (Mory 1991). In this case, the direct con-
sequence of the growth of the linear instability of the
small eddies, is to engulf part of the quiescent fluid and
bring it into the well mixed region.

At the moment, none of the existing models discussed
above can be considered as satisfactory. For this reason
we decide to attack the problem of the generation and
evolution of a mixed layer in a stratified fluid from a
numetrical point of view. In fact, the aim of the paper is
to clarify the physics of the process which, in the range
of parameters which can be achieved in a numerical sim-
ulation, is responsible of the mixing of the fluid.

The paper is organized as follow. In Section 2 we
illustrate the dimensionless equations and the mechani-
cal foreing used to simulate Lhe experiments. In Section
3 we present the results of the simulations, which are
then discussed in Section 4. Finally, conclusions are
presented in Section 5.

2 The equations

Due to the many difficulties which arise for fluid simu-
lations in the case of "strong” perturbations at "high”
Reynolds numbers, a number of simplifications in mod-
eling the mixed layer experiment have been introduced
in the numerical experiments.

First of all, the Boussinesq approximation and a slab
geometry have been adopted to describe the dynamics
of the stratified fluid. Furthermore, to model the os-
cillating grid used in the experiments, we introduce an
external force localized in the upper layers. We shall use
dimensionless quantities (z,y and z being the horizon-
tal and vertical coordinates, v, vy and v, the horizontal
and vertical velocities, P the pressure and ¢ the time).
The units of temperature, velocity space and time are,
respectively, @, a typical velocity, L the vertical depth
of the layer, T', a characteristic temperature, and L/,
the characteristic time. We have used an aspect ratio of
27. Then, the governing equations read:
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where

G=T—<T >,

is the temperature fluctuation with respect to the hor-
izontally averaged temperature < T >. The external
force we have used has components
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The ¢ are random phases distributed uniformly in
the interval {0, 27]. These phases are taken to be con-
stant on domains [t,, t,41] X [, yi4+1] in the (y, 1) plane,
the times t,, and the points y; being distributed with a
Poisson statistics with mean values At and Ay.

Run o | B | N?|At] Ay | ume®
I 2D (40 1.0 [ 40| c© (.040
IT 12D(20] 1.0 |20 o 0.060

IIT 12D(1.01 1.0 |10 o0 0.075
IV |2D|05] 1.0 [056 | 0.095
V o [2D[20]01 (02| cc 0.114
VI (2D]|10| 01 [01] o0 0.115

VII|2D]10 00101} = 0.115

VIII|[2D)05| 1.0 [051.2 0.1
IX |2D|05| 1.0 |0.5]0.2 0
X |[3D]05| 1.0 05| 0o | oo [0.038
XI |3D}J05| 1.0 [05|0.2] 00 0

XII |3D|05] 1.0 |05 |1.2] oo | 0.041

XII|3D0(05| 1.0 |05 |1.2]|1.50.035

XIV [3D |05 1.0 [05]1.2]0.2]0.033

Table 1

In the above equations, ot/ is the vertical extent over
which the external force is active, and R;, K. and P, are
respectively the normalized Richardson, Reynolds and
Prandt] numbers,

-2
R; = N? (?) ., R.=wL/v, P, =v/k,
z
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Fig. 1. Contour plot of the stream lines at t=1,2,3,5 (Run I1I).

where N is the Brunt-Vaisala frequency, v the kine-
matic viscosity and x the thermal diffusion.

The layer is bounded by two undelormable plates along
which the fluid is allowed to flow frecly and through
which flows a fixed heat flux. The corresponding bound-
ary conditions are:

Avy Sv,
—_ = —_— )=
32’ (a"ly)o!t) 0: az (zay!]ﬂ ) 09

dvy dv '
it} =0, -* 1,¢) =0,
P (z,9,0,8) 3y (z,4,1,t)=0

vz, 9,0,8) =0, w.(z,y1,{)=40,

ar or
-a—z—(:z:,y,O,t) = q, E(z,y, 1,t)=a.

Finally, periodic boundary conditions are imposed in
the horizontal directions.

The initial conditions represent a stratified guiescent
fluid filling the simulation box,

Tt=0=1+az, v(iE=0)=0

Note that in the model described above, no mean ve-
locity shear is present at the initial time. This choice
is due to the fact that we want to isolate, if possible,
the mechanism of conversion of mechanical energy into
potential energy when only the external upper energy
source 1s present. In fact, the mean shear, being another

201

"o T 0 o0
0.00: R
R TR
No.af— ]

Fig. 2. Vertical profile of temperature fuctuation inside a jet
(Run III), at 2 = 0Q.

possible source, can in principle alter substantially the
physics at the interface boundary.

Finally, in all the runs described here, we have fixed
the nominal Reynolds and Prandtl numbers,
F,o=05

R, = 1000 (2D runs), R, =500 (3D runs),

and for the forcing terms, we have always taken the
same value of ¢ = 0.01, and only three horizontal har-
monics,

aip=4, a1 =2, az=1,
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Fig. 3. The soclid lines are the isotherms T = 1.15, 1.3, 1.45, 1.6,
1.75, 1.9 at t=1; The shaded areas represent levels of downwards
vertical velocitiey; there are four levels of gray, the smallest veloc-
ities designed by black and the highest, found in the jet centers,
by the dark gray (Run IIl).

so that there is one leading amplitude charactenzing
the force. The typical horizontal scale of the force is
kr = 10, while for the vertical one we assume k, ~
(e)~1/% = 10.

In table 1 we show the values of the other parameters
in the various runs described in this paper. In particular,
runs I — IX are restricted to the two dimensional case
(z,%), while runs X — X IV are three dimensional.

Details about the numerical methods employed are
described in the appendix.

3 Results

In the case of a weak external forcing (ay < 1}, the ob-
served motion is the supcrposition of ¢) the field of in-
ternal waves which are generated by the impulsive start
of the force at t = 0 and i) the stationary sclution
Voo, Too, resulting from the balance between the exter-
nal forecing and viscous forces. Note that the internal
waves propagate in the vertical direction with a vertical
group velocity and damping time

vy 0.035(012;‘)1/2, tdamp ~ 3,

and that the asymptotic sclution which is reached for
t > b, is localized in the upper layers, where the force is
active.

3.1 Coherent forcing

We shall say that the forcing is coherent when the ex-
ternal force does depend neither on time nor on the
transversal coordinate y, i.e. ¢p = const (see equa-
tions 4). When a strong coherent forcing (ax ~ O(1)) is
applied to the fluid, one observe the penetration of the
motions into the quiescent fluid. These vertical motions,
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Fig. 4. Same as Fig. 3 at t=2; isotherms are: T = 1.125, 1.25,
1.375,1.5,1.625, 1.75, 1.875

develop far away of the forcing region after a charac-
teristic time ¢, ~ 1 which is short compared with the
characteristic time of propagation of internal waves.

In figure 1 the evolution of the stream lines at four
different time instants (¢ = 1,2, 3,5), are plotted in the
(i, z) plane in the case of Run [I/. In this figure it
can be noticed that the vertical motions are organized
in very thin jets of horizontal dimension lj.; ~ 0.6. In-
side these structures, but far from the downwards end
of the jets, the buoyancy term is negligible due to the
fact that the initial vertical temperature gradient has
considerably decreased. From a detailed numerical esti-
mate of the various terms in the equation of motion (1},
it can be shown that the term which largely dominates
in the expression of the vertical acceleration inside these
structures is the inertial one,

Ius oy, 90
= 8z

At the end of the jets, 1.e, near the interface, the
downward motions are braked by the buoyancy force.
The vertical profile (see figure 2) of the buoyancy takes
the form of a gaussian profile, localized at the end of
the jet, which travels at a more or less constant speed
towards the bottom of the box, as can be appreciated
in figure 2.

The development of these vertical motions directly
produces the distortion of the isotherms. In fact, inside
the jets, the equation for the temperature field (2) is
largely dominated by the advection term,

o 9T
gt~ "8z

In figure 3,4,5,7 the evolution of the isotherms is plot-
ted for the same time instants of figure 1; in this figure
the shaded plots represent the regions of downwards v,
in order to outline the correlation between the vertical
velocity field and the distortion of the isotherms.
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Fig. 5. Same as Fig. 3 at t=3,

At this stage, it is worthwhile to notice that the bound-
ary of a jet structure is characlerized by very fine scales
in the horizontal direction, much smaller than the ini-
tial one, A = k~! = 0.1, induced by the forcing term. In
these region, the diffusive term,

1 &7
RePr 822°

becomes very large.

In figure 6 the temperature is displayed as a function
of z,z at £ = 5; this figure illustrates the reduction in
the vertical gradients inside the jels, and the horizontal
smoothing of the temperature in the region upwards of
the interface.

In figure 8, the horizontally averaged profiles of T,
Eiin and 8 are plotted versus z every At = 0.5. It
can be noticed that {a) the initial linear stratification
have been completely flattened in a few normalized time
in a region much deeper than that where the external
forcing is active. The kinetic energy (b) penetrates at
an almost constant rate together with the temperature

Fig. 8. Temperature field at t=5 (Run [II).
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Fig. 7. Same as Fig. 3 at t=35; isotherms are: T= 1.1, 1.25, 1.4,
1.55, 1.7, 1.85.

fluctuations until # ~ 5. After this time, the penetration
is decelerated due to the fact that almost all the injected
energy is now dissipated before reaching the interface, so
that there is not enough energy to continue the process
discussed above.

The results discussed above are restricted to a 2D ge-
ometry (the plane (&, 2)}. To study the influence of 3D
motions on the mixing process, in run X (see Table 1) we
maintain the same type of energy injection, while three
dimensional motions are allowed. In this case, the main
result is that the characteristic jet structures observed
in the 2D investigations persists. The characteristic for-
mation time of the jet is still #. ~ 1, and the horizontal
small scale structure are also present at the boundary
of the jets like in 2D geometry. In figure 9a, 94 the
mean temperature field is plotted every & = 1 respec-
tively in the case of run 7V and run X. Notice that the
quantitative difference between these two figure is due
to the different values of the Reynolds numbers in the
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Fig. 8. Horizontally averaged temperature {(a}, temperature fluc-
tuation (b) and kinetic energy (c) (Run II1).
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Fig. 9. Horizontally averaged temperature for Run IV (a) and
Run X (b).

two runs.
3.2 Non-coherent forcing

Consider now the case when the external forcing s truly
three dimensional, i.e. when A{f becomes comparable
with £, and Ay with the width of a plume (see equations
4).

When the mean time of coherence At ~ (0.2 << £,
(run XT), no mixing occurs at all whatever is the value
of Ay. In particular, motions are confined to the region
of forcing, jet structures are not created and the initial
temperature gradient remains practically unchanged af-
ter a time ¢ ~ 10.

When the mean time of coherence (run X I7) is of the
order of the characteristic time of the dynarmics observed
in the case of a coherent forcing (¢, ~ 1), the numerical
results indicate that all the major features observed in
the coherent case (runs IV and X) are not changed.
In figure 10e and 104, the mean temperature profile is
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Fig. 10. Horizontally averaged temperature for Run X (a) and
Run XII {b).
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Fig. 11. The isolherms at y = =, T = 1.05, 1.15, 1.25, 1.35, 1.4,
1.45 at times t=1 {a), t=2 (b), t=3 (c), t=4 (d) for Run XIL

plotted every ét = 1 in the case of, respectively, run X
and run X7I. In figure 11, the isotherms (run X/7)
are plotted at times { = 1,2,3,4 at a fixed y to show
the vertical distoriion of the temperature field due to
the formation of the plumes which, as discussed before,
advect the temperature.

In runs X/II and XIV we investigate the case when
the coherence length Ay is smaller than the box length,
and At ~ 1. In particular, we investigate the case where
the mean value of space uncoherence is of the order (run
XIII) of the typical dimension of a jet (Ay ~ .+ = 0.6)
or much less (run XIV) than the width of a jet (Ay ~
0.2). Both runs show that this spatial uncoherence does
not affects the formation and evolution of the plumes,
the consequent temperature advection and small scale
horizontal structures, and finally the penetration of mo-
tions and mixing of the upper fluid.

In figure 12a and 12b, the mean temperature is plot-
ted every 6t = 1 for run IV and XIV. This figure
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Fig. 12. Horizontally averaged temperature for Run IV (a) and
Run XTIV (b).
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Fig. 13. This figure represents the three dimensional temperature field by showing the volurme where the température lies in the range
1.35 < T < 1.45; the level of grey indicates the temperature with black corresponding to the highest temperatures (T ~ 1.45).

shows that the results obtained in 20 are not changed
substantially when a non-coherent forcing with Af ~ ¢,
and Ay << lj.; is applied, the only difference being in
the entrainment velocity. Nevertheless, the variation of
the entrainment velocity is a direct consequence of the
smaller Reynolds number used in thes3D run, and not
the signature of a different physical process.

In figure 13, we show the isotherms at { = 6 in the
case of run X7V; we notice, at the edge of the simu-
lating box, that the elongated jet structure are of al-
most constant temperature; the phase variation in the
y directions is on a scale much smaller than the typical
width of a jet ([;.¢). In figure 14 (run X1V) the vertical
downwelling velocity also traces the jel like structures
which characterize the flow obscrved in the numerical
simulations.

Finally, in all the runs performed, we did found no
trace of internal waves involved in the process of mixing,
neither at the interfacial level where these waves could,
in principle, radiate away a fraction of the kinetic energy
to be converted in potential energy.

4 Discussion

The qualitative interpretation of the numerical results
discussed in the precedent Section, can be summarized
as follows,

First of all, due to the horizontal inhomogeneous char-
acter of the forcing term, a local irreversible process of

flattening of the vertical gradient of the temperature
takes place in the regions where, initially, the vertical
velocity field dominates. This advection process, driven
by the term,

aT
v, 52—‘
is strongly non-linear, but coherent,

There are two basic effects produced by this mecha-
nism. The first one, is that the buoyancy term, which in
generally prevents the system from vertical motions, is
locally inhibited; vertical motions pushed by the inertial
term

du,

L Bz

penetrate into the quiescent fluid down to continue the
advection process in the deeper layers where buoyancy
18 still active. The second effect, which is also strongly
non-linear, is the generation of very high gradients in
the horizontal direction, so that diffusion becomes very
efficient. In this way, the horizontal diffusion produces
the final (real}) mixing of the fluid on time scales much
shorter than the dissipative time scale of the wavelength
of the force.

It is worth to notice that the physical mechanism dis-
cussed above, which is characteristic of a 2D geometry,
remains practically unchanged when three dimensional
motions are allowed; in other words, the possibility of
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Fig. 14. Same as figure 10 for the vertical downvelling velocity field (=0.5 < w ~ —0.1); the level of grey indicates the downvelling

velocity with black corresponding to the highest velocity {w~ -0.5).

developing motions in the direction perpendicular to the
plane (z,z) does not destroy the plumes and does not
inhibit the formations of very small horizontal scales
which are responsible of the horizontal mixing.

One point of particular relevance in the discussion
above, is the fact that the process of mixing outlined
with the help of the numerical results, being of non-
linear nature, is a complelely coherent mechanism.

To investigate the eflfects related to the coherence of
the external forcing, we have introduced, first, a time
dependent phase showing that, if the typical time of co-
herence (i.e. the time during which the phase remain
unchanged) is greater or of the order of the character-
istic time t, ol the dynamics of the plumes, the main
qualitative and quantitative fealures of the colierent case
persist. On the other hand, il the time of colierence is
shorter than {., the results are completely changed and,
in particular, plumes are not formed and no mixing is
observed. For this reasons we argue that, in the space of
parameters of our investigation, the plume structure is a
feature csscntial Lo produce the mixing of the Huid and
the penetration of the kinetic energy in the underlying
quiet fluid.

As a second step, we investigated the case in which
the coherence of the forcing is destroyed in the direction
perpendicular to the plane where plumes are formed. In
particular, we introduced a phase with a typical length

of coherence along y of the order, or much less, than the
typical width of the plumes. In both case we observe

that this spatial coherence does not affects substantially
the formation of the plumes and the related mixing.

Finally, to rcach a more turbulent regime one should
mcreases considerably the Reynolds number, which could
in principle change the physics of the mixing of the ffuid.
Neverlheless, one may hope that in the presence of more
turbulent motions, the main result of local advection
of temperature and of formation of plumes, should re-
nmarns.

5 Conclusions

Woe have presented the first resulls of a numerical study
of the problem of the generation and evolution of a
mixed layer in a stably siratified luid. One of the main
outcome of the experiments (Breidenthal 1992) is the
scaling of the entrainment rate U with the Richardson
number (it should be noted that there is some  ambi-
guity in the definition of R; in the literature). In the
nuinctical experiments, the definition of the interface is
rather loose and so is the definition of its downwards
velocily. The comparison with laboratory experiments
is therefore very difficult. However, to study the scal-
ing of the entrainment velocity u, with the strength of
the stratification, we have chosen to use as entrainment
velocity the velocity with which the maximum of the
vertical gradient of the mean temperature propagates
downwards.
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Fig. 15. Entrainment velocity versus Brunt-Vaiasala frequency.

This velocity is not really constant (within a factor
of two), and in figure 15 its maximum value is plotted
against N2 for the runs I — VIIT of Table I which have
the same nominal Reynolds number, B, = 1000 . For
"small” values of N2, the enlrainment velocity does not
change significantly, while at larger values it scales as
N1, This behaviour is qualitatively in agreement with
the laboratory experiments, except that the power law
is different. This may be a consequence of the fact that
the effective Reynolds number reached in our simula-
tions are much less than that of the experiments. As
already stated above, one may hope that this difference
in the Reynolds number should not change qualitatively
the physical mechanism discussed in the paper, while
the results should change quantitatively for a Reynolds
nurnbers smaller than a critical one. A quantitative vari-
ation of the entrainment vclocity can be noticed in Table
1 going from 2D to 3D runs. This is due to the fact that,
for numerical resolution problems, we have reduced by a
factor of two the nominal Reynolds number in 3D runs
what, as a consequence, reduces the downwelling veloc-
ity inside the plumes and so the advection mechanism.
It 1s possible to think that, when increasing the Reynolds
number, there is a maximum value of the velocity cor-
responding to R, = RS after which the characteristic
velocity inside the jets does not vary significantly for
greater values of R., so does u,.

In these simulations, the physical mechanism which is
responsible of the mixing of the fluid appears now suffi-
ciently elearly. This mechanism, which could be summa-
rized as a "non-linear advection” and which 1s discussed
in Sections 3 and 4, is, as far as we know, original in
this context.

In the discussion of the numerical resulls, Section
3, and of their interpretation, Section 4, it has been
pointed out that no signature of internal waves in the
mixing process or in removing kinetic energy from the
interface, were found.

Finally, we may speculate aboul the fact which can be
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expected if the fluid is no longer incompressible. Numer-
ical simulations of compressible convection have shown
a strong asymmetry between small scales downwelling
velocities and large scale slow upwelling velocities, si-
miliar to what is observed in the simulations described
here. Thus, it 1s natural to expect that compressibility
will amplify this asymmetry.

6 Appendix: Numerics

The choice of the numerical algorithm 1s mainly based
on the need to solve the propagation of very strong gra-
dient at the interface boundary and the nonlinear in-
teractions present in the mixed region. Nevertheless,
the peculiarities of the super computer to be used to
run the code must also be taken in consideration. The
code runs on a Connection Machine, a massively paral-
lel computer with at least 8192 processors (see Califano
& Mangeney, 1994, Califano 1994) for a more detailed
discussion about the numerical algorithm).

To advance in time the fields uw and T we use the
explicit algorithm Adams Bashford IIT with an accuracy
O(6t7).

Let assume that we know the temperature and veloc-
ity field at the instant n, and ket define H™ and Q™ the
right hand sides of equation (1) and (2),

H™ = {—u -Vu+ Rile,+F+ évzu} ,

1 m
viT
k.F } '

Q"= {_ll-VT+

which are known at the instant n —2, n —1, and n. The
new temperature field Is calculated as:

23 4 5 .-
T =y [ﬁQﬂ ~ 5@+ 50 2] oG

To calculate the velocity field at the time step n + 1,
we introduce an intermediate step, n*,

23 , 4
11* — uﬂ‘ + —ﬁtHn + &t l—= (Hn—l _ vpnv]_)
12 3
tpETTvP ()

The actual velocity field at the instani n41, is calentated
as
n+1 23

=u* — —§t VP", (7)

v 12

where the pressure P" is obtained by solving the Poisson
equation
12

ZP‘n — .
v ST (®)
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which is obtained by imposing ¥V -u?*! = 0 on equation
(7).

In the equations (5)-(8) the presence of the interme-
diate slep to calculate u*, allows to eliminate the accu-
mulation of the "compressible” numerical error, i.e. the
numerical error which leads to a non vanishing velocity
divergence.

To calculate the spatial derivatives necessary Lo com-
pute H™ and Q™, we use spectral methods (FFT) in
the (z,y) plane, while non-linear terms are calculated
in the physical space.

On the wvertical inhomogencous direction we use a
metheod, known as compact finite differences (CFD} (Lele,
1992), which allows us to provide an accurate descrip-
tion of a wide range of spatial scales (not far from spec-
tral methods), while keeping the flexibility of all finite
difference methods for non periodic situations. In par-
ticular, in our code, we use a CFD scheme of eight order
for which the truncation error when calculating the first
derivative of a generic function [ is

16 8d9 I
ACl = ﬁdz F,
while for the second derivative

10
Ay = 3-1075d28 izlﬁ' -

The Poisson equation is solved by first making a Fourier
Transform along the horizontal (periodic) axis z and
y, using CFD methods to solve the resulting ordinary
differential equations for P ;(z) in the inhomogeneous
direction, and finally back in the physical space with
inverse Fourier Transform along axis z and .

Finally, the boundary conditions on the vertical ve-
locity (v,(0,1) = 0), are introduced via the pressure
field. In fact, when solving the Poisson equation (8),
the boundary conditions are

opr 12,

Oz 2381 %7

which automatically implies, equation (7), that v?+!
should vanish in 2 =0, 1.
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