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Abstract. We empirically investigate the scaling behaviour
of the horizontal wind along the vertical direction using 287
radiosonde soundings with a resolution of 50 m. We
compare the results obtained with those of the horizontal
temporal behaviour in the framework of Generalized
Scaling Invariance and the Unificd Scaling model of
atmospheric dynamics. We find the scaling to be very well
respected over the range 50 m - 13 km (nearly the entire
troposphere) and we estimate the universal multifractal
indices which characterize the statistics in the vertical. By
comparing our results with those obtained in the horizontal
we show that the degree of stratification is different for
mean and cxtreme structures. Finally, we theoretically
discuss the necessary improvements to the Unified
Mnuitifractal model nceded to account for them.

1 Introduction

Although mesoscale fluctuations of the wind field in the
atmosphere have been observed for many years, there is no
consensus as o thcir statistical description. This is
especially true in the case of the tropical atmosphere which
possesses a high degree of intermittency associated with
buoyancy driven convection, and a tendency towards self-
organization of small-scale convective cells into large-scale
coherent structures such as tropical cyclones. In this part,
we discuss further the relevance of the Unified Scaling
model of atmospheric dynamics (Schertzer and Lovejoy
1983, 1985; Lovejoy et al., 1993} by considering the
scaling properties of turbulent wind flucmations in ropical
atmosphere along the vertical. After recalling the
molivations and basic ingredicnts of Generalized Scale
Invariance necessary to account the scaling anisotropy, we
estimate the universal exponents of the wind shears along
the vertical. With the help of these results, as well as the
analogous ones found in the horizontal (presented in part I,

Correspondence to: D. Schertzer

Chigirinskaya et al., 1994}, we show how these anisotropic
scaling properties give direct support to the Unified Scaling
maodel of atmospheric dynamics while contradicting the
classical model which involves isotropic two dimensional
and isotropic three dimensional turbulence separated by a
“meso-scale gap” or “dimensional transition” (Schertzer
and Lovejoy, 1983).

Indeed, in order to take into account the dominant role of
buoyancy forces it was hypothesized, partially {ollowing
the arguments of the classical "buoyancy sub-range"
{Bolgiano, 1959; Obukhov, 1959), that the buoyancy force
variance flux (¢) should play the same role as (g) in
classical 3-D wrbulence (Kolmogorov, 1941; Obukhov,
1941) but only along the vertical, contrary to the classical
"buoyancy sub-range” which hypothesizes an isotropic
turbulence. The different horizontal and vertical scaling
regimes found here correspond to two coupled sets of
scaling equations for respectively the horizontal shears
Av(Ax) = lyfx+yAx)-vix)l isotropically distribuied over the
different horizontal {unitary) direction u and vertical shears
of the horizontal wind Aw(Az) = ly(z+kAz)-y(z), k being the
unit vecter of the vertical axis:

Av(Ax) S(e(Ax))™ AP (1)
Av(Az) immz n™ At 2)
d

{= means cquality in probability distributions) with a;=1/3,
Hy=1/3, ay=1/5, H,=3/5. These exponents are obtained
wilh purely dimensional arguments (the horizontal -
Kolmogorov, 1941; Obukhov, 1941; and the vertical -
Bolgiano, 1959; Obukhov, 1959). Contrary to the original
derivations, the intermittent scaling fluctnations of both €
and ¢ are not neglected since their scale dependency is
explicit and furthermore we will demonstrate that this
implics that ¢ and € (sce part I} both display Self Organized
Critical behaviour. In contrast to the original derivation
involving two isotropic regimes, each characterized by a
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Fig. 1. A represenlative sequence of temperature (left panel) and horizontal wind speed (right panel) profiles vs. height.

different exponent and scparated from each other by a
break in the scaling, the unified scaling model results in
considering a single scaling but anisotropic regime (over all
meteorogically significant scales). Rather than first
postulating isotropy, and only secondly scaling (with the
implication of a meso-scale break), we only postulate
scaling, while expecting it to be anisotropic at all scales.
The interpretation of Eqs. (1, 2) is that we have:

1 1 1 k)

e(Ar)’ ~d(Az) when Ax? = AzS 3)

where Ax, and Az are the horizontal and vertical extents of
an eddy, and £, ¢ are the corresponding kinetic energy and
buoyancy force variance fluxes respectively,

This corresponds to a scalar, but highly nonlincar,
balance between these two fluxes. An immediate
consequence is that iso-shcar surfaces may be ellipsoids
rather than spheres, corresponding to the simplest case of
Generalized Scale Invariance: self affine (multi-) fractal
ficlds. More precisely, in the self affine systems the
corresponding generator (G) of scale transformations (7'2)
corresponds to a diagonal matrix instead of the identity (of
isotropic scaling):

Ta, = A‘—G — e—Glogl G =[

[l

3
0 )

o
o

Ay(T,Ax) LaHray(ax) ()

with H,=HpflIy=5/9. The trace of G is the (effective)
"elliptical dimension” of the space, i.e. Dy =2+ H; =23/9
= 2.555... for this self-affine stratilied turbulence (Scherizer
and Lovejoy, 1983, 1985). It characterizes how the
volumes of eddies change with scale.

A convenient reference scale, called the “sphero-scale™?
(Schertzer and Lovejoy, 1983, 1985) will exist where the
horizontal and vertical extents of an eddy will be equal:
Ax, = Az,. This scale is not at all a characteristic scale. At
scales smaller than Ax,, and assuming Hy<f{, (the relevant
case) the eddies will be all vertically elongated, resembling
convective cells, whereas for scales larger than Ax,, they
are all flattened in the horizontal, becoming more and more
horizontally stratified at larger and larger scales.

3The corresponding scale need not in fact be isotropic (i.e. spherical), this
is only the simplest case.
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Fig. 2. The mean spectrum of 287 radiosondes at 50 m resolution, over a
total depth of 13.3 km. The straight line is for reference with slope -2.2 .

2 Initial Data and Pre-Processing

Vertical wind specd profiles have been measured using
radiosondes during two expeditions of a research ship to a
tropical part of the Pacific Ocean. The total experimental
area was between latitudes 2°N - 29°N and longitudes
106°E - 153°E (most of the soundings were between
latitudes 2°N - 20°N and longitudes 125°E - 140°E). The
entire set of balloon data (horizontal wind V, temperature
T, relative humidity Q) consists of 187 vertical profiles for
the year 1989 (May - August) and 138 profiles for the year
1990 (July - October). All atmospheric variables were
measured along the balloon rise paths, which for simplicity
of interpretation, were considered vertical. The time
difference between the beginning and the end of each
balloon flight is neglected.

The vertical resolution of the balloon sensors was about
20-25 m (data were transmitted every 5 sec of balloon
flight). The data were first interpolated onto regularly
spaced intervals with vertical resolution of 25 m, and then
averaged over 50 m layers from near the surface to approxi-
mately 30 - 35 km. Averaging over 50 m layers excludes
most of the motions associated with the particular balloon
acrodynamics as well as false wind velocity
maxima/minima and of course, the effects of any
atmospheric eddics lesser than 50m. Fig. 1 displays the
detailed structure of the flow in the atmosphere with the
help of a representative sequence of these profiles for
horizontal wind speed and temperature vs. height.

Due to peculiarities of the radar tracking operation, the
minimum height varied from 150 to 450 m. This yields a
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Fig. 3. The distribution of spectral expenents for individual specira.
Dashed lines correspond to Kolmogorov-Obukhov (KO) -5/3 |, Bolgiano-
Obukhov (BO) -11/5, and Lumley-Shur (LS} -3 laws, respectively.
Cleatrly, the values 5/3 and 3 are rarely encountered.

lower cut-off of data - we chose a minimum height for
analysis of 500 m. This minimum altitude does not cause
any loss of generality, at worst it could be understood as a
rejection of the atmospheric surface layer with possibly
different statistics®. In this study we shall analyze only
turbulent wind data in the troposphere. Data of the
turbulent temperature profile and those from the
stratosphere will be discussed elsewhere. Thus, the upper
height cut-off was chosen somewhere near the tropopause
(see Fig. 1) which in our framework corresponds to a peak
of variability. Indeed, near the tropopause, many balloons
burst, and sensors failed. Occasionally strong
downdraughts or horizontal jet sireams were present; but if
the balloons managed to pass through - then they were able
to reach much higher altitudes. To eliminate these effects
on our statistics we fixed the upper cut-off at the height
13300 m. Following these pre-processing procedures, the
total data base was reduced to 287 individual profiles (167
for 1989 and 120 for 1990), which were used in the analysis
described below.

4Aclua}ly, unlike most theories which only apply under rather special
conditions (i.e. not too stable, not 100 unstable), our results apparently
apply under all conditions; only the amplitude of the flactuations is a
function of altitude and metcorology (see also Schenzer and Lovejoy
{1985) for a discussion of the effect of varying altitude and meteorological
conditions). Nevertheless, it would be interesting and important to test it
much closer to the surface.
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Fig. 4. Probability distributions for layers of thickness varying from 50 m
to 800 m (vertical separation between curves increases from left to right by
factor of 2) with straight lines with #,=0.51 gp , =5 for comparison.

3 Spectrum of Wind Fluctuations

The energy spectrum E(k) averaged over 287 individual
wind profiles (Fig. 2) possesses a long (over 2 orders of
magnitude) power law scaling region of the form
E(k)=k""" in the wavelength interval from 80 m (o 12.5
km with exponent S, = 2.20. This is in excellent agreement
with Bolgiano-Obukhov (BO) spectrum for convection in a
stably stratified atmosphere (Bolgiano, 1959; Obukhov,
1959) which gives By=11/5 (see¢ also, Brandenberg, 1992;
Yakhot, 1992). Still it appears that this agreement is for the
average spectrum, individual spectra show some variabitity
of the estimated slopes from = 5/3 to 3.5 (see Fig. 3). This
variability can also be seen in the results of other
investigators, who report various spectral exponents. In a
unified multifractal framework, the spectral exponents of
individual realizations are poorly defined and regressions
will yield random variables with large variability.

The first test of the BO spectrum was, Endlich et al.
(1969) who determined power spectral densities from
vertical soundings of horizontal winds that were measured
by means of radar-tracked "Jimspheres" obtaining?
exponents of roughly 5/2. Rosenberg et al. (1974) using
NASA vertical smoke trail measurements found a value of

5These measurements were in the 200 m to 16 km altitade region, and over
the wavelength range of 100 m to 5 km. There was some dispersion of the
individual spectral slopes although the authors concluded that the values
were never as low as 5/3.

-0,6
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Fig. 5. ¢(y function calculated from the probability distribution for 50 m
thick layers (points) compared to the theoretical bare and dressed ¢(y)
calculated with the parameters Cj ,=0.09, 0=1.85, H,=0.5, 4p=5.

about® 2.75. Finally, Daniels (1982) reported values” of
about 2.5.

The spectral exponent B, is related 1o the real space
scaling exponent H, (see Eq.(2)) by:

B=1+2H, - K(2/3) (6)

Ignoring first the small multifractal intermittency
corrections (-K(2/3)), from our theoretical estimate of
H,=3/5, we obtain B, =11/5. The estimate of H, is also
very close to values first reporied by Adelfang (1971) (who
found a value of 0.60 on the basis of thousands of
“Jimsphere” flights and structure functions), and to the
value 0.6 obtained by Schertzer and Lovejoy (1983, 1985)
using data with a 50 m spatial resolution at 3-hour intervals
in Landes (France} and probability distributions,

There are however two main and closely related
differences of this scaling with that of the classical
"buoyancy subrange”. The first is the very large range of
scales over which it holds; indeed, the scaling interval is
over virtually the entire range of metecrologically
significant vertical scales. The ability of a single
measurement device to cover the entire range in this way is
a significant advantage of studying the vertical rather than
the horizonltal direction. In the latter case many different
measuring campaigns and devices are necessary (for
discussion and review, see Schertzer and Lovejoy, 1985
and Lovejoy et al., 1993).

6In the altitude range 5 - 18 km and in the wavelength range 100 m 10 3.6
km.

TWith a total of 1200 vertical profile measurements made with
rawinsondes in the 4 - 16 km alhitude range for wavelengths in between 80
m - 4 km.
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Fig. 6. Resulis of the DTM analysis with g=2.5, 2, 1.5 , 10p 1o bottom,
respectively, the straight lines correspond to a= 1.85.

The second difference is that contrary to the BO theory,
the scaling found here does not correspond isotropic
scaling, since as evidenced in Part I the corresponding
horizontal spectrum is quite different. The latter was
obtained from data belonging to similar “Typhon”
experiments in the same area and during the same period,
but collected along the horizontal with the help of
instrumented aircraft. The corresponding horizontal
exponent was estimated to be 8,=5/3 (and hence 1;=1/3) as
predicted by Kolmogorov (1941} and Obukhov {1941),
Indeed, as technology has improved, and the size of wind
data bases has increased, it has become quite clear that the
horizontal scaling with exponent =5/3 contlinues up to at
least several hundred kilometers - right through the
mesoscale (Nastrom and Gage, 1983; Lilly, 1983).
However, perhaps the most convincing evidence to date for
horizontal scaling comes not directly from velocity data at
all, but rather from satellite imagery of clouds which show
remarkably good scaling over a wide range of wavelengths
and length scales spanning at least 300 m to 4000 km
(Lovejoy et al.,, 1993). The radiances associated with the
latter are nonlinearly coupled with the velocity field and the
dynamical scaling is expected to reflect itself in the {ormer.
Conversely, it can be argued that a break in the scaling of
the velocity field associated with a meso-scale gap and with
a “dimensional transition” from small scale three
dimensional to large scale two dimensional turbulence
would be particularly obvions in the cloud and radiance
fields®.

8Whereas the {vector) wind field has two quadratic invariants in 2-D
turbulence (the enstrophy and the energy fluxes), and hence two not very
different scaling regimes, this is not true of the comresponding passive
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The ubiquity of scaling with B,~11/5 in the vertical and
Bx=5/3 in the horizontal corresponds to the unique
anisotropic but scaling regime of atmospheric dynamics as
postulated in the Unified Scaling model of atmospheric
dynamics and recalled in the section 1. There is no
evidence for either isotropic three dimensional nor for
isotropic two dimensional turbulence, the atmosphere
appears 10 be anisotropic but scaling throughout. It should
perhaps be recalled that such anisotropic scaling implies
that the atmosphere is progressively more and more
stratified at larger and larger scales. The frequently quoted
scale height of the decrease in the mean pressure is
apparently not visible in the dynamically significant
vertical fluctuations.

We may finally make some comments on the
conventional explanation for the realization to realization
variability of the spectrum. The cause of this variability is
wsually attributed to the stratification conditions. Since it is
evident that if locally isotropic turbulence (Kolmogorov -
Obukhov (KO)) can ¢ver be realized in the atmosphere it
will only be under neutral stratification (motions over each
direction must have equal probability). Some
investigations have been carried out during changes of
atmospheric stratification to investigate this. Thus, Myrup
{1969) analyzed data of research plane horizontal flights on
several heights during the morning heating of the
atmosphere and during the change of stratification from
stable o neuiral, He found that for stable stratification
{both for horizontal and vertical sections of turbulent wind
field) spectra possess slopes from 11/5 to 3, but for the case
of neutral stratification spectra were closer to the KO
theory.,

From the point of view of the Unified Scaling model, the
problem is that the notion of stable or unstable stratification
is scale dependent. For example, Schertzer and Lovejoy
(1985) showed that if the Richardson number is defined as
a function of the thickness of a layer, that it was scaling
with exponent = 1. This means that any sufficiently thick
layer would be stable while nonetheless containing many
thin unstable layers (in a scaling hierarchy). The
qualification "stable " or "unstable” is therefore a scale
dependent concept, and experiments which are "filiered” so
as to only consider one type of situation or another will
involve complex scale dependent conditioning, The fact
this conditioning - based on subjective scale dependent
large scale criterion - is more or less equivalent to a
classificaion of the data according to their spectra is not
surprising.

4 Probability distribution function of wind shear

In Part I, we discussed the notion of Self Organized
Criticality in the context of stochastic multifractals, as

scalars; the latter will display a very drastic break at the transition from
enstrophy 10 energy flux dominated cascades.
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Table 1. Comparison of universal multifractal indices (including the
dressing dimension D) for kinetic energy flux in the atmosphere in the
ventical, horizontal and time.

Table 2. Comparison of universal maultifractal indices for velocity in the
atmosphere in the vertical, horizontal and time.

Variable Vertical Horizontal Time Variable Vertical Horizontal Time
(this paper) (part I) (Schmiu et al., (this paper) (part I) (Schmitt et al.,

1993) 1993)

o 1.8510.05 1.3530.07 1.50+0.05 o 1.85+£.05 1.35+£0.07 1.50£0.05

Cy 0.59+0.05 0.3040,05 0.2510.05 C. 0.078+0.01 0.068+0.01 0.0540.01

qD"' 1.720.1 2.4+0.05 25303 H 0.50+0.05 0.3310.03 0.33+0.03

D * 1.2840.05 0.7010.05 0.6030.05 Gpw** 5.0£0.02 7,01 7.0+1

Y drr'{Ds=0) # 0.94+0.05 0.7240.05 0.6810.05 7D v +0.0610.03 -0.1040.02 -0.1040.03

'rd,:(Ds=0.5 # 1.2640.05 0.8740.05 0.88+0.05 Yd,5,v(De=0) -0.1520.05 0.00£0.05 0.0420.05

Td':(Dfl) 1.56£0.05 1.1610.05 1.08+.005 ¥d,s,v(Ds=0.5) 0.0440.05 0.0740.05 0.0340.05

D% 0.9110.1 0.5110.1 0.4630.1 ¥d s v(Ds=1) 0.0530.05 0.1520.05 0.1010.05

+The divergence of moments exponents gp are obtained from the wind Dyt 0.3340.1 0.22+0.1 0.2040.1

ficld:qoqup,,fl " Calculated from C 157C ,,3‘0‘.

# The 74 (D) corresponds 10 the maximum observable dressed singularity ** Ip= BqD

for respective sampling dimensions (see Part I) D;=0; 0.5; 1. The
underlined values correspond roughly to values empirically accessible
with the cited papers.

*This value is obtained by K" ().

+ The dressing dimension D is obtained as solution of the implicit equation

K(gp)=Dig,1)

corresponding to a multifractal phase transition and to
algebraic or "hyperbolic” fall-off of the probability
distribution:

Pr(X=x) =~ 27925 o>l N

where the critical order of moment ¢p (the analog of the
reciprocal temperature of the critical phase transition)
corresponds to the following divergence of statistical
moments:

<x¥>=es gxgqp, (8)

The probability distribution function of wind shear
Pr(AV=4v), plotted in Fig. 4 on log-log axes for different
thresholds (Av), exhibits nearly the same type of Self
Organized Criticality (as pointed out by Scherizer and
Lovejoy (1983, 1985) under the expression of "hyperbolic
intermittency”}, but over a wider range of intensities since
our data set is much larger (ours involves =103
measurements, theirs only =5x103).

First, let us note that the uniform (lefi-right) separation
(of factor ~ 2" since Az is systematically increased by
factors of 2) of the curves gives another estimate of Hy; the
graph indicates the separation corresponding to the value
Hy=0.51. This is reasonably consistent with the theoretical
value 3/5 , but is in good agreement with the estimate of Hy,
obtained in the next section.

For comparison, the straight lines corresponding to the
best fit to the algebraic fall-off (for probability levels less
then 1072%) are displayed on Fig. 4, leading us to an initial
estimate gp ,= 5.0 £.2. This is surprisingly close to the
previous results (Schertzer and Lovejoy, 1983, 1985), who
had found the similar slopes in the range of se¢parations 50

+ The dressing dimension Dy, is obtained as solution of the implicit
equation: Kv(‘?D,v)= Dv(qD,v‘l)-

m < Az < 3200 m with® g5 ,~ 5.0, i.e. no preferred scale
and convergence of moments only up to = 50 order,

5 The codimension of singularities ¢(})

We are naturally lead to compute the codimension function
¢(y), since it is the scaling exponent of the probability
distribution (see Eq. 1 of part I) and therefore is obviously
of more fundamental significance than the latter. As in Part
1, we use a single scale implementation of the Probability
Distribution Multiple Scaling (PDMS, Lavallée et al., 1991)
technique which estimates c(7) as:

log Pr
log A

e(¥) =~ €)

i.e. it ignores a possible slowly varying prefactors of the
probability in the definition of c(7y).

From the plot of ¢(}) vs. 7y, given on Fig. 5, we can once
again obtain an estimate of H, as the tangent ¢’(y) = 1 with
the yaxis (this method exploits the fixed point of the ¢(y)
function: ¢(Cj-H)=C} and ¢'(Cj-H)=1; see part I). This
method yields an estimate of H = 0.50 which - given the
method inaccuracy - is in good agreement with the value
obtained from probability distributions 0.51 (see Sect. 4).
From this curve we also obtain an estimate of C; which is
the codimension of the mean process. 'We obtain a rough
estimate C;,~ 0.1. These values are larger than those
obtained by Schmitt et al. (1992) for the temporal scaling of
the wind at a point C; ,= 0.05+0.01 and even larger than
those obtained in the horizontal Cy ,~0.068+0.01 in Part I.

9 Other guanitties which were also found to display vertical scaling and
divergence of moments were the potential temperature and gradient
Richardson numbers.
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Fig. 7. The K(g) curve calculated for a single realization showing
with the theoretical bare curve {C;=0.57, @=1.85), and the dressed
curve for Ny=1, D=0 (hence yy:~0.9, gs=1.35). Since 45<4p
(=5/3), this is a second order multifractal phase transition.

Due to the space-time stratification, the various values of
(7 are not expected to be the same, see the discussion
below. In the following section, Cj, will be more
accurately determined using the Double Trace Moment
technique. In the Fig. 5 we compare the empirical curve
with that obtained using universal expressions for ¢f7), (see
part I, Eq.(9)) with €,,=0.09, &=1.85, H,=0.46, q,,=5 and
Yp=K'(qp)-H,~0.0, showing the extremely good fit
achieved. Note that the asymptotic linear behaviour of the
dressed c(y) found here (associated with the first order
multifractal phase transitions) is qualitatively different from
the absolute maximum singularity postulated by the
microcanonical models (e.g. Meneveau and Sreenivasan,
1987; Bershadskii and Tsinober, 1992; Bershadsky et al.,
19933,

Another interesting point is that the critical order of
singularity for the divergence of moments of the wind field
{7Yp,) is consistenily close to the value 0, i.e. the
corresponding velocity is nearly scale invariant. It is worth
mentioning that this implies the possibility of observing
positive order singularities (as displayed in Fig. 5). In the
limit of infinite Reynolds number (i.e. A— o), 10 leads
to infinite shears. Frisch 1991 postulated that this would be
unphysical and used this restriction to justify his geometric
{local) multifractal approach which has strongly bounded
singularities and is generally not compatible with cascades
(which involve nonlocal singularities). Schertzer et al 1994
criticized Frisch's argument on theoretical grounds!®, we

19mdeed, in incompressible Navier-Stokes turbulence, the speed of sound
is infinite and in the infinite Reynolds limit there is no convincing reason
that the velocities shears remain finite. Furthermore, even with a
compressible fluid and finite Reynolds number, positive singularities can
exist without leading to velocities exceeding the speed of sound (in the
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see here that it also seems to be irrclevant on empirical
grounds,

6 Universal multifractal indices determined by Double
Trace Moment Analysis

The fundamentals of double trace moment (DTM) analysis
were discussed in part I (Sect. 2). Here we rather focus on
its application.

As in the horizontal case (Schmitt et al., 1992, 1993 and
part I), we first must take into account the non conservation
of shears (i.e. Hy#0) as evidenced by the systematic lefi-
right displacement of the probability distributions shown in
Fig.4. A statistically stationary series (necessary for the
application of the DTM technique) can be obtained in
various ways, the most appropriate here is by power law
filtering in Fourier space, i.e. a fractional integration of
order [{,. The main problem is that we are using wind
velocity data while according to the Eq.(2) Bolgiano-
Obukhov regime in the thermal convection is governed by
the buoyancy force variance flux ¢ which is estimated via
temperature data. So, first we have to get an accurate
estimate of exponent H, in the following scaling law for
vertical wind shears:

Av(Az)i(s(Az))"" azth (10

As was conjectured in Sect. 1, a balance between kinetic
and thermal dissipation rates should be achieved when
exponent @y is equal to 1/3, And the estimate of Hy, can be
obtained using its meaning as the deviation from a
conservative flux. So, a fractional integration of order Hy
was done for different values until zero deviation was
reached!!,

After fractional integration, samples were rased to the
third power of the absolute value of the result was taken.
This yields a conservative and pesitive quantity, which can
be considered as an estimate of energy transfer rate £ Each
realization of £ obtained in this manner was used in the
DTM analysis. The resulting functions K(g,7n) are shown
on a log-log plot in Fig. 6. One can see that the curves are
straight showing universal behavior over rather wide ranges
of 1 and q values. The slope of the curves gives the value
of the third parameter ¢ (the Levy index of the generator),
which we estimale as oy=a=1.85+0,01,

Using the universal expression for K(g,m) and this
estimate of o, we can more precisely estimate the
codimension of the mean process, respectively for the
energy and shears, as: C; = 0.59+0.05, C; , = 0.078+0.01.
Finally, Fig. 7 shows the comparison of the empirical K(q)

atmosphere y={).2 are still compatible with this limit). Finally, the velocity
of sound is not an absolute bound anyhow.

1 At the value Hy=0.5 which due this fundamental property seems 1o be
the most reliable estimate for H,, (inspite of the above discussions on H,,
values),
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function for a single realization, compared with the
theoretical curve obtained with the observed Cy, & and with
gs=c'(7) and ¢(%)=1. This shows that only 279 order phase
transitions occur on single realizations.

7 Discussion

We can now compare our results with those obtained earlier
in time (Schmiit et al., 1993), and the horizontal (part I},
this is shown in Tables 1, and 2, the underlined values of
the maximum observable (dressed) singularity corresponds
roughly to the sizes of the data bases used for the estimates,

In the Tables we have shown the values of g 5
corresponding to a single sample (D=0) and increasing
sample size (calculated from cg(yy s)=D+Ds. D is the
dimension of the observing space = 1 in all these cases, (i.e.
time, aircraft  or  balloen  trajectory).
D, = Log(N,) [ Log(A) is the sampling dimension, and N,
is the number of samples. Note that for single samples, the
divergence cannot be detected in the vertical ()7 ¢< 7p) and
it is marginally detectable in the horizontal and in time
(Yd,s=Yp)

We have already noted that the H values are close to
those predicted by dimensional arguments. This result
already lead 1o a simple model of the atmosphere involving
an overall stratification characterized by a single linear
generator (7 with trace = the elliptical dimension = 2+,
with H=Hp/H,=5/9 (Schertzer and Lovejoy 1983, 1985).
This simplest model predicts that both weak and mean
events will have codimensions which are in the same ratio:

C
Mzﬂzﬂz =§. (11)
G, H, 9

empirically, we find for € the ratio C;4/Cy,= 0.3/0.59
=0.51 which is rather close to the predicted value 0.555.
This agreement indicates that at least for low order statistics
the original scalar model! based on deterministic linear
generalized scale invariance works remarkably well.

However, the fact that the values of & in the horizontal
and vertical are close but distinct, although they both
belong to the same class of unconditionally hard universal
multifractals (¢>>1), implies that it cannot hold exactly for
higher intensity levels, since they will be more sensitive to
the different type of distribution of singularities ruled by
the index of multifractality o. This points out that the
original model should be improved by searching a more
complex (e.g. vectorial) balance between the horizontal
shears and vertical buoyancy forces, which in the original
model was simply expressed by the scalar balance (see Eq.3
between their respective scalar fluxes. This requires an
explicit ireatment of the vector nature of the problem using
Lie cascades (Schertzer and Lovejoy 1994).

8 Conclusions

In the second part, we have first confirmed previous
multifractal analyses along the vertical but in the tropics
rather than midlatitudes, and using a much larger data base.
Other differences include the use of more sophisticated
analysis methods (especially the Probability Distribution
Multiple Scaling and Double Trace Moment techniques).
The combination of these radiosonde results with the
aircraft analyses discussed in part I, performed on data
collected in the same area and period, gave us the unique
opportunity to test the unified multifractal model of
atmospheric dynamics with data with essentially the same
metecrological and climatological characteristics.

Using a single generator of anisotropy, our model unifies
the small and large scale horizontal and vertical structures
by a single anisotropic scaling regime rather than two
separate isotropic 2D and 3D regimes. It also unifics the
weak and the strong fluctnations by using a single
probability generator characterized by three basic
{universal) multifractal parameters which we estimate, For
intensities near the mean, we reconfirm that the mono-
fractal exponent H (characterizing the deviation of the
velocities from the conserved energy and buoyancy fluxes)
are close to the theoretical values obtained by dimensional
arguments: Hp = 1/3, Hy= 3/5. Empirically, we find that
the other monofractal exponent C; (characterizing the
sparseness of the mean) is transformed from the horizontal
to the vertical using the anisotropy implied by the different
H values: Cj p=Hy Ci, /Hp. The original unified scaling
model is therefore adequate for singularities, not too far
from the mean (i.e. for not too extreme events), this is
apparently true in both the tropics as well as the mid
latitudes.

However, using the Double Trace Moment technique,
we obiained convincing results showing that the
multifractal index & was not the same for the vertical and
horizontal directions {(and apparently different from that in
time) and as a consequence we obtain somewhat different
behaviours for the extreme fluctuations (associated with
Self Organized Critical structures) along the vertical when
compared to the horizontal. In order to account for this
effect, we must go beyond the original scalar framework in
order to belter take into account the fundamental balance
between shears and buoyancy forces.
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